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What	is	DARMA?

DARMA	is	a	C++	abstraction	layer	for	asynchronous	
many-task	(AMT)	runtimes.

It	provides	a	set	of	abstractions	to	facilitate	the	
expression	of	tasking	that	map	to	a	variety	of	underlying	

AMT	runtime	system	technologies.	

Sandia’s	ATDM	program	is	using	DARMA	to	inform	its	
technical	roadmap	for	next	generation	codes.
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2015	study	to	assess	leading	AMT	runtimes	led	to	DARMA
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§ Broad	survey	of	many	AMT	runtime	systems
§ Deep	dive	on	Charm++,	Legion,	Uintah

§ Programmability: Does	this	runtime	enable	
efficient	expression	of	ATDM	workloads?

§ Performance: How	performant	is	this	
runtime	for	our	workloads	on	current	
platforms	and	how	well	suited	is	this	runtime	
to	address	future	architecture	challenges?

§ Mutability:What	is	the	ease	of	adopting	this	
runtime	and	modifying	it	to	suit	our	code	
needs?

Aim:	inform	Sandia’s	technical	roadmap	for	next	generation	codes



2015	study	to	assess	leading	AMT	runtimes	led	to	DARMA
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§ Conclusions
§ AMT	systems	show	great	promise
§ Gaps	in	requirements	for	Sandia	

applications
§ No	common	user-level	APIs
§ Need	for	best	practices	and	standards

§ Survey	recommendations	led	to	DARMA
§ C++	abstraction	layer	for	AMT	runtimes
§ Requirements	driven	by	Sandia	ATDM	

applications
§ A	single	user-level	API
§ Support	multiple	AMT	runtimes	to	begin	

identification	of	best	practices

Aim:	inform	Sandia’s	technical	roadmap	for	next	generation	codes



Sandia	ATDM	applications	drive	requirements	and	
developers	play	active	role	in	informing	front	end	API

§ Application	feature	requests
§ Sequential	semantics
§ MPI	interoperability	
§ Node-level	performance	portability	layer	interoperability	(Kokkos)
§ Collectives
§ Runtime-enabled	load-balancing	schemes
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Abstractions	that	facilitate	the	expression	of	tasking
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Mapping	to	a	variety	of	AMT	runtime	system	
technologies



DARMA	provides	a	unified	API	to	application	
developers	for	expressing	tasks
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Mapping	to	a	variety	of	AMT	runtime	system	technologies



Application	code	is	translated	into	a	series	of	backend	
API	calls	to	an	AMT	runtime
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Not all runtimes provide
the same functionality
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Application	code	is	translated	into	a	series	of	backend	
API	calls	to	an	AMT	runtime
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Challenge: design a back 
end API that maps to a 
variety of runtimes
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Mapping	to	a	variety	of	AMT	runtime	system	technologies



Considerations	when	developing	a	backend	API	that	
maps	to	a	variety	of	runtimes
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§ AMT	runtimes	often	operate	with	a	directed	acyclic	graph	(DAG)
§ Captures	relationships	between	application	data	and	inter-dependent	tasks
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Mapping	to	a	variety	of	AMT	runtime	system	technologies



Considerations	when	developing	a	backend	API	that	
maps	to	a	variety	of	runtimes
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§ AMT	runtimes	often	operate	with	a	directed	acyclic	graph	(DAG)
§ Captures	relationships	between	application	data	and	inter-dependent	tasks

§ DAGs	can	be	annotated	to	capture	additional	information
§ Tasks’	read/write	usage	of	data
§ Task	needs	a	subset	of	data
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Mapping	to	a	variety	of	AMT	runtime	system	technologies



Considerations	when	developing	a	backend	API	that	
maps	to	a	variety	of	runtimes
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§ AMT	runtimes	often	operate	with	a	directed	acyclic	graph	(DAG)
§ Captures	relationships	between	application	data	and	inter-dependent	tasks

§ DAGs	can	be	annotated	to	capture	additional	information
§ Tasks’	read/write	usage	of	data
§ Task	needs	a	subset	of	data

§ Additional	information	enables	runtime																																												
to	reason	more	completely	about	
§ When	and	where	to	execute	a	task
§ Whether	to	load	balance

§ Existing	runtimes	leverage	DAGs	with																																							
varying	degrees	of	annotation
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Mapping	to	a	variety	of	AMT	runtime	system	technologies



DARMA	captures	data-task	dependency	information	
and	the	runtime	builds	and	executes	the	DAG
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Mapping	to	a	variety	of	AMT	runtime	system	technologies
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Abstractions	that	facilitate	the	expression	of	
tasking



DARMA	front	end	abstractions	for	data	and	tasks	are	
co-designed	with	Sandia	ATDM	application	scientists
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Abstractions	that	facilitate	the	expression	of	tasking

Provide abstractions to simplify
capturing of data-task dependencies
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DARMA	Data	Model

How	are	data	collections/data	structures	described?
§ Asynchronous	smart	pointers	wrap	application	data	

§ Encapsulate	data	effect	information	used	to	build	and	annotate	the	DAG
– Permissions	information	(type	of	access,	Read,	Modify,	Reduce,	etc.)

§ Enable	extraction	of	parallelism	in	a	data-race-freemanner
How	are	data	partitioning	and	distribution	expressed?
§ There	is	an	explicit,	hierarchical,	logical	decomposition	of	data

§ AccessHandle<T> 
– Does	not	span	multiple	memory	spaces
– Must	be	serialized	to	be	transferred	between	memory	spaces

§ AccessHandleCollection<T, R>
– Expresses	a	collection	of	data
– Can	be	mapped	across	memory	spaces	in	a	scalable	manner

§ Distribution	of	data	is	up	to	individual	backend	runtime
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Abstractions	that	facilitate	the	expression	of	tasking



DARMA	Control	Model
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How	is	parallelism	achieved?
§ create_work

§ A	task	that	doesn’t	span	multiple	execution	spaces
§ Sequential	semantics:	the	order	and	manner	(e.g.,	read,	write)	in	which	data	

(AccessHandle)	is	used	determines	what	tasks	may be	run	in	parallel	
§ create_concurrent_work

§ Scalable	abstraction	to	launch	across	distributed	systems
§ A	collection	of	tasks	that	make	simultaneous	forward	progress
§ Sequential	semantics	supported	across	different	task	collections	based	on	

order	and	manner	of	AccessHandleCollection usage	
How	is	synchronization	expressed?
§ DARMA	does	not	provide	explicit	temporal	synchronization	abstractions	
§ DARMA	does provide	data	coordination	abstractions

§ Sequential semantic	coordination	between	participants	in	a	task	collection
§ Asynchronous	collectives	between	participants	in	a	task	collection	

Abstractions	that	facilitate	the	expression	of	tasking
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Using	DARMA	to	inform	Sandia’s	technical	
roadmap



Currently	there	are	three	backends in	various	stages	of	
development
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Using	DARMA	to	inform	Sandia’s	ATDM	technical	roadmap



2017	study:	Explore	programmability	and	performance	
of	the	DARMA	approach	in	the	context	of	ATDM	codes
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Using	DARMA	to	inform	Sandia’s	ATDM	technical	roadmap

Electromagnetic	
Plasma Particle-
in-cell	Kernels

Multiscale	Proxy

Multi	Level	Monte	
Carlo	Uncertainty	
Quantification	Proxy



2017	study:	Explore	programmability	and	performance	
of	the	DARMA	approach	in	the	context	of	ATDM	codes

§ Kernels	and	proxies
§ Form	basis	for	programmability	assessments
§ Will	be	used	to	explore	performance	characteristics	of	the	DARMA-

Charm++	backend

§ Simple	benchmarks	enable	studies	on
§ Task	granularity	
§ Overlap	of	communication	and	computation
§ Runtime-managed	load	balancing

§ These	early	results	are	being	used	to	identify	and	address	
bottlenecks	in	DARMA-Charm++	backend	in	preparation	for	
studies	with	kernels/proxies
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Using	DARMA	to	inform	Sandia’s	ATDM	technical	roadmap
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DARMA’s	Concurrency	Abstractions



Asynchronous	smart	pointers	enable	extraction	of	
parallelism	in	a	data-race-free	manner

darma::AccessHandle<T> enforces	sequential	semantics:	it	uses	the	order	in	
which	data	is	accessed	in	your	program	and	how	it	is	accessed	
(read/write/etc.)	to	automatically	extract	parallelism
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Permission Level

None

Read

Write

Reduce

Permission Type

Scheduling
A task with scheduling permission can 
create deferred tasks that can access
the data at the specified permission level.

Immediate
A task with immediate permission can 
dereference the AccessHandle<T> and 
use it according to the permission level.

Abstractions	that	facilitate	the	expression	of	tasking



Tasks	are	annotated	in	the	code	via	a	lambda	or	functor
interface

Tasks	can	be	recursively	nested	within	each	other	to	generate	
more	subtasks
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C++ Lambdas C++ Functors

darma::create_work(
  [=]{
     /*do some work*/
  }
);

This is the C++ 11 syntax for writing  
an anonymous function that captures 
variables by value.

struct MyFun {
  void operator()(...) {
     /* do some work */
  }
};

darma::create_work<MyFun>(...)

Functors are for larger blocks of code
that may be reused and migrated by
the backend to another memory space.

Abstractions	that	facilitate	the	expression	of	tasking



Example:	Putting	tasks	and	data	together

25

Example Program

AccessHandle<int> my_data;

darma::create_work([=]{
  my_data.set_value(29);
});

darma::create_work(
  reads(my_data), [=]{
    cout << my_data.get_value();
  }
);

darma::create_work(
  reads(my_data), [=]{
    cout << my_data.get_value();
  }
);

darma::create_work([=]{
  my_data.set_value(31);
});

Modify
my_data

Read
my_data

Read
my_data

Modify
my_data

DAG (Directed Acyclic Graph) 

These two tasks are concurrent
and can be run in parallel by a 
DARMA backend!

Sequential
Semantics

Abstractions	that	facilitate	the	expression	of	tasking



Smart	pointer	collections	can	be	mapped	across	
memory	spaces	in	a	scalable	manner
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AccessHandleCollection<vector<double>, Range1D> mycol = 
  darma::initial_access_collection(
    index_range = Range1D(10)
  ); Range1D is a potentially user-defined

(or domain-specific) index range, a
C++ object that describes the extents 
of the collection along with providing a 
corresponding index class for accessing
an element.

Every element in the collection
contains a vector<double>

mycol 

Index 0 Index 1

...
Index 9

Each indexed element is an
AccessHandle<vector<double>>

AccessHandleCollection<T, R> is	an	extension	to	AccessHandle<T> that	
expresses	a	collection	of	data

Abstractions	that	facilitate	the	expression	of	tasking



Tasks	can	be	grouped	into	collections	that	make	
concurrent	forward	progress	together
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create_concurrent_work<MyFun>(
  index_range = Range1D(5)
);

This call to create_concurrent_work
launches a set of tasks, the size of which is 
specified by an index range, Range1D, that 
is passed as an argument. Each element in the task collection is

passed an Index1D within the range, 
used by the programmer to express 
communication patterns across elements
in the collection.

struct MyFun {
  void operator()(Index1D i) {
     int me = i.value;
     /* do some work */
  }
};

Task	collections	are	a	scalable	abstraction	to	efficiently	launch	
communicating	tasks	across	large-scale	distributed	systems

Abstractions	that	facilitate	the	expression	of	tasking



Putting	task	collections	and	data	collections	together
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auto mycol = initial_access_collection(
  index_range = Range1D(10)
);

create_concurrent_work<MyFun>(
  mycol, index_range = Range1D(10)
);

create_concurrent_work<MyFun>(
  mycol, index_range = Range1D(10)
);

Example Program

Sequential
Semantics

Modify
mycol

Modify
mycol

Generated DAG

Scalable Graph
Refinement

...

...

Modify
mycol

Modify
mycol

Index 0 Index 1 Index 9

A mapping must exist between the
data index ranges and task index range.
In this case, since the three ranges are
identical in size and type, a one-to-one
identity map is automatically applied.

Abstractions	that	facilitate	the	expression	of	tasking



Tasks	in	different	execution	streams	can	communicate	
via	publish/fetch	semantics
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Execution Stream A

AccessHandle<int> my_data =
  initial_access<int>(”my_key”);

darma::create_work([=]{
  my_data.set_value(29);
});

my_data.publish(version=”a”);

darma::create_work([=]{
  my_data.set_value(31);
});

Execution Stream B

AccessHandle<int> other_data =
  read_access(”my_key”, version=”a”);

darma::create_work([=]{
  cout << other_data.get_value();
});

other_data = nullptr;

Modify
my_data

Modify
my_data

Read
my_data

Copy
my_data

Read
my_data

Potential DAG 1

If the read_access is on another
node it might be send across the
network.

Abstractions	that	facilitate	the	expression	of	tasking



Tasks	in	different	execution	streams	can	communicate	
via	publish/fetch	semantics
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Execution Stream A

AccessHandle<int> my_data =
  initial_access<int>(”my_key”);

darma::create_work([=]{
  my_data.set_value(29);
});

my_data.publish(version=”a”);

darma::create_work([=]{
  my_data.set_value(31);
});

Execution Stream B

AccessHandle<int> other_data =
  read_access(”my_key”, version=”a”);

darma::create_work([=]{
  cout << other_data.get_value();
});

other_data = nullptr;

Modify
my_data

Modify
my_data

Read
my_data

Read
my_data

Potential DAG 2

If the read_access is on the same
node a back end runtime can generate
an alternative DAG without the transfer.

Abstractions	that	facilitate	the	expression	of	tasking



Tasks	in	different	execution	streams	can	communicate	
via	publish/fetch	semantics
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Execution Stream A

AccessHandle<int> my_data =
  initial_access<int>(”my_key”);

darma::create_work([=]{
  my_data.set_value(29);
});

my_data.publish(version=”a”);

darma::create_work([=]{
  my_data.set_value(31);
});

Execution Stream B

AccessHandle<int> other_data =
  read_access(”my_key”, version=”a”);

darma::create_work([=]{
  cout << other_data.get_value();
});

other_data = nullptr;

Modify
my_data

Modify
my_data

Read
my_data

Read
my_data

Potential DAG 2

If the read_access is on the same
node a back end runtime can generate
an alternative DAG without the transfer.

Abstractions	that	facilitate	the	expression	of	tasking



A	mapping	between	data	and	task	collections	
determines	access	permissions	between	tasks	and	data
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auto mycol = initial_access_collection<int>(
  index_range = Range1D(10)
);
create_concurrent_work<MyFun>(
  mycol, index_range = Range1D(10)
);

struct MyFun {
  void operator()(
    Index1D i, AccessHandleCollection<int> col
  ) {
     int me = i.value, mx = i.max_value;
     
     auto my_elm = col[i].local_access();
       
     my_elm.publish(version=”x”);
     
     auto neighbor = me-1 < 0 ? mx : me-1;
     auto other_elm = col[neighbor].read_access(version=”x”);
     create_work([=]{
       cout << “neighbor = ” << other_elm.get_value() << endl;
     });
  }
};

Identity map between these data and
tasks. Thus, index i has local access to
data index i.

Any other index must be read using 
read_access, which actually may be
a remote or local operation depending
on the backend mapping, but is always 
a deferred operation.

Abstractions	that	facilitate	the	expression	of	tasking



The	Charm++	Backend
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• About	13k	lines	of	code
• Maps	a	task-based	system	to	an	object-oriented	one
• Much	of	the	code	is	dealing	with	lookahead and	data	versioning	

(or	generations)
• Scalable	effect	management	and	refinement

• Each	create_concurrent_work maps	to	a	chare	array	in	the	
“present”	or	future

• Lookahead allows	the	system	to	determine	where	the	next	
task	collection	will	execute	and	pipeline	work

• The	set	of	data	inputs	to	the	create_concurrent_work dictate	
which	chare	array	instance	is	used	(of	if	a	new	one	is	created)

• By	reusing	a	chare	arrays	that	have	the	same	data	inputs	from	
the	past,	persistence	is	retained

• An	AccessHandleCollection may	span	multiple	chare	arrays,	
element	by	element	depending	on	the	versioning



DARMA’s	programming	model	enables	runtime-
managed,	measurement-based	load	balancing
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Using	DARMA	to	inform	Sandia’s	ATDM	technical	roadmap

Initial	strong	scaling	
results	with	DARMA-
Charm++	backend	
are	promising

2D	Newtonian	
particle	simulation	
that	starts	highly	
imbalanced.	



A	latency-intolerant	benchmark	highlights	overheads	as	
grain	size	decreases

Using	DARMA	to	inform	Sandia’s	ATDM	technical	roadmap

At	this	scale,	each	
iteration	is	less	than	
5ms	long.	

This	benchmark	has	
tight	synchronization	
every	iteration.	



Increased	asynchrony	in	the	application	enables	the	
runtime	to	overlap	communication	and	computation

Using	DARMA	to	inform	Sandia’s	ATDM	technical	roadmap

Scalability	improves	
with	asynchronous	
iterations.		Requires	
only	minor	changes	to	
application	code.



DARMA’s	programming	model	enables	runtime-
managed,	measurement-based	load	balancing
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Using	DARMA	to	inform	Sandia’s	ATDM	technical	roadmap

Load	balancing	does	
not	require	changes	to	
the	application	code.		



Stencil	benchmark	is	not	latency	tolerant	and	highlights	
runtime	overheads	when	task-granularity	is	small	

Using	DARMA	to	inform	Sandia’s	ATDM	technical	roadmap

At	this	scale,	each	
iteration	is	less	than	
5ms	long.	



Increased	asynchrony	in	application	enables	runtime	to	
overlap	communication	and	computation

Using	DARMA	to	inform	Sandia’s	ATDM	technical	roadmap

Scalability	improves	with	
asynchronous	iterations.	
Requires	only	minor	
changes	to	DARMA	code.



Summary:	DARMA	seeks	to	accelerate	discovery	of	best	
practices	

§ Application	developers
§ Use	a	unified	interface	to	explore	a	variety	of	different	runtime	system	

technologies
§ Directly	inform	DARMA’s	user-level	API	via	co-design	

requirements/feedback	

§ System	software	developers
§ Acquire	a	synthesized	set	of	requirements	via	the	backend	

specification
§ Directly	inform	backend	specification	via	co-design	feedback
§ Can	experiment	with	proxy	applications	written	in	DARMA

§ Sandia	ATDM	is	using	DARMA	to	inform	its	technology	
roadmap	in	the	context	of	AMT	runtime	systems
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DARMA’s	programming	model	enables	runtime-
managed,	measurement-based	load	balancing
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Using	DARMA	to	inform	Sandia’s	ATDM	technical	roadmap
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The	Charm++	load	balancer	incrementally	runs	as	particles	migrate	and	the	work	
distribution	changes.	


