OpenAtom Project: Ground and Excited Electronic State Simulations for large systems on massively parallel platforms

PIs: G.J. Martyna (IBM), S. Ismail-Beigi (Yale) and L.V. Kale (UIUC)

Goal : The accurate treatment of complex heterogeneous systems to gain physical insight via novel electronic structure computations

Supercomputers and novel methods for new Science and Technology

Collaboration between Martyna, Ismail-Beigi and Kale groups to enable novel e-structure capabilities on massively parallel platforms

What is OpenAtom

Sohrab Ismail-Beigi Applied Physics & Materials Yale

Sanjay Kale Computer Science UIUC

Glenn Martyna Physical Chemistry & Materials IBM

NSF SI2-SSI: Scalable, Extensible, and Open Framework for Ground and Excited State Properties of Complex Systems

- OpenAtom software package : DFT MD now , GW next
- Plane waves and pseudopoentials
- charm++ parallel infrastructure

Density Functional Theory (DFT)

Energy functional E[n] of electron density n(r)

 $E[n] = KE + E_{ion} + E_H + E_{xc}$

Minimizing over n(r) gives exact

- Ground-state energy E_0
- ▹ Ground-state density n(r)

$$\begin{array}{l} \text{Minimum}\\ \text{condition} \end{array} \quad \frac{\delta E}{\delta n(r)} = 0 \quad \text{equivalent to Kohn-Sham equations} \\ -\frac{\nabla^2}{2} + V_{ion}(r) + V_H(r) + V_{xc}(r) \bigg] \psi_j(r) = \epsilon_j \psi_j(r) \qquad V_{xc}(r) = \frac{\delta E_{xc}}{\delta n(r)} \end{array}$$

- LDA/GGA for E_{xc} : good geometries and total energies
- Bad band gaps and excitations

Hohenberg & Kohn, Phys. Rev. (1964); Kohn and Sham, Phys. Rev. (1965).

DFT: problems with excitations

Energy gaps (eV)

Material	LDA	Expt. [1]
Diamond	3.9	5.48
Si	0.5	1.17
LiCl	6.0	9.4

[1] Landolt-Bornstien, vol. III; Baldini & Bosacchi, *Phys. Stat. Solidi* (1970).

DFT: problems with energy alignment

Interfacial systems:

- Electrons can transfer across
- Depends on energy level alignment across interface
- DFT has errors in band energies
- Is any of it real?

One particle Green's function

$$G_1(r,r',\omega) = \sum_j rac{\psi_j(r)\psi_j(r')^*}{\omega - \epsilon_j}$$

Dyson Equation:

$$\frac{-\hbar^2 \nabla^2}{2m} + V_{ion}(r) + V_H(r) \bigg[\psi_j(r) + \int dr' \underline{\Sigma_{xc}(r, r', \epsilon_j)} \psi_j(r') = \epsilon_j \psi_j(r)$$
DFT:

$$\Sigma \approx i G_1 W , \quad W = \varepsilon^{-1}(\omega) * v_c \quad (RPA)$$

$$\bigg[-\frac{\nabla^2}{2} + V_{ion}(r) + V_H(r) + \underline{V_{xc}(r)} \bigg] \psi_j(r) = \epsilon_j \psi_j(r)$$

Green's functions successes

Quasiparticle gaps (eV)

Material	LDA	GW	Expt.
Diamond	3.9	5.6*	5.48
Si	0.5	1.3*	1.17
LiCI	6.0	9.1*	9.4
SrTiO ₃	2.0	3.4-3.8	3.25

* Hybertsen & Louie, Phys. Rev. B (1986)

Band structure of Cu

Strokov et al., PRL/PRB (1998/2001)

What is a big system for GW?

Band alignment for this potential photovoltaic system?

100s of atoms/unit cell

Not possible *routinely* (with current software)

Zinc oxide nanowire

GW is expensive

Scaling with number of atoms N

- DFT : N³
- GW : N⁴ (gives better bands)
- BSE : N⁶ (gives optical excitations)

But in practice the GW is the killer

e.g. a nanoscale system with 50-75 atoms (GaN)

- DFT : 1 cpu x hours
- GW : 91 cpu x hours
- BSE : 2 cpu x hours

 \therefore Focus on GW

What is so expensive in GW?

One key element : response of electrons to perturbation

 $P(r,r') = \frac{\partial n(r)}{\partial V(r')}$

P(r,r') = Response of electron density n(r) at position rto change of potential V(r') at position r'

What is so expensive in GW?

One key element : response of electrons to perturbation

 $P(r,r') = \frac{\partial n(r)}{\partial V(r')} = -2\sum_{v}^{\text{filled empty}} \sum_{c}^{v} \frac{\psi_v(r)\psi_c(r)\psi_v(r')\psi_c(r')}{\varepsilon_v - \varepsilon_c}$

Standard perturbation theory expression

Problems:

- 1. Must generate "all" empty states (sum over c)
- 2. Lots of FFTs to get functions $\psi_i(r)$ functions
- 3. Enormous outer produce to form P
- 4. Dense *r* grid : *P* huge in memory

Steps for typical G₀W₀ calculation

Stage 1 : Run DFT calc. on structure \rightarrow output : ε_i and $\psi_i(r)$ Stage 2.1 : compute Polarizability matrix $P(r, r') = \frac{\partial n(r)}{\partial V(r')}$

Stage 2.2 : double FFT rows and columns $\rightarrow P(G,G')$

Stage 3 : compute and invert dielectric screening function $\epsilon = I - \sqrt{V_{coul}} * P * \sqrt{V_{coul}} \rightarrow \epsilon^{-1}$

Stage 4 : "plasmon-pole" method \rightarrow dynamic screening $\rightarrow \epsilon^{-1}(\omega)$ Stage 5 : put together ε_i , $\psi_i(r)$ and $\epsilon^{-1}(\omega) \rightarrow$ self-energy $\Sigma(\omega)$

Steps for typical G₀W₀ calculation

Stage 1 : Run DFT calc. on structure \rightarrow output : ε_i and $\psi_i(r)$

Stage 2.1 : compute Polarizability matrix $P(r, r') = \frac{\partial n(r)}{\partial V(r')}$

Stage 2.2 : double FFT rows and columns $\rightarrow P(G,G')$

Most expensive

Stage 3 : compute and invert dielectric screening function

$$\epsilon = I - \sqrt{V_{coul}} * P * \sqrt{V_{coul}} \to \epsilon^{-1}$$

Stage 4 : "plasmon-pole" method \rightarrow dynamic screening $\rightarrow \epsilon^{-1}(\omega)$

Stage 5 : put together ε_i , $\psi_i(r)$ and $\epsilon^{-1}(\omega) \rightarrow$ self-energy $\Sigma(\omega)$

G versus R space P calculation

G-space:

$$P(G,G') = \sum_{v,c} \left\langle c \left| e^{-iG \cdot r} \right| v \right\rangle \left\langle v \left| e^{iG' \cdot r} \right| c \right\rangle \frac{2}{\varepsilon_v - \varepsilon_c}$$

FFT $\left[\psi_c^*(r) \psi_v(r) \right]$

- Directly compute P in G space
- Many FFTs : N_v N_c
- Big multiply: $N_v N_c N_G^2 = O(N^4)$

 N_v : # occupied states N_c : # unoccupied states N_G : # of g vectors

- $N_v N_c$ FFTs needed
- Big O(N⁴) matrix multiply

R-space: $P(r,r') = -\sum_{\nu,c} \psi_c^*(r) \psi_{\nu}(r) \psi_{\nu}^*(r') \psi_c(r') \frac{2}{\varepsilon_{\nu} - \varepsilon_c}$ Big multiply: $N_v N_c N_r^2 = O(N^4)$ P(r,r') \int FFT N_r rows P(G, r')FFT N_r columns P(G,G')N_r: # r grid $N_r \approx 4Nc$

- $N_v + N_c + 8N_c$ FFTs needed
- Big O(N⁴) matrix multiply

Eric Mikida

Parallel Implementation

- Completed up to self-energy computation
- Memory is a primary constraint
- Formation of P is the most costly step

Basic Computation $f_{Im} = \Psi_I \times \Psi_m$ for all I, m $P += f_{Im} f_{Im}^T$ for all f

GW-BSE Memory Concerns

- 1 MB per state
- 10,000 total states per k-point
- 10 k-points
- 100 GB to store all states
- 1 TB to store P
- 90,000,000 f vectors (90 TB total)

1. Duplicate occupied states on each node

- 1. Duplicate occupied states on each node
- 2. Broadcast an unoccupied state to compute f vectors

- 1. Duplicate occupied states on each node
- 2. Broadcast an unoccupied state to compute f vectors
- 3. Locally update each matrix tile

- 1. Duplicate occupied states on each node
- 2. Broadcast an unoccupied state to compute f vectors
- 3. Locally update each matrix tile
- 4. Repeat step 2 for next unoccupied state

P Formation Scaling

54 atom bulk Si ~0.1MB per state 108 occupied 1000 unoccupied 1 k point

32 processors per node on Vesta (IBM BG/Q @ ANL)

Note: used Berkeley GW v1.1 (8 months old compared to v1.2)

Number of Nodes

P Formation Scaling

108 atom bulk Si
~0.2MB per state
216 occupied
1832 unoccupied
1 k point

32 processors per node on Vesta (IBM BG/Q @ ANL)

Note: used Berkeley GW v1.1 (8 months old compared to v1.2)

27

FFT P to GSpace

- 1. Convert P to 1D decomposition
- 2. FFT each row (locally with fftw)
- 3. Transpose (requires message throttling)
- 4. FFT each row again
- 5. Transpose and convert back to 2D

Epsilon Inverse

- Iterative inverse of ε (ε = P multiplied and cutoff)
- Utilizes existing OpenAtom matrix multiply library
- Epsilon size is reduced by up to 10x from P

Self-Energy Calculation

- Operation on pairs of f_{nl} where n is from an input set of state indices
- Bare Exchange and Screened Exchange

Basic Computation $f_{nl} A f_{n'l}^{T}$ for all n,l Screened: $A = \varepsilon$ Bare: A = v(g)

- Cache portions of f vectors during P calculation
- Multiply all pairs of f_{nl}
- Sum reduction for final result

Very Little Communication

Future Optimizations

- Pipeline unoccupied states in P formation
- Smarter node-level cache storage layout
- Dynamic creation/deletion of matrices
- GPGPUs for BLAS operations
- Overlap phases where possible

Sohrab Ismail-Beigi

Parallel performance: P calculation

54 atom bulk Si108 occupied1000 unoccupied1 k point32 processors per node

Number of Nodes

Supercomputer : Vesta (ANL) : BlueGene/Q

Note: used Berkeley GW v1.1 (8 months old compared to v1.2)

Parallel performance: P calculation

108 atom bulk Si216 occupied1832 unoccupied1 k point16 processors per node

Note: used Berkeley GW v1.1 (8 months old compared to v1.2)

Parallel performance: P calculation

108 atom bulk Si
216 occupied
1832 unoccupied
1 k point
32 processors per node

Scaling of Polarizability calculation

Supercomputer : Vesta (ANL) : BQ BlueGene/Q

Note: used Berkeley GW v1.1 (8 months old compared to v1.2)
Where we are with OpenAtom GW

Phase		Serial	Parallel
1	Compute P in RSpace	Complete	Complete
2	FFT P to GSpace	Complete	Complete
3	Invert epsilon	Complete	Complete
4	Plasmon pole	Complete	In Progress
5	COHSEX self-energy	Complete	In Progress
6	Dynamic self-energy	In Progress	Future
7	Coulomb Truncation	Future	Future

Aim to release COHSEX version early summer 2017

Minjung Kim

Static polarizability calculations

$$P(r,r') = \sum_{v,c} \psi_c^*(r) \psi_v(r) \psi_v^*(r') \psi_c(r') \frac{2}{\varepsilon_v - \varepsilon_c}$$

Giustino, Cohen, and Louie, *PRB* **81** (2010) Wilson, Gygi, and Galli, *PRB* **78** (2008) Liu, Kaltak, Klimes, and Kresse, *PRB* **94** (2016)

Cubic scaling algorithm – 1. Interpolation

1----

$$P(r,r') = -2\sum_{\nu,c} \frac{\psi_{\nu}(r)\psi_{c}^{*}(r)\psi_{c}(r')\psi_{\nu}^{*}(r')}{\varepsilon_{c}-\varepsilon_{\nu}} \qquad N_{r}^{2}N_{c}N_{\nu} \sim N^{4}$$

$$A(r,r';z) = \sum_{c} \frac{\psi_{c}^{*}(r)\psi_{c}(r')}{\varepsilon_{c} - z} \qquad \qquad N_{r}^{2}N_{c}N_{z}$$
1. Save values over some z grid

$$P(r,r') = -2\sum_{v} \psi_{v}(r)\psi_{v}^{*}(r')A(r,r';\varepsilon_{v}), \qquad N_{r}^{2}N_{v}N_{int}$$

- If N_z << N_v it scales N³
- N_{int} = 2 (linear interpolation) works well

N_z: number of points to be evaluated N_{int}: number of points for interpolation

Cubic scaling algorithm – 2. Laplace method

$$P(r,r') = -2\sum_{c}\sum_{v} \frac{1}{\varepsilon_c - \varepsilon_{v'}} \psi_v(r)\psi_c^*(r)\psi_c(r')\psi_v^*(r')$$

$$P(r,r') = -2\sum_{k} \omega_k e^{-(\mu_c - \mu_v - 1)x_k} \sum_{\varepsilon} \psi_c^*(r)\psi_c(r')e^{-(\varepsilon_c - \mu_c)x_k} \sum_{v} \psi_v(r)\psi_v^*(r')e^{-(\mu_v - \varepsilon_v)x_k}$$
separable!

Number of computation: $N_r^2 N_{GL}(N_c + N_v) \sim N^3$

 N_{GL} does not depend on system size

Cubic scaling algorithm – 2. Laplace method

3. Windowing:

• Observation: N_{GL} depends on $\frac{E_{bw}}{E_{gap}}$

$$P(r,r') = \sum_{l}^{N_{WV}} \sum_{m}^{N_{WC}} P_{lm}(r,r')$$

$$N_r^2 N_{GL}(N_c + N_v)$$

 E_{bw} : band width ($E_{c,max}$ - $E_{v,min}$) E_{gap} : band gap

 N_{wv} : # windows for E_v N_{wc} : # of windows for E_c

• <u>Example:</u> 2 by 2 windows $P = P_{11} + P_{21} + P_{12} + P_{22}$

- Windowing can save computational costs
- Useful for materials with small band gap

Estimate the computational costs

• N_{GL} depends on $\frac{E_{bw}}{E_{gap}}$

 E_{bw} : band width ($E_{c,max}$ - $E_{v,min}$) E_{gap} : band gap

• Cost = $N_r^2 N_{GL} (N_c + N_v)$

2. $(N_c+N_v)/N \propto (E_{bw}-E_g)$

computation cost can be estimated by E_{bw} and E_{g} $C \propto \sum_{l}^{N_{vw}} \sum_{m}^{N_{cw}} \sqrt{\frac{E_{bw}^{lm}}{E_{g}^{lm}}} \left(\frac{E_{vl}^{max} - E_{vl}^{min}}{E_{v}^{max} - E_{v}^{min}} N_{v} - \frac{E_{cm}^{max} - E_{cm}^{min}}{E_{c}^{max} - E_{c}^{min}} N_{c} \right)$

Estimate the computational costs

Example: 2x2 window

 $E_{bw} = 2$ Hartree $E_g = 0.02$ Hartree

Real computational costs

Estimated computational costs

Windowing

How many windows for occupied and unoccupied states?

 E_{vmax} - E_{vmin} = 0.44 Ha E_{cmax} - E_{cmin} = 1.44 Ha E_{bw} = 2 Ha E_{g} = 0.02 Ha

Optimized number of windows: Nvw =1 Ncw = 4

Results

- Si crystal with 16 atoms
- Number of bands: 433
- Number of windows: 1 for $N_v \& 4$ for N_c

Results

- Scaling data
- Si crystal with 2, 4, 8, and 16 atoms

$$N^{4}: \frac{Operation Time}{N_{v}N_{c}N_{r}^{2}}$$
$$L + W: \frac{Operation Time}{\sum_{l}^{N_{wv}} \sum_{m}^{N_{wc}} N_{GL}(N_{v} + N_{c})N_{r}^{2}}$$

Glenn Martyna and Qi Li

Projector Augmented Wave based Kohn-Sham Density Functional Theory in OpenAtom with N² log N scaling

OpenAtom team, Qi Li and Glenn Martyna

Kohn-Sham Density Functional Theory (KS-DFT): A workhorse of computational science.

 KS-DFT: Ground state electronic energy expressed exactly as the minimum of a functional of the zero temperature, 1-body density written in terms of

$$\rho(\mathbf{r},\mathbf{r}') = \sum_{I=1}^{N_{KS}} \psi_I(\mathbf{r}) \psi_I^*(\mathbf{r}'), \qquad n(\mathbf{r}) = \rho(\mathbf{r},\mathbf{r}), \qquad N_{KS} = (\text{# electrons})/2$$

an orthonormal set of KS states, $\langle \psi_I | \psi_I \rangle = 2\delta_{II}$.

No.

Walter Kohn, Nobel Chemistry 1998

 KS Density Functional: Sum of the kinetic energy of non-interacting electrons, Hartree energy, electron-ion/external energy and an unknown correction term, exchange correlation energy functional,

$$E[n(\mathbf{r})] = -\frac{\hbar^2}{2m_e} \int d\mathbf{r} \left(\nabla^2 \rho(\mathbf{r}, \mathbf{r}') \right) |_{\mathbf{r}'=\mathbf{r}} + \frac{e^2}{2} \int d\mathbf{r} d\mathbf{r}' \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + e \int d\mathbf{r} n(\mathbf{r}) V_{ext}(\mathbf{r}; N) + E_{xc}[n(\mathbf{r})], \qquad N = \text{\# ions, } N_{KS} \sim N.$$

• Generalized Gradient Approximation (GGA): Tractable approx. to E_{xc} $E_{xc}[n(r)] \approx \int dr \, \varepsilon_{xc} (n(r), \nabla n(r))$

KS-DFT in OpenAtom

- OpenAtom: *Plane-wave* (PW) based KS-DFT within the GGA expand KS states in the delocalized PW basis.
- PW-KS-DFT in OpenAtom Advantages:
 - N² log N or better scaling of interactions & derivatives -*Euler Exponential Spline (EES) Interpolation*.
 - $_{\circ}$ Only orthogonalization is $\sim N^3$.
 - *High parallelism under charm++*.
 - k-points, path integrals, LSDA & tempering implemented.

- **PW-KS-DFT in OpenAtom Disadvantages:**
 - *Large basis set* required millions and millions (*c.f.* Carl Sagan).
 - Large memory required need large machines.
 - Heavy atoms computationally intensive.

Projector Augmented Wave Method (PAW)

- Projector-Augmented Wave (PAW) : accurate treatment of heavy atoms in KS-DFT with low computational cost.
- PAW-KS-DFT Advantages
 - KS states split into localized and delocalized/smooth parts small basis possible even for heavy atoms.
 - NMR and some other linear response methods require the core –
 PAW makes it *easy*.
 - Small memory requirement.

- PAW-KS-DFT Disadvantages
 - $_{\circ}$ Implemented with inefficient N³ methods for interactions.
 - *Parallel performance* of standard implementations *poor.*

Goal: Implement N² log N EES-based PAW with high parallel efficiency in OpenAtom.

PAW Basics: KS states

• **KS states:** *delocalized/smooth part,* (*S*), + *localized/core part,* (*core*). Core localized within a sphere of radius R_{pc} around each ion:

$$\psi_I(\mathbf{r}) = \psi_I^{(S)}(\mathbf{r}) + \sum_{J=1}^N \psi_{IJ}^{(\text{core})}(\mathbf{r}), \qquad \psi_{IJ}^{(\text{core})}(\mathbf{r}) = 0, |\mathbf{r} - \mathbf{R}_J| > R_{pc}$$

• Smooth: fills all spaces & varies, expanded in plane-waves:

$$\psi_{I}^{(S)}(s) = \frac{1}{\sqrt{V}} \sum_{g}^{|g| < G_{c}/2} \overline{\psi}_{I}^{(S)}(g) \exp(i\widehat{g}s)$$

$$r = hs, V = \det h, g = 2\pi h^{-1}\widehat{g}, \widehat{g} \in \text{integer}$$

$$\psi_{I}^{(S)}(s)$$

• **Core:** localized, written in *terms of fixed core projectors*, $\{\Delta p, p^{(S)}\}^*$:

 $2R_{max}$

* 1 ion type, 1 channel for simplicity

PAW Basics: Example KS state

in the smooth part of the state, $\psi_I^{(S)}(\mathbf{r})$, that fills $D(\mathbf{h})$.

PAW Basics: KS-DFT within LDA under

periodic boundary conditions at **F**

$$E[n(\mathbf{r})] = E_{NIKE} + E_{ext} + E_H + E_{xc}$$

$$E_{NIKE} = -\frac{\hbar^2}{2m_e} \int_{D(\mathbf{h})} d\mathbf{r} \sum_{I} \langle \psi_I | \nabla^2 | \psi_I \rangle \qquad E_{xc} = -\int_{D(\mathbf{h})} d\mathbf{r} \, \varepsilon_{xc}(n(\mathbf{r}))$$

$$E_H = \frac{e^2}{2} \int_{D(\mathbf{h})} d\mathbf{r} \int_{D(\mathbf{h})} d\mathbf{r}' \sum_{m} \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}' + \mathbf{mh}|} \qquad E_{ext} = -\int_{D(\mathbf{h})} d\mathbf{r} \sum_{J} \sum_{m} \frac{eQ_J n(\mathbf{r})}{|\mathbf{r} - \mathbf{r}_J + \mathbf{mh}|}$$

Non-interacting electron kinetic energy: Smooth and core terms

$$\begin{split} E_{NIKE} &= E_{NIKE}^{(S)} + E_{NIKE}^{(\text{core1})} + E_{NIKE}^{(\text{core2})} \\ E_{NIKE}^{(S)} &= -\frac{\hbar^2}{2m_e} \int_{D(h)} dr \sum_{I} \left\langle \psi_{I}^{(S)} \middle| \nabla^2 | \psi_{I}^{(S)} \right\rangle, \ E_{NIKE}^{(\text{core1})} &= -\frac{\hbar^2}{2m_e} \sum_{IJ} Z_{IJ}^{(S)} Z_{IJ}^{(\nabla^2 S, \Delta)}, \ E_{NIKE}^{(\text{core2})} &= -\frac{\hbar^2}{2m_e} \sum_{J} Z_{J}^{(S,2)} \langle \Delta p | \nabla^2 | \Delta p \rangle \end{split}$$

Exchange Correlation energy: Smooth and core terms

The whole enchilada:

$$E_{xc} = E_{xc}^{(S)} + E_{xc}^{(\text{core})} = \int_{D(h)} d\mathbf{r} \, \varepsilon_{xc} \left(n^{(S)}(\mathbf{r}) \right) + \sum_{J} \left(\int_{D(R_{pc})}^{\text{core}} d\mathbf{r} \left[\varepsilon_{xc} \left(n_{J}(\mathbf{r}) \right) - \varepsilon_{xc} \left(n_{J}^{(S)}(\mathbf{r}) \right) \right] \right]$$

$$n^{(S)}(\mathbf{r}) = \sum_{I} |\psi_{I}^{(S)}(\mathbf{r})|^{2}, \quad n_{J}(\mathbf{r}) = n^{(S)}(\mathbf{r} - \mathbf{R}_{J}) + n^{(\text{core1})}(\mathbf{r} - \mathbf{R}_{J}) + n^{(\text{core2})}(\mathbf{r} - \mathbf{R}_{J}), \quad n_{J}^{(S)}(\mathbf{r}) = n^{(S)}(\mathbf{r} - \mathbf{R}_{J})$$

$$\forall \, \mathbf{r} \, \text{in} \, D(\mathbf{h}) \qquad \forall \, |\mathbf{r} - \mathbf{R}_{I}| < R_{pc} \qquad \forall \, |\mathbf{r} - \mathbf{R}_{J}| < R_{pc}$$

PAW Basics: KS-DFT long/short-range decomposition

Due to the mixed localized and delocalized basis, there is no natural truncation scale for the long-range interactions of E_H and E_{ext} in **g**-space or **r**-space alone.

$$E_H = \frac{e^2}{2} \int_{D(h)} d\mathbf{r} \int_{D(h)} d\mathbf{r}' \sum_{\mathbf{m}} \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}' + \mathbf{mh}|} \quad , \quad E_{ext} = -\int_{D(h)} d\mathbf{r} n(\mathbf{r}) \sum_J \sum_{\mathbf{m}} \frac{eQ_J}{|\mathbf{r} - \mathbf{R}_J + \mathbf{mh}|}$$

Using Poisson summation and Ewald's decomposition of 1/r:

$$E_{H} = E_{H}^{(\text{short})} + E_{H}^{(\text{long})} \qquad E_{ext} = E_{H}^{(\text{short})} + E_{H}^{(\text{long})}$$

$$E_{H}^{(\text{short})} = \frac{e^{2}}{2} \int_{D(h)} d\mathbf{r} \int_{D(h)} d\mathbf{r}' \frac{n(\mathbf{r})n(\mathbf{r}')\text{erfc}(\alpha|\mathbf{r}-\mathbf{r}'|)}{|\mathbf{r}-\mathbf{r}'|} \qquad E_{ext}^{(\text{short})} = -e \int_{D(h)} d\mathbf{r} n(\mathbf{r}) \sum_{J} \frac{\text{erfc}(\alpha|\mathbf{r}-\mathbf{R}_{J}|)}{|\mathbf{r}-\mathbf{R}_{J}|}$$

$$E_{H}^{(\text{long})} = \frac{e^{2}}{2V} \sum_{g\neq 0}^{|\mathbf{g}|^{2} < G_{c}} \frac{4\pi}{|\mathbf{g}|^{2}} \exp\left(-\frac{|\mathbf{g}|^{2}}{4\alpha^{2}}\right) |\bar{n}(\mathbf{g})|^{2} \qquad E_{ext}^{(\text{long})} = -\frac{e}{V} \sum_{g\neq 0}^{|\mathbf{g}|^{2} < G_{c}} \frac{4\pi}{|\mathbf{g}|^{2}} \exp\left(-\frac{|\mathbf{g}|^{2}}{4\alpha^{2}}\right) \bar{n}(\mathbf{g}) \bar{s}(\mathbf{g}) + \frac{\pi e \bar{n}(0) \bar{s}(0)}{V \alpha^{2}} + \frac{\pi e \bar{n}(0) \bar{s}(0)}{V \alpha^{2}}$$

Choose α , such that the *g-s* pace cutoff = $G_c = pw$ density cutoff. Ensure *r*-space cutoff, $R_c = (3.5 / \alpha) > R_{pc}$, confines the *m*-sum to the 1st image. Decompose short-range into smooth, core1 and core2 type terms, (not shown).

Accuracy of long/short decomposition

To approximately match long/short range accuracy: $\frac{G_c^2}{4} \approx \frac{\gamma^4}{R_c^2}$, $\gamma = \alpha R_c$

	$R_c = 4 \text{ bohr}$	
PW cutoff: ($\hbar^2 G_c^2/8$ me) Ryd	$\gamma = \alpha R_c$	erfc(γ)
5.1	3.0	2.21e-05
9.4	3.5	7.43e-07
16	4.0	1.54e-08

High accuracy can be obtained with both R_c and G_c small !

PAW Basics: Multi-Resolution, Grids, EES and N² log N scaling How do we reduce scaling by one order in N and maintain accuracy?

1. Discrete real-space: Fourier Coefficients and FFTs

- Given a discrete, $g = 2\pi h^{-1} \hat{g}$, finite g-space, $|g| < G_c$, the Fourier coefficients, $\bar{f}(g)$ of f(r), can be converted to $\overline{f^m}(g)$ from $f^m(r)$ exactly using an intermediate equally spaced *s*-space grid, *r=hs*, of side $N_{FFT,\alpha} > 2m\hat{g}_{\max,\alpha}, \Delta s_{\alpha} = 1/N_{FFT,\alpha}$.
- Using FFTs, the $\overline{f^m}(\boldsymbol{g})$, can be computed *exactly* in $N \log N$ as: $f(\boldsymbol{s}) = \frac{1}{V} FFT^{(m,+)} [\bar{f}(\boldsymbol{g}), G_c], \quad \overline{f^m}(\boldsymbol{g}) = \frac{V}{N_{\text{FFT}}} FFT^{(m,-)} [f^m(\boldsymbol{s}), mG_c], \quad V = \det \boldsymbol{h}$

2. Euler Exponential Spline Interpolation and FFTs

- To compute the Z-matrices, structure factors, \$\overline{S}(\overline{g})\$, and core functions, fast, it is useful develop a differentiable controlled approximation to exp(\$i\overline{g} \cdot r\$)\$ on a discrete \$\overline{g}\$-space for all \$\overline{r=hs}\$ in D(\$\overline{h}\$) via interpolation from an equally spaced \$\overline{s}\$-space grid, enabling the use of \$FFTs\$.
- The Euler exponential spline (EES) delivers where M_p are the cardinal B-splines and p the spline order,

$$e^{2\pi i \hat{g}s} = D_p(\hat{g}, N_{\text{FFT}}) \sum_{\hat{s}=0}^{N_{\text{FFT}}} \sum_{j=1}^{p} M_p(u-\hat{s}) e^{\frac{2\pi i \hat{g}\hat{s}}{N_{FFT}}} \delta_{\hat{s},l-j} + \mathcal{O}\left(\frac{2\hat{g}}{N_{\text{FFT}}}\right)^p, \qquad \begin{array}{l} M_p \text{ has compact supp.} \\ u = s N_{\text{FFT}} \quad l = \text{int } u \\ N_{\text{FFT}} > 2\hat{g}_{\text{max}} \approx 2.8\hat{g}_{\text{max}} \end{array}$$

Using **3 FFT grids**, (1) Psi EES, (2) Density, (3) Density EES, and **1 discrete spherical polar grid** around each ion, $|\mathbf{r}| < R_{pc}$, all PAW energy terms & their derivatives can be accurately computed in $N^2 \log N$.

PAW Basics: g-space to s-space and back

PAW Basics: *r*-space interpolation EES provides an accurate, differentiable interpolation between the different resolutions and length scales of PAW

Creating the *r*-space representation of the e-density

In the following, the multi-length scale PAW method is used to construct the electron density in $N^2 \log N$ as a demonstration:

$$n(\mathbf{r}) = n^{(S)}(\mathbf{r}) + \sum_{J} \left[n_{J}^{(\text{core 1})}(\mathbf{r}_{f}) + n_{J}^{(\text{core 2})}(\mathbf{r}_{f}) \right], \ n_{J}^{(S)}(\mathbf{r}_{f})$$

(1) Create the smooth KS states in real space, $\psi_I^{(S)}(s): N^2 \log N$. (2) Create the smooth density in real space, $n^{(S)}(s): N^2$. (3) *Create the smooth density in the ion cores, $n_J^{(S)}(r_f): N \log N$. (4) Create the smooth Z-matrix, $Z_{IJ}^{(S)}: N^2 \log N$. (5) *Create the core-2 densities, $n_J^{(core2)}(r_f): N^2$. (6) *Create the core-1 densities, $n_J^{(core1)}(r_f): N^2 \log N$. * New terms.

Formulae for all other components of PAW-DFT have been derived including ionic and pw expansion coefficient derivatives.

1. Creating the smooth part of the KS states, $\psi_I^{(S)}(s)$, on the density *s*-space FFT grid, $s \in N_{FFT}^{(n)}$

Smooth part of the KS states in **g**-space

Smooth part of the KS states on discrete *s*-space

2. Creating the smooth density, $n^{(S)}(s)$ on the density **s**-space FFT grid, $s \in N_{\text{FFT}}^{(n)}$

3. Creating the smooth density, $n_J^{(S)}(\mathbf{r}_f)$ around each ion *J*, on the fine grid, $f \in N_f$

 N_f = number points on spherical-polar grid around each ion.

 N_f and $N_B^{(f,n)}(\mathbf{s} \in \text{near } J)$ independent system size.

4. Creating the $Z_{II}^{(S)}$ the matrix elements

5. Creating the core density component, $n_J^{(\text{core2})}(\mathbf{r}_f)$, around each ion *J*, on the fine grid, $f \in N_f$

Each KS state contributes to N unique reductions
$$Z_J^{(S,2)} = \sum_I |Z_{IJ}^{(S)}|^2$$

In this example we have 1 projector $n_J^{(\text{core2})}(\boldsymbol{r}_f) = Z_J^{(S,2)} \Delta p^2(\boldsymbol{r}_f) \, \forall f \in N_f$

Grand Challenge Application: Perovskite solar cells

Conclusions

- PAW-KS-DFT is an important method in computational science that allows computations beyond PW-KS-DFT heavy atoms.
- Using EES Interpolation, we have derived a multi-length scale PAW technique that scales as N² log N (all energy terms and all derivatives) – an important advance
- We are currently developing the charm++ implementation to allow very large systems to be studied efficiently.

Supplementary: More PAW method pictures

Creating the g-space representation of the e-density

$$\bar{n}(\boldsymbol{g}) = \bar{n}^{(S)}(\boldsymbol{g}) + \bar{n}^{(\text{core 1})}(\boldsymbol{g}) + \bar{n}^{(\text{core 2})}(\boldsymbol{g})$$

 $\bar{n}^{(S)}(\boldsymbol{g})$: Sampling theorem from $n^{(S)}(\boldsymbol{s})$ $\bar{n}^{(\operatorname{core} 1)}(\boldsymbol{g})$: Numerical integration over core 1 density + EES $\bar{n}^{(\operatorname{core} 2)}(\boldsymbol{g})$: Bessel transform (precompute) + EES

- (1) Create the smooth density in g-space,
- (2) *Create core-1 density in g-space,
- (3) *Create core-2 density in g-space,

*new terms

 $\bar{n}^{(S)}(\boldsymbol{g})$: $N \log N$. $\bar{n}^{(\operatorname{core} 1)}(\boldsymbol{g})$: $N \log N$ $\bar{n}^{(\operatorname{core} 2)}(\boldsymbol{g})$: $N \log N$

1. Creating the *g*-space representation of smooth density

Density Fourier coefficients $\bar{n}^{(S)}(g)$, $|g| < G_c$ are exact, through intermediate discrete *s*-space – Theorem 1. $N \log N$ method given $n^{(S)}(s)$.
2. Creating the **g**-space core 1 density, $\bar{n}^{(\text{core},1)}(\boldsymbol{g})$

3. Creating the **g**-space core 2 density, $\bar{n}^{(\text{core 2, EES})}(\boldsymbol{g})$

Creating the Energy

- (1) Kinetic Energy of non-interacting electrons
 - i. Smooth
 - ii. Core 1*
 - iii. Core 2*
- (2) Local e-ion energy
 - i. Smooth
 - ii. Core 1 (short and long)*
 - iii. Core 2 (short and long)*
- (3) Exchange-Correlation
 - i. Smooth
 - ii. Core*
- (4) Hartree
 - i. Smooth-Smooth : long + short range
 - ii. Long range*
 - iii. Smooth-Core 1/2 : short range*
 - iv. Core 1/Core 2 : short range*

*new terms

1. Kinetic Energy of non-interacting electrons $E_{NIKE} = E_{NIKE}^{(S)} + E_{NIKE}^{(\text{core1})} + E_{NIKE}^{(\text{core2})}$ $E_{NIKE}^{(S)} = -\frac{\hbar^2}{2m_e} \int_{D(\mathbf{h})} d\mathbf{r} \sum_{I} \left\langle \psi_I^{(S)} \middle| \nabla^2 | \psi_I^{(S)} \right\rangle = \frac{\hbar^2}{2m_e} \sum_{I} \sum$ ${}^{*}E_{NIKE}^{(\text{core1})} = -\frac{n}{2m_{e}}\sum Z_{IJ}^{(S)}Z_{IJ}^{(\nabla^{2}S,\Delta)}$ ${}^{*}E_{NIKE}^{(\text{core2})} = -\frac{\hbar^{2}}{2m_{e}}\sum Z_{J}^{(S,2)}\langle\Delta p|\nabla^{2}|\Delta p\rangle = \Delta p^{(KE)}\sum_{I}Z_{J}^{(S,2)}$ $\Delta p^{(KE)} = \text{constant} = -\frac{\hbar^2}{2m_e} \int_{\mathcal{D}(\mathcal{D})} d\mathbf{r} \Delta p(\mathbf{r}) \nabla^2 \Delta p(\mathbf{r})$ *new terms

Note, the EES computation of $Z_J^{(S,2)}$ and $Z_{IJ}^{(S)}$ has already been presented and computing $Z_{IJ}^{(\nabla^2 S,\Delta)} = -\frac{\hbar^2}{2m_e} \int_{D(h)} d\mathbf{r} \ \Delta p(\mathbf{r} - \mathbf{R}_J) \nabla^2 \psi_I^{(S)}(\mathbf{r})$ by EES just requires utilizing a slightly different input in slide 17, $\bar{\psi}_I^{(\nabla^2 S,D,\Delta p)}(\mathbf{g}) = D^{(\psi)}(\mathbf{g}) g^2 \bar{\psi}_I^{(S)}(\mathbf{g}) \widetilde{\Delta p}(\mathbf{g})$

Accuracy of long/short decomposition

To approximately match long/short range accuracy: $\frac{G_c^2}{4} \approx \frac{\gamma^4}{R_c^2}$, $\gamma = \alpha R_c$

	$R_c = 4$ bohr	
PW cutoff: $(\hbar^2 G_c^2/8me)$ Ryd	$\gamma = \alpha R_c$	erfc(γ)
5.1	3.0	2.21e-05
9.4	3.5	7.43e-07
16	4.0	1.54e-08

	$R_c = 2 \text{ bohr}$	
PW cutoff: $(\hbar^2 G_c^2/8me)$ Ryd	$\gamma = \alpha R_c$	erfc(γ)
20.3	3.0	2.21e-05
37.5	3.5	7.43e-07
64.0	4.0	1.54e-08

High accuracy can be obtained with both R_c and G_c small !

Eric Bohm

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

OpenAtom Ground State Software Overview

PPL Contributors: Eric Bohm, Nikhil Jain, Prateek Jindal, Eric Mikida, Michael Robson

COC

STATE PARTY AND A TRANSPORTED AND TRANSPORT

I IOII

10 10/ 00/10/100

Software Infrastructure

- GIT (Gerrit) based repository:
 - http://charm.cs.illinois.edu/gerrit/openatom
 - Or https://github.com/ericbohm/OpenAtom/
- Test system datasets available in git
 - Make test Basic feature verification
 - Make full_test Extensive use case verification
- Jenkins testing
 - Release branch in nightly Charm++ testing
 - Release branch in Charm++ continuous integration testing

Ground State Feature Status

Feature	Minimization Status	Dynamics Status	Test Integration	
CPAIMD Dynamics	NA	Production	Automated 🛛 🚩	
Path Integrals	Production	Production	Automated 🛛 🚩	
K-Points	Production	Needs Verification	Automated	
Spin Orbitals	Production	Production	Automated 🛛 🚩	
Tempering	NA	Production	Automated	
Born Oppenheimer Dynamics	NA	Production	Automated	
Band Generation	Being Evaluated	Being Evaluated	Manual	

Control flow in OpenAtom (PW-DFT)

Nikhil Jain

QBOX COMPARISON

Nikhil Jain

OBJECT PLACEMENT

Topology aware mapping

Adapting to different systems

- Separate the logical operations and machine-specific operations. Example:
 - Logical operation: get an ordered list of nodes
 - Machine specific: Hilbert curve traversal, blocked traversal, plane-traversal
- Density FFTs: require use of full bisection bandwidth

 spread throughout the allocation.
- Matrix-matrix multiplies (pair calculators): place near the GSpace planes, but load balance is important.

System utilization without mapping

(barriers introduced for clarity)

System utilization with mapping

illinois.edu

Impact of mapping on Blue Gene/Q: up to 30% improvement

Impact of mapping on Blue Waters: up to 32% improvement

Eric Bohm, Glenn Martyna

UBERS : MULTI-INSTANCE METHODS

illinois.edu

Multi Instance Methods

- Retain all existing code with minimal changes
- Any feature available for CP minimization or dynamics automatically available for multi-instance use
- Add Master Index of objects
 - Uber[temper][bead][k-point][spin]
 - Objects in any instance can be referenced by any object
 - Support simulations with many kinds of multi instance physics
 - Instance Controller
 - Temper Controller
 - Sum energies across Tempers and Beads
 - Switch Energies and Temperatures
 - Bead Controller
 - Intrapolymer force evaluation and integration

Spin Orbitals (LSDA)

- Each Spin shares : atom and energy chares
- Electron density from down passed to up
 - VKS computed for each spin
 - Returns to standard flow of control
- Independent I/O for state data
- Independent placement for instance chares

K-Points

- Each k-point shares:
 - electron density, atoms, energy chares
- Electron density = sum over KP electron states
- Wave functions outside the first Brillouin zone forces use of complex (e.g., ZGEMM)
 - Instead of the "doublepack" optimization used at the Γ point
- Independent I/O for state data
- Independent placement for electron state instance chares

Path Integral Beads

- Path Integral Bead replica contains independent instances of all phases of CPAIMD
 - May contain k-point and spin ensembles
- Intrapolymer force evaluation in PIBeadAtoms
 - Interacts with each Bead instance's AtomsCompute
 - Supplements CPAIMD nucleic force integration phase
 - Computation Parallelized across NumAtoms and NumBeads
- Independent I/O for state and coordinate data
- Independent placement for instance chares

Tempers

- Contains independent instances of all phases of CPAIMD
- Each temper may contain Beads, K-points, and Spin instances
- Temper controller manages random neighbor shuffle to exchange temperatures across temper replicas
- Independent I/O for state and coordinate data
- Independent placement for instance chares

Temper Performance

Combined Performance

Please Refer to : Heterogeneous Computing in Charm++

Michael Robson GPGPU

OpenAtom CPU Performance Water 256M_70Ry 64 Nodes XK

OpenAtom GPU Performance Water 256M_70Ry 64 Nodes XK

Eric Bohm, Qi Li, Glenn Martyna

PAW PARALLELIZATION

Parallelization of PAW

- PAW method variation by Li and Martyna
 - Smooth component uses existing DFT code
 - Core components
 - Implemented via EES FFT
 - Reuse prior work
- New challenges:
 - effective overlap between smooth and core
 - Communication and Memory management
 - num<u>coretype</u> * num<u>channel</u> * num<u>projector</u>
 - core_1 core_2

Parallelization Design

- Control flow dependencies introduced by PAW
 - PAW elements
 - f_grid
 - Bsplines
 - core zmatrices
 - Interactions with existing data structures
 - \rho^(s)
 - PW rho is now the smooth part of \rho
 - \psi^(s)
 - PW \psi is now the smooth part of \psi
 - Zmatrix
 - With PAW projectors, but otherwise same operations of smooth Zmatrix

PAW Design II

- F_grids are relatively small
 - <500 grid points
 - Multicast and reduce to produce results dependent on f_grid
- Z-matrices comparatively large
 - Decomposed same as in particle plane
- Computation of each core_1 and core_2 are mutually independent, also independent by channel
 - Can be overlapped
 - Expected to require scheduling to constrain memory and bandwidth consumption
- Key take away: PAW will greatly expand the portion of the time step spent in non-local and density.

Ground State Future Work

- PAW
- Section/Partition optimizations for Uber Instances
- Band generation (automated testing)
- Improved heuristics for default decomposition parameter choices
- Fast Hartree-Fock
- Charm-FFT
 - Integrate use in electron state and non-local
 - Offload to GPGPU and Xeon-Phi

Thank you!

- NSF: SI2-SSI: Collaborative Research: Scalable, Extensible, and Open Framework for Ground and Excited State Properties of Complex Systems
- NCSA: BlueWaters
- ANL: Mira
- LLNL: Vulcan

Conclusions

Thanks for listening!

... to the update on the OpenAtom GW work

Questions?

Reducing the scaling: quartic to cubic

$$P(G,G') = \sum_{v,c} \langle c | e^{-iG \cdot r} | v \rangle \langle v | e^{iG' \cdot r} | c \rangle \frac{2}{\varepsilon_v - \varepsilon_c} \qquad P(G,G') = \frac{\partial n(G)}{\partial V(G')}$$
$$P(r,r') = \sum_{v,c} \psi_c^*(r) \psi_v(r) \psi_v^*(r') \psi_c(r') \frac{2}{\varepsilon_v - \varepsilon_c} \qquad P(r,r') = \frac{\partial n(r)}{\partial V(r')}$$

- Both are $O(N^4)$
- Sum-over-state (i.e., sum over unoccupied "c" band) not to blame: removal of unocc. states still O(N⁴) but lower prefactor*
- Working in R-space can reduce to O(N³) [see also †]

*Umari, Stenuit, Baroni, PRB 81, (2010)

*Giustino, Cohen, Louie, *PRB* **81**, (2010)

- * Wilson, Gygi, Galli, PRB 78, (2008); Govoni, Galli, J. Chem. Th. Comp., 11 (2015)
- * Gao, Xia, Gao, Zhang, Sci. Rep. 6 (2016)

† Liu, Kaltak, Klimes, and Kresse, PRB 94, (2016)

Steps for typical G₀W₀ calculation

Stage 1 : Run DFT calc. on structure \rightarrow output : ε_i and $\psi_i(r)$

Stage 2.1 : compute Polarizability matrix $P(r, r') = \frac{\partial n(r)}{\partial V(r')}$

Stage 2.2 : double FFT rows and columns $\rightarrow P(G,G')$

Stage 3 : compute and invert dielectric screening function $\epsilon = I - \sqrt{V_{coul}} * P * \sqrt{V_{coul}} \rightarrow \epsilon^{-1}$

Stage 4 : "plasmon-pole" method \rightarrow dynamic screening $\rightarrow \epsilon^{-1}(\omega)$

Stage 5 : put together ε_i , $\psi_i(r)$ and $\epsilon^{-1}(\omega) \rightarrow$ self-energy $\Sigma(\omega)$

Inversting epsilon

$$\varepsilon(G,G') \rightarrow \varepsilon^{-1}(G,G')$$

Iterative matrix inversion for Hermitian matrix A:

A. Ben-Israel and D. Cohen, SIAM J. Numer. Anal., 3:410-419, 1966

$$X_{0} = \alpha A^{\dagger} \qquad \alpha \in \left(0, \frac{2}{R}\right) \quad R = \max_{i} \sum_{j} (AA^{\dagger})_{i,j}$$
$$X_{n+1} = X_{n} (2I - AX_{n})$$

We just "borrow" the pre-existing OpenAtom+charmm fast parallel matrix multiplication

Steps for typical G₀W₀ calculation

Stage 1 : Run DFT calc. on structure \rightarrow output : ε_i and $\psi_i(r)$ Stage 2.1 : compute Polarizability matrix $P(r, r') = \frac{\partial n(r)}{\partial V(r')}$

Stage 2.2 : double FFT rows and columns $\rightarrow P(G,G')$

Stage 3 : compute and invert dielectric screening function

$$\epsilon = I - \sqrt{V_{coul}} * P * \sqrt{V_{coul}} \to \epsilon^{-1}$$

Stage 4 : "plasmon-pole" method \rightarrow dynamic screening $\rightarrow \epsilon^{-1}(\omega)$ Stage 5 : put together ε_i , $\psi_i(r)$ and $\epsilon^{-1}(\omega) \rightarrow$ self-energy $\Sigma(\omega)$

GW-Static Self-Energy (COHSEX)

For v1 of software: make a simplifying "static" self-energy approximation

- An approximation to "real" GW
- Easier to code and test correctness
- Good quality results with tweaking of approximation

Band Gaps (eV)					
System	Experiment	GW (full)	COHSEX	Corrected COHSEX*	DFT-LDA
Diamond	5.48	5.70	6.99	5.93	4.2
Si	1.17	1.29	1.70	1.18	0.49

 $\Sigma(r,r') = \Sigma^X(r,r') + \Sigma^{SEX}(r,r') + \Sigma^{COH}(r,r')$

$$\begin{split} \Sigma^X(r,r') &= -\sum_v \psi_v(r)\psi_v(r')^* \frac{1}{|r-r'|} \\ \Sigma^{SEX}(r,r') &= -\sum_v \psi_v(r)\psi_v(r')^* [W(r,r') - 1/|r-r'|] \\ \Sigma^{COH}(r,r') &= \frac{1}{2}\delta(r-r') [W(r,r') - 1/|r-r'|] \end{split}$$

*Kang & Hybertsen, Phys. Re.v B, 82, (2010)

GW-Static Self-Energy (COHSEX)

Interestingly, direct real space method is not best here Wave vector (Fourier) space is better computationally Serial version written and correctness tested

$$f^{nl}(G) = \int dr e^{-iG \cdot r} \psi_n(r)^* \psi_l(r) = FFT[\psi_n(r)^* \psi_l(r)]$$
$$S_{G,G'} = \sqrt{V(G)} \times \left[\epsilon^{-1} - I\right]_{G,G'} \times \sqrt{V(G')}$$

$$\langle n|\Sigma^X|n'\rangle = -\sum_{l,G} f^{nl}(G) \times V(G) \times f^{n'l}(G)^*$$

$$\langle n|\Sigma^{SEX}|n'\rangle = -\sum_{l}\sum_{G}f^{nl}(G) \times \sum_{G'}S_{G,G'} \times f^{n'l}(G')^*$$

$$\langle n|\Sigma^{COH}|n'\rangle = \frac{1}{2}\sum_{G,G'} S_{G,G'} \times f^{nn'}(G-G')$$

GW: some math details

1. Calculate RPA polarizability P

$$P_{q,q'}(\omega) = \sum_{c,v} \frac{2(\varepsilon_c - \varepsilon_v)}{\omega^2 - (\varepsilon_c - \varepsilon_v)^2} \cdot \langle v | e^{iq \cdot \hat{r}} | c \rangle \langle v | e^{iq' \cdot \hat{r}} | c \rangle^*$$

2. Calculate screened interaction W

 $\epsilon(\omega) = I - VP(\omega) \qquad W(\omega) = \epsilon(\omega)^{-1}V$ $W_{q,q'}(\omega) = V_{q,q'} + \sum_{p} \frac{2\omega_p}{\omega^2 - \omega_p^2} B_{q,q'}^p$

3. Calculate self-energy correction Σ for each state *n*

$$\begin{split} \langle n|\Sigma(\varepsilon_n)|n\rangle &= \sum_{q,q'} \sum_{l} \left(\sum_{p} \frac{B_{q,q'}^p}{\varepsilon_n - \varepsilon_l - \omega_p} \right) \cdot \overline{\langle n|e^{iq\cdot\hat{r}}|l\rangle} \langle n|e^{iq'\cdot\hat{r}}|l\rangle^* \\ &- \sum_{q,q'} \sum_{v} W_{q,q'}(\varepsilon_n - \varepsilon_v) \cdot \langle n|e^{iq\cdot\hat{r}}|v\rangle \langle n|e^{iq'\cdot\hat{r}}|v\rangle^* \end{split}$$

GW: matrix elements

How do matrix elements $\langle l | \exp(iq \cdot \hat{r}) | n \rangle$ converge with l?

Simple sum rule

 $1 = \sum_{l=1}^{\infty} |\langle l| \exp(iq \cdot \hat{r}) |n\rangle|^2 = \sum_{l=1}^{\infty} \langle n| \exp(-iq \cdot \hat{r}) |l\rangle \langle l| \exp(iq \cdot \hat{r}) |n\rangle = \langle n|n\rangle$

 \therefore Need $\varepsilon_l \ge E_q$ to converge

Why?

High energy $|l\rangle$ are \approx free-e⁻ with $\varepsilon_l \approx \hbar^2 q_l^2/2m$

So must sample $|q_l| \sim |q|$ to catch dominant parts of |vbm>

$$\Sigma(r,r',t) = \frac{GW: \text{ details } 1}{iG_1(r,r',t) W(r,r',t)}$$

$$\Sigma(r,r',\omega) = i \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} G_1(r,r',\omega-\omega') W(r,r',\omega')$$

Screened interaction W given by convolution $W(\omega) = \varepsilon^{-1}(\omega) * v_c$

Dielectric function $\varepsilon(\omega)$ given by polarizability P $\varepsilon(\omega) = I - v_c * P(\omega)$ RPA polarizability $P(r, r', \omega) = \frac{\delta n(r, \omega)}{\delta V_{tot}(r', \omega)}$ given by

$$P(r, r', \omega) = \sum_{c, v} \psi_c(r) \psi_v^*(r) \psi_c^*(r') \psi_v(r') \times \left[\frac{1}{\omega - (\epsilon_c - \epsilon_v)} - \frac{1}{\omega + (\epsilon_c - \epsilon_v)} \right]$$

GW: details 2

Solving Dyson's equation: write as perturbation on DFT $\begin{bmatrix} T + V_{ion} + V_H + V_{xc} + (\Sigma - V_{xc}) \end{bmatrix} \psi_j = \epsilon_j \psi_j$ $\begin{bmatrix} H^{DFT} + (\Sigma - V_{xc}) \end{bmatrix} \psi_j = \epsilon_j \psi_j$

Take matrix elements among DFT states -> diagonalize $H_{jk} = \epsilon_j^{DFT} \delta_{jk} + \langle \psi_j^{DFT} | \Sigma(\epsilon_j) - V_{xc} | \psi_k^{DFT} \rangle$

Common approximations:

- Take $|\psi_j\rangle \approx |\psi_j^{DFT}\rangle$ so system already diagonal $\epsilon_j^{DFT} + \langle \psi_j^{DFT} | \Sigma(\epsilon_j) - V_{xc} | \psi_j^{DFT} \rangle = \epsilon_j$
- •Evaluate Σ and $d\Sigma/d\epsilon$ at ϵ_j^{DFT} and solve

$$\epsilon_{j} = \epsilon_{j}^{DFT} + \frac{\langle \psi_{j}^{DFT} | \Sigma(\epsilon_{j}^{DFT}) - V_{xc} | \psi_{j}^{DFT} \rangle}{1 - \langle \psi_{j}^{DFT} | d\Sigma / d\epsilon | \psi_{j}^{DFT} \rangle|_{\epsilon_{j}^{DFT}}}$$

Density Functional Theory

For a interacting electronic system, can get

• exact ground-state energy E_0

 ϕ

exact <u>ground-state</u> electron density <u>n(r)</u>

by solving self-consistent effective *single-particle* problem

$$\begin{bmatrix} -\frac{\nabla^2}{2} + V_{ion}(r) + \phi(r) + V_{xc}(r) \end{bmatrix} \psi_j(r) = \epsilon_j \psi_j(r)$$
$$(r) = \int dr' \frac{n(r')}{|r - r'|} , \quad V_{xc}(r) = \frac{\delta E_{xc}}{\delta n(r)} , \quad n(r) = \sum_j |\psi_j(r)|^2$$

Typical: Local Density Approximation (LDA) $E_{xc}[n(r)] \approx E_{xc}^{LDA}[n(r)] = \int dr \ n(r) \ e_{xc}(n(r))$

Hohenberg & Kohn, Phys. Rev. (1964); Kohn and Sham, Phys. Rev. (1965).