
Intel Confidential — Do Not Forward

Using an Adaptive Mesh Refinement
proxy code to assess dynamic load
balancing capabilities for exascale
Rob Van der Wijngaart

Intel Labs, Intel Federal

2

Notices

Intel and Xeon are trademarks of Intel Corporation in the U.S.
and/or other countries.

Software and workloads used in performance tests may have
been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change
to any of those factors may cause the results to vary. You
should consult other information and performance tests to
assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined
with other products. For more information go to
http://www.intel.com/performance.

Acknowledgement This research used resources of the
National Energy Research Scientific Computing Center, a DOE
Office of Science User Facilitysupported by the Office of
Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231

• Background Parallel Research Kernels (PRK) Suite

• Motivation Adaptive Mesh Refinement (AMR) kernel

• AMR PRK specification

• Reference implementations

• Experimental results
- Shared memory
- Distributed memory

• Conclusions and future work

3

Agenda

Background Parallel Research Kernels

Create test suite to study behavior of parallel systems
§ Cover broad range of patterns found in real parallel applications

§ Provide paper-and-pencil specification and generic reference
implementations

§ Keep kernels simple functionally
- Easy porting to new runtimes/languages
- Easy to understand by different domain scientists
- Dominated by single feature, so convenient performance building block

§ Parameterize kernels (problem size, iterations, # cores etc.)

§ Make sure each kernel does actual work

§ Include automatic verification test (analytical solution)

§ Ensure enough expoitable concurrency (can be load balanced)
– Make trivially statically load balanced

4

Motivation Adaptive Mesh
Refinement (AMR) kernel

§ However, exascale will require dynamic load balancing for
mature workloads + system/network fluctuations

§ Goal: Design and implement new kernels that:
- Require dynamic load balancing at all system scales (algorithmic source)
- Allow control of amount and frequency of workload adaptation
- Have data dependencies, so load-balancing is non-trivial; improving load-

balance usually increases communication

§ Usage: Research vehicle to stress dynamic load-balancing
capabilities of parallel runtimes + application frameworks

§ Particle-in-Cell (PIC) PRK, IPDPS 2016: continually evolving
mismatch between dependent data structures, fixed total work

§ Adaptive Mesh Refinement (AMR) PRK, ISC 2017: abrupt, local
variations in computational load (proxy for system disturbances),
sudden increase/decrease in total work

5

6

Stencil S(R)

R=2

AMR PRK Specification

Parameters:
• Size of BG
• Size + refinement

level of RGs
• Frequency +

duration of
refinement

• Iterations on RGs

Stencil PRK with Background Grid (BG) & periodic
Refinement Grids
(RGs)

7

RG0

AMR PRK Specification

Parameters:
• Size of BG
• Size + refinement

level of RGs
• Frequency +

duration of
refinement

• Iterations on RGs

Stencil S(R)

R=2

Stencil PRK with Background Grid (BG) & periodic
Refinement Grids
(RGs)

8

RG1

AMR PRK Specification

Parameters:
• Size of BG
• Size + refinement

level of RGs
• Frequency +

duration of
refinement

• Iterations on RGs

Stencil S(R)

R=2

Stencil PRK with Background Grid (BG) & periodic
Refinement Grids
(RGs)

9

RG2

AMR PRK Specification

Parameters:
• Size of BG
• Size + refinement

level of RGs
• Frequency +

duration of
refinement

• Iterations on RGs

Stencil S(R)

R=2

Stencil PRK with Background Grid (BG) & periodic
Refinement Grids
(RGs)

10

RG3

AMR PRK Specification

Parameters:
• Size of BG
• Size + refinement

level of RGs
• Frequency +

duration of
refinement

• Iterations on RGs

Stencil S(R)

R=2

Stencil PRK with Background Grid (BG) & periodic
Refinement Grids
(RGs)

Reference implementations

11

§Application level “dynamic load balancing” (MPI)
oNo over-decomposition

oWhen refinement appears:
– FINE-GRAIN: Divide RG work evenly among all ranks
– HIGH-WATER: Divide RG È BG evenly among all ranks
– NO-TALK: Assign RG work to rank(s) owning corresponding part(s) of BG

§Runtime orchestrated dynamic load balancing (Adaptive
MPI)
oRelies on canonical MPI partitioning (above), with over-

decomposition

Experiments

12

§ Shared memory: Intel® Xeon® E5-2699v3, 2.30 GHz, 64 GB
memory, 2x18 cores (full occupation)

§ Distributed memory: NERSC Edison, Cray XC30, Intel®
Xeon® E5-2695v3, 2.40 GHz, 64 GB memory, 2x12 cores (full
occupation)

§ SMP experiment: NO_TALK, BG= 368642, RG=15362 (2-level
refinement →	61412 points), 400 time steps, 1 RG iter/BG iter,
RG Duration = {10,20,40} time steps, Period = 2*Duration
Implications:
oRG coincides with single BG patch, even with over-decomposition
oRG size = BG patch size
o#iters with refinements = #iters without refinements

§ Adaptive MPI (AMPI): Over-decomposition = {2,4,8},
LB={refine,greedy}, migration delay = 1-5 time steps, use
isomalloc to migrate ranks

Experimental grid configuration

13

Rank
0

Rank
1

Rank
35

Background
Grid36

86
4

po
in

ts

Rank
5

Refinement 3

61
41

po
in

ts

Work assignment policy NO-TALK

Experimental results, shared
memory

14

§ Theory (load imbalance = 1-Tavg/Tmax):
o If over-decomposed (Z ranks per core) but no rank migration

allowed (equivalent to plain MPI), load imbalance = 1/3
o If rank migration allowed (optimum if core with RG rank moves

off all ranks with only BG tiles), load imbalance = 1/(2Z+1)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 4 9 16 32
ranks per core (Z)

Calculated load imbalances

With migration
No migration

Experimental results, shared
memory

15

§Observations:
o LB=Refine: plain MPI and AMPI perform the same for all

parameters: 41.1 GFlops/s ±2.7% (~5% migrate)
o LB=Greedy: 35.5 Gflops ±5.3% (~100% migrate)
oAMPI performance independent of “noise” frequency, migration

delay, degree of over-decomposition
o#ranks migrating irregular, despite regular disturbances
o Plain Stencil PRK iteration times for RG on 1 rank and BG on 36

ranks 0.14s and 0.58s, respectively
o If increasing work on RGs by 4x and 16x while keeping BG work

unchanged, again AMPI perf » plain MPI perf
o If reducing RG and BG work by 16x (noise Hz 16x), AMPI perf

for durations 20 & 40 » plain MPI perf, but AMPI perf for
duration 10 down 24%

Experimental results, distributed
memory

16

§Only used LB=Refine
§Weak scaling, so 4x number of nodes, BG grows by 2x in
each coordinate direction

§RG size constant and same as in shared memory case:
ratio of BG/RG work for rank receiving RG remains
constant

§ Fix overdecomposition at 4, migration delay at 2 iters
§Duration = {10,20,40}
§Use Pack/Unpack for rank migration
§ First experiment: 1 RG iter/ BG iter (same as shared
memory experiment).

Distributed memory results, 1
subiteration

17

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1 4 16 64

Pe
rf

or
m

an
ce

,
no

rm
al

iz
ed

nodes

Weak scaling
sub-iterations=1

AMPI: D=10 AMPI: D=20
AMPI: D=40 MPI: D=10
MPI: D=20 MPI: D=40

Distributed memory results, 4
subiterations

18

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1 4 16 64

Pe
rf

or
m

an
ce

,
np

or
m

al
iz

ed

nodes

Weak scaling
sub-iterations=4

AMPI: D=10 AMPI: D=20
AMPI: D=40 MPI: D=10
MPI: D=20 MPI: D=40

Conclusions and future work

19

§Conclusions
oAMR good, flexible proxy for localized disturbances

oAdaptive MPI convenient vehicle for quick comparison with legacy
runtime

oAdaptive MPI implementation with dynamic load balancing does not
manage to improve performance over non-adaptive MPI

§ Future work
oRepeat AMPI experiments with “oracle load balancer”

o Test dynamic load balancing capabilities of other disruptive, task-
based runtimes (Legion, OCR, HPX3/5) with AMR

Intel Confidential — Do Not Forward

Backup material

21

Specification details

22

Parameters
§ T : total number of iterations (background grid)
§ R: radius of difference stencil
§ n: linear dimension of square background grid (n2 points, mesh

spacing is unity)
§ r: refinement level (mesh size of refined grid is 2−r)
§ k: linear dimension of refinement in terms of BG cells ((k∗2r +1)2

points in each refinement)
§ P : duration in terms of iterations on the BG of one full cycle of

activation of one refinement until that of the next (period)
§ D: duration in terms of iterations on the BG of activity on each

refinement; D ≤ P
§ d: number of iterations on a refinement per iteration on the BG

Specification details

23

(Re-)initialization
§ In[0](x,y) = cxx+cyy
§ Ini[t]= f (In[t]), with f bi-linear interpolation (exact for linear

field)
Update
§ Increase In and Ini by constant after each stencil application
Verification
§ S is numerical equivalent of Ñ (exact for linear field):

Ñ(cxx+cyy + const) = cx+cy

§ Count number of iterations hi on gi ® Outi[T](x,y) º hi*(cx+cy)
§ Out[T](x,y) = T*(cx+cy)
§ In[t](x,y) = cxx+cyy + t, so: In[T](x,y) = (cx+cy)(n-1)/2 + T
§ Count number of updates ni on gi since last interpolation at time

qi® Ini[T](x,y) º (cx+cy)*k/2 + ni + f(corneri) + qi

corneri = coordinates of bottom left corner point of gi

Three example AMR scenarios

24

1. n=1000, 10 workers, r=1, k=100, P=3, D=1, d=1.
Refinement has 1% of work of BG, lasts 1 iteration, then
waits for 2 iterations until next refinement. OK to add
refinement work to worker covering same part of BG (~10%
load imbalance)

2. n=1000, 100 workers, r=1, k=100, P=3, D=1, d=1. Not OK
to add refinement work to worker covering same part of BG
(100% load imbalance). Rapid (dis)appearance requires
frequent load balancing

3. n=1000, 100 workers, r=4, k=6, P=30, D = 10, d = 5.
Refinements ≈number of grid points as in scenario 1, but
cover much smaller fraction of the BG; activated 10x slower
than in that case, persist 50x longer, so automatic load
balancing may respond effectively to changes in load

