Scaling Clustered N-Body/SPH Simulations

Thomas Quinn

Fabio Governato Lauren Anderson Michael Tremmel Ferah Munshi Joachim Stadel James Wadsley

Laxmikant Kale

Filippo Gioachin

Pritish Jetley

Celso Mendes

Amit Sharma

Lukasz Wesolowski

Gengbin Zheng

Edgar Solomonik

Cosmology at 380,000 years

Image courtesy ESA/Planck

Computational Cosmology

- •CMB has fluctuations of 1e-5
- •Galaxies are overdense by 1e7
- It happens (mostly) through Gravitational Collapse
- Making testable predictions from a cosmological hypothesis requires
- -Non-linear, dynamic calculation
- -e.g. Computer simulation

TreePiece: basic data structure

- A "vertical slice" of the tree, all the way to the root.
- Nodes are either:
 - Internal
 - External
 - Boundary (shared)

Overall treewalk structure

Speedups for 2 billion clustered particles

Number of Cores

Multistep Speedup

Clustered/Multistepping Challenges

- Load/particle imbalance
- Communication imbalance
- Rapid switching between phases
 - Gravity, Star formation, SMBH mergers
- Fixed costs:
 - Domain Decomposition
 - Load balancing
 - Tree build

Zoomed Cluster simulation

Load distribution

ORB Load Balancing

LB by particle count

Time Profile

^{29.4} seconds

LB by Compute time

Time Profile

^{15.8} seconds

Multistepping Utilization

Time Profile

Small rungs:

Energy

Energy

Smallest step

Total interval: 1 second

CPU Scaling Summary

- Load balancing the big steps is (mostly) solved
- Load balancing/optimizing the small steps is what is needed:
 - Small steps dominate the total time
 - Small steps increase throughput even when not optimal
 - Plenty of opportunity for improvement

GPU Implementation: Gravity Only

- Load (SMP node) local tree/particle data onto the GPU
- Load prefetched remote tree onto the GPU
- CPUs walk tree and pass interaction lists
 - Lists are batched to minimize number of data transfers
- "Missed" treenodes: walk is resumed when data arrives: interaction list plus new tree data sent to the GPU.

Grav/SPH scaling with GPUs Piz Daint timing for 40M disk SMP 10² GPU SMP with SPH GPU with SPH Gravity (+ SPH) time (seconds) SMP GPU with SPH 10¹ 10⁰ 10¹ 10² 10³ 10^{4} Number of CPU cores

Tree walking on the GPU

Jianqiau Liu, Purdue University

Paratreet: parallel framework for tree algorithms

Availability

- ChaNGa: <u>http://github.com/N-bodyShop/changa</u>
 - See the Wiki for a developer's guide
 - Extensible: e.g. ChaNGa-MM by Phil Chang
- Paratreet: <u>http://github.com/paratreet</u>
 - Some design discussion and sample code

Acknowledgments

- NSF ITR
- NSF Astronomy
- NSF XSEDE program for computing
- BlueWaters Petascale Computing
- NASA HST
- NASA Advanced Supercomuting