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NAMD	Mission	Statement:	
Prac7cal	Supercompu7ng	for	Biomedical	Research	

•  88,000	users	can’t	all	be	computer	experts.	
–  18%	are	NIH-funded;	many	in	other	countries.	
–  26,000	have	downloaded	more	than	one	version.	
–  6,000	citaCons	of	NAMD	reference	papers.	
–  1,000	users	per	month	download	latest	release.	

•  One	program	available	on	all	plaZorms.	
–  Desktops	and	laptops	–	setup	and	tesCng	
–  Linux	clusters	–	affordable	local	workhorses	
–  Supercomputers	–	“most	used	code”	at	XSEDE	TACC	
–  Petascale	–	“widest-used	applicaCon”	on	Blue	Waters	
–  GPUs	–	from	desktop	to	supercomputer	

•  User	knowledge	is	preserved	across	plaZorms.	
–  No	change	in	input	or	output	files.	
–  Run	any	simulaCon	on	any	number	of	cores.	

•  Available	free	of	charge	to	all.	
	Oak	Ridge	TITAN		

Hands-On	Workshops	



CompuCng	research	drives	NAMD	(and	vice-versa)	
•  Parallel	Programming	Lab	–	(co-PI	Kale)	

–  Charm++	parallel	runCme	system	
–  Gordon	Bell	Prize	2002	
–  IEEE	Fernbach	Award	2012	
–  16	publicaCons	SC	2012-16	
–  6+	codes	on	Blue	Waters	

•  Support	from	Intel,	NVIDIA,	IBM,	Cray	
•  20	years	of	co-design	for	NAMD	

–  Performance,	portability,	producCvity	
–  SC12:	Customized	Cray	network	layer	
–  SC14:	Cray	network	topology	opCmizaCon	
–  ParallelizaCon	of	CollecCve	Variables	module	

	

“For	outstanding	contribu7ons	to	
the	development	of	widely	used	

parallel	soEware	for	large	
biomolecular	systems	simula7on”	



Charm++	Used	by	NAMD	
•  Parallel	C++	with	data	driven	objects.	
•  Asynchronous	method	invocaCon.	
•  PrioriCzed	scheduling	of	messages/execuCon.	
•  Measurement-based	load	balancing.	
•  Portable	messaging	layer.	

Complete	info	at	charmplusplus.org	
and	charm.cs.illinois.edu	



		

• 	SpaCally	decompose	data	and	
communicaCon.	
• 	Separate	but	related	work	
decomposiCon.	
• 	“Compute	objects”	facilitate	
iteraCve,	measurement-based	load	
balancing	system.	

	

NAMD	Hybrid	DecomposiCon	
Kale	et	al.,	J.	Comp.	Phys.	151:283-312,	1999.	



Phillips	et	al.,	SC2002.	

Offload	to	GPU	

Objects	are	assigned	to	processors	and	queued	as	data	arrives.	

NAMD	Overlapping	ExecuCon	
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A	brief	history	of	NAMD	(and	VMD)	



NAMD	Runs	Large	Petascale	SimulaCons	Well	
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A	Sampling	of	Petascale	Projects	Using	NAMD	

Rous	Sarcoma	Virus	 HIV	

Chromatophore	

Rabbit	Hemorrhagic	Disease	

Chemosensory	Array	



12	replicas	x	40	ns	
50	replicas	x	20	ns	

12	replicas	x	40	ns	
24	replicas	x	20	ns	
200	2D	replicas	x	5	ns	
50	replicas	x	20	ns	

30	r	x	20	ns	
30	r	x	20	ns	
30	r	x	20	ns	

30	r	x	20	ns	
30	r	x	20	ns	

Bias-exchange umbrella sampling simulations of GlpT membrane transporters!

150	replicas		

New	mulC-copy	methodologies	enable	study	of	millisecond	processes	

M.	Moradi,	G.	Enkavi,	and	E.	Tajkhorshid,	Nature	Communica7ons	6,	8393	(2015)	



Coming	Soon:	Milestoning	

Use	string	method	to	
idenCfy	low-energy	
transiCon	path	and	
parCCon	space	into	
Voronoi	polygons	

Run	many	trajectories,	
stop	at	boundary	

NAMD	2.11	work	queue	efficiently	
handles	randomly	varying	run	lengths	
across	mulCple	replicas	in	same	run	Faradjian and Elber, 2004. J. Chem. Phys. 

Bello-Rivas and Elber, 2015, J. Chem. Phys 

Portable	innova-on	implemented	in	Tcl	and	Colvars	scripts	by	graduate	student	
Wen	Ma	



Milestoning	Applied	to	Molecular	Motors	
TACC	Stampede	KNL	Early	Science	Project	

ClpX	powerstroke	transiCon	
Predicted	Cme	scale:	0.5	ms	

ADP	release	
shiss	global	
minimum,	
leading	to	

motor	acCon	

ClpX	

Ma	and	Schulten,	JACS	(2015);	Singharoy	and	Schulten,	submiIed		

IniCal		
state	

Final		
state	

ADP	bound	

ADP	unbound	

Experimental	collaborator:	
A.	MarCn,	UC	Berkeley	



NAMD	2.12	Release	
•  Final	release	December	22,	2017	
•  CapabiliCes:	

–  New	QM/MM	interface	to	ORCA,	MOPAC,	etc.	
–  Alchemical	free	energy	calculaCon	enhancements	for	constant	pH	
–  Efficiently	reload	molecular	structure	at	runCme	for	constant	pH	
–  Grid	force	switching	and	scaling	for	MDFF	and	membrane	sculpCng	
–  Python	scripCng	interface	for	advanced	analysis	and	feedback	

•  Performance:	
–  New	GPU	kernels	up	to	three	Nmes	as	fast	(esp.	implicit	solvent)	
–  Improved	vectorizaCon	and	new	KNL	processor	kernels	
–  Improved	scaling	for	large	implicit	solvent	simulaCons	
–  Improved	scaling	with	many	collecCve	variables	
–  Improved	GPU-accelerated	replica	exchange	
–  Enhanced	support	for	replica	MDFF	on	cloud	plaZorms	



NAMD 2.12 Large Implicit Solvent Models 
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11x performance increase 

NAMD 2.12 (Dec 2016) 
provides order-of-magnitude 
performance increase for 
5.7M-atom implicit solvent 
HIV capsid simulation on 
GPU-accelerated XK nodes. 



CollecCve	variables	parallelizaCon	
•  Colvars	(Fiorin,	Henin)	provides	

flexible,	hierarchical	steering	and	
free	energy	analysis	methods	

•  Parallel	boIleneck	as	complexity	
of	user-defined	variables	
increases	(e.g.,	mulCple	RMSDs)	

•  Charm++	“smp”	shared	memory	
build	restores	scalability	via	
CkLoop	parallelizaCon	

•  Released	in	NAMD	2.12	

ClpX	motor	protein	on	Blue	Waters	

improvement	

Number	of	Nodes	



But single thread 
performance from 
frequency has stalled  

Moore’s Law has 
stayed alive, transistor 
count keeps climbing 
(and likely will for 
next ~5 years) 

Due to power limits 

Year	
Source: Kirk M. Bresniker, Sharad Singhal, R. Stanley Williams, "Adapting to Thrive in a New Economy of 
Memory Abundance", Computer vol. 48 no. 12, p. 44-53, Dec., 2015 
 

Instead, core counts 
have been increasing 

Hardware	trends	challenge	sosware	developers	



New	PlaZorms	Require	MulC-Year	PreparaCon	
Fall	2016:	Argonne	“Theta”	and	NERSC	“Cori”	Intel	Xeon	Phi	KNL	
Argonne	Early	Science:	Membrane	Transporters	(with	Benoit	Roux)	
Technical	Assistance:	Brian	Radak,	Argonne	
User	Benefits:	KNL	port,	mulC-copy	enhanced	sampling,	constant	pH	

2019:	Argonne	“Aurora”	200PF	Intel	Xeon	Phi	KNH	
Early	Science:	Membrane	Transporters	
PIs	Roux,	Tajkhorshid,	Kale,	Phillips	

2018:	Oak	Ridge	“Summit”	200PF	Power9	+	Volta	GPU	
Early	Science:	“Molecular	Machinery	of	the	Brain”	
Performance	Target:	200	ns/day	for	200M	atoms	
Technical	Assistance:	Anv-Pekka	Hynninen,	Oak	Ridge/NVIDIA	
User	Benefit:	GPU	performance	in	NAMD	2.11,	2.12	

SynapCc	vesicle	and	
presynapCc	membrane	



Intel	Xeon	Phi	KNL	processor	port	
•  Intel’s	alternaCve	to	GPU	compuCng:	

–  64-72	low-power/low-clock	CPU	cores	
–  4	threads	per	core	–	256-way	parallelism	
–  16-wide	(single	precision)	vector	instrucCons	

•  Three	installaCons:	
–  Argonne	Theta,	NERSC	Cori:	Cray	network	
–  TACC	Stampede	2:	Intel	Omni-Path	network	

•  Challenges	addressed:	
–  Greater	use	of	Charm++	shared-memory	parallelism	
–  New	vectorizable	kernels	developed	with	Intel	assistance	
–  New	Charm++	network	layer	for	Omni-Path	in	progress	

1	core	



AVX-512	OpCmizaCons	
•  New	kernels,	opCmizaCons	guided	by	Intel	

–  icpc	-DNAMD_KNL	-xMIC-AVX512	
–  __assume_aligned(…,64);	
–  #pragma	simd	assert	reducCon(+:…)	
–  Single-precision	calculaCon,	double	accumlaCon	
–  Linear	electrostaCc	interpolaCon	(similar	to	CUDA)	
–  Explicit	vdW	(switched	Lennard-Jones)	calculaCon	
–  Fall	back	to	old	kernels	for	exclusions,	alchemy,	etc.	



AVX-512	Gather	OpCmizaCon	
	float	p_j_x,	p_j_y,	p_j_z,	x2,	y2,	z2,	r2;	
#pragma	vector	aligned	
#pragma	ivdep	
		for	(	g	=	0	;	g	<	list_size;	++g	)	{	
				int	gi=list[g];		//	indices	must	be	32-bit	int	to	enable	gather	instrucCons	
				p_j_x	=	p_j[	gi	].posiCon.x;				p_j_y	=	p_j[	gi	].posiCon.y;				p_j_z	=	p_j[	gi	].posiCon.z;	
	
				x2	=	p_i_x	-	p_j_x;				r2	=	x2	*	x2;	
				y2	=	p_i_y	-	p_j_y;				r2	+=	y2	*	y2;	
				z2	=	p_i_z	-	p_j_z;				r2	+=	z2	*	z2;	
	
				if	(	r2	<=	cutoff2	)	{		//	cache	gathered	data	in	compact	arrays	
						*nli	=	gi;		++nli;						*r2i	=	r2;		++r2i;	
						*xli	=	x2;		++xli;						*yli	=	y2;		++yli;						*zli	=	z2;		++zli;	
				}	
		}	



KNL	Memory	Modes	
•  16	GB	MCDRAM	high-bandwidth	memory	

–  also	at	least	96	GB	of	regular	DRAM	
•  Flat	mode:	exposed	as	NUMA	domain	1	

–  numactl	--membind=1	or	--preferred=1	
•  Cache	mode:	used	as	direct-mapped	cache	

–  Performs	similar	to	flat	mode	most	of	the	Cme	
–  PotenCal	for	thrashing	when	addresses	randomly	conflict	

•  Hybrid	mode:	4GB	or	8GB	used	as	cache	
•  When	in	doubt,	“cache-quadrant”	mode	

–  If	less	than	16GB	required,	“flat-quadrant”	+	“numactl	–m	1”	
–  No	observed	benefit	from	SNC	(sub-NUMA	cluster)	modes	
	



Charm++	Build	OpCons	
•  Choose	network	layer:	

–  mulCcore	(smp	but	only	a	single	process,	no	network)	
–  netlrts	(supports	mulC-copy)	or	net	(deprecated)	
–  gni-crayx[ce]	(Cray	Gemini	or	Aries	network)	
–  verbs	(supports	mulC-copy)	or	net-ibverbs	(deprecated)	
–  mpi	(fall	back	to	MPI	library,	use	for	Omni-Path)	

•  Choose	smp	or	(default)	non-smp:	
–  smp	uses	one	core	per	process	for	communicaCon	

•  OpConal	compiler	opCons:	
–  iccstaCc	uses	Intel	compiler,	links	Intel-provided	libraries	staCcally.	
–  Also:	--no-build-shared	--with-producCon	



General	NAMD/Charm++	Tips	
•  DO	NOT	use	the	MPI	network	layer	(except	on	OmniPath	for	now)	

–  Low-level	verbs,	gni,	pami	layers	exist	because	they	are	faster	
–  Leverage	MPI	startup	via	“charmrun	++mpiexec”	
–  See	also	++scalable-start,	++remote-shell,	++runscript	

•  DO	use	SMP	builds	for	larger	simulaCons	
–  Reduced	memory	usage	and	osen	faster	
–  Trade-off:	communicaCon	thread	not	available	for	work	
–  Major	direcCon	of	future	opCmizaCon	and	tuning	

•  DO	set	processor	affinity	explicitly	
–  For	example:	++ppn	7	+commap	0,8	+pemap	1-7,9-15	
–  Cray	by	default	tends	to	lock	all	threads	onto	same	core	

•  DO	save	one	core	for	OS	to	improve	scaling	
–  Cray	“aprun	–r	1”	reserves	and	forces	OS	to	run	on	last	core	
	



ALCF	Theta	Build	and	Run	OpNons	
•  64-core	processors,	Cray	Aries	network	
•  build	charm++	gni-crayxc	persistent	smp	-xMIC-AVX512	
•  aprun	-n	$((7*$nodes))	-N	7	-d	17	-j	2	-r	1	
•  +ppn	16	+pemap	0-55+64	+commap	56-62	

–  or	+ppn	8	+pemap	0-55	+commap	56-62	
	
TACC	Stampede	KNL	Build	and	Run	OpNons	
•  68-core	processors,	Intel	Omni-Path	network	
•  build	mpi-linux-x86_64	smp	icc	-xMIC-AVX512	
•  sbatch	--ntasks=$((13*$nodes))	
•  +ppn	8	+pemap	0-51+68	+commap	53-65	

–  or	+ppn	4	+pemap	0-51	+commap	53-65	



KNL	Run	OpCon	Reasoning	
•  Leave	core	free	to	isolate	OS	noise	
•  Pairs	of	cores	on	a	“Cle”	share	1MB	L2	cache	

–  Do	not	split	Cle	between	PEs	of	different	nodes	
–  OK	to	split	Cle	between	comm	threads	

•  Use	1	or	2	hyperthreads	for	PE	cores	
–  Dedicate	core	to	each	comm	thread	

•  Need	several	comm	threads	per	host	
–  Fewer	for	Cray	Aries	and	than	for	Intel	Omni-Path	
–  MulCple	copies	of	staCc	data	reduce	memory	contenCon	

•  Different	configuraCons	fit	64-core	vs	68-core	models	



ALCF	Theta	Run	OpNon	Math	
•  64	cores,	reserve	one	for	OS	(-r	1),	leaves	63	
•  63	=	9*7	=	9*(6+1)	=	54	PE	+	9	comm 	 	+ppn	12	+pemap	0-53+64	+commap	54-62		
•  63	=	7*9	=	7*(8+1)	=	56	PE	+	7	comm 	 	+ppn	16	+pemap	0-55+64	+commap	56-62	
•  60	=	4*15	=	4*(14+1)	=	56	PE	+	4	comm 	 	+ppn	28	+pemap	0-63:16.14+64	

	 	 	 	 	 	 	 	 	 	 	 	 	 	+commap	14-62:16	
	

TACC	Stampede	KNL	Run	OpNon	Math	
•  68	cores,	reserve	one	for	OS,	leaves	67	
•  65	=	13*5	=	13*(4+1)	=	52	PE	+	13	comm	 	+ppn	8	+pemap	0-51+68	+commap	53-65	
•  66	=	6*11	=	6*(10+1)	=	60	PE	+	6	comm 	 	+ppn	20	+pemap	0-59+68	+commap	60-65	
•  68	=	4*17	=	4*(16+1)	=	64	PE	+	4	comm 	 	+ppn	32	+pemap	0-63+68	+commap	64-67	



Argonne	Theta	KNL	port	
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KNL	has	highest	performance	per-socket	
(But	GPUs	on	Titan	are	two	generaCons	old.)	

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 512  1024  2048  4096  8192  16384  32768
Number of Sockets

21M atoms

224M atoms

Pe
rfo

rm
an

ce
 (n

s 
pe

r d
ay

)

Argonne Theta KNL
Oak Ridge Titan GPU
NERSC Edison CPU

Blue Waters CPU



TACC	Stampede	KNL	
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New	billion-atom	benchmark	on	NERSC	Cori	KNL	
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Again,	NERSC	Cori	KNL	looks	beIer	per-socket.	
Target	plaZorms	are	10x	(2018)	and	100x	(2023)	faster.	



Conclusions	and	Future	Work	
•  AVX-512	with	Intel	compilers	

–  Works	if	you	know	limits/tricks,	watch	for	bugs	
•  MCDRAM	high-bandwidth	memory	

–  Cache	mode	works,	watch	for	thrashing	at	scale	
•  Requires	Charm++	SMP	build,	+pemap,	+commap	
•  Cray	Aries	works	well	with	gni,	7	processes/node	
•  Omni-Path	works	OK	with	MPI,	13	processes/node	

–  “On-loaded”	architecture	boIlenecks	on	slow	cores	
–  Specialized	PSM2/OFI	network	layer	might	help	



Thanks	to:	NIH,	NSF,	DOE,	NCSA,	ALCF,	OLCF,	TACC,	PSC,	SDSC,	
and	20+	years	of	NAMD	and	Charm++	developers	and	users.	

James	Phillips	
Beckman	InsCtute,	University	of	Illinois	
hIp://www.ks.uiuc.edu/Research/namd/	


