Building a Better Astrophysics AMR Code with Charm++: Enzo-P/Cello (or more adventures in parallel computing)

> Prof. Michael L Norman Director, San Diego Supercomputer Center University of California, San Diego

Supported by NSF grants SI2-SSE-1440709, PHY-1104819 and AST-0808184.

I am a serial code developer...

- I do it because I like it
- I do it to learn new physics, so I can tackle new problems
- I do it to learn new HPC computing methods because they are interesting
- Developing with Charm++ is my latest experiment

My intrepid partner in this journey

- James Bordner
- PhD CS UIUC, 1999

- C++ programmer extraordinaire
- Enzo-P/Cello is entirely his design and implementation

My first foray into numerical cosmology on NCSA CM5 (1992-1994)

Thinking Machines CM5

Large scale structure on a 512³ grid **KRONOS** run on 512 processors Connection Machine Fortran

Enzo:

Numerical Cosmology on an Adaptive Mesh

Bryan & Norman (1997, 1999)

- Adaptive in space and time
- Arbitrary number of refinement levels
- Arbitrary number of refinement patches
- Flexible, physics-based refinement criteria
- Advanced solvers

Enzo in action Berger & Collela (1989) Structured AMR

Gas density

Refinement level

Application: Radiation Hydrodynamic Cosmological Simulations of the First Galaxies

NCSA Blue Waters

Enzo: AMR Hydrodynamic Cosmology Code http://enzo-project.org

- Enzo code under continuous development since 1994
 - First hydrodynamic cosmological AMR code
 - Hundreds of users
- Rich set of physics solvers (hydro, N-body, radiation transport, chemistry,...)
- Have done simulations with 10¹² dynamic range and 42 levels

First Stars

Enzo's Path

1994

NCSA SGI Power Challenge Array Shared memory multiprocessor

2013 NCSA Cray XE6 Blue Waters Distributed memory multicore

Birth of a Galaxy Animation From First Stars to First Galaxies

Extreme Scale Numerical Cosmology

- Dark matter only N-body simulations have crossed the 10¹² particle threshold on the world's largest supercomputers
- Hydrodynamic cosmology applications are lagging behind N-body simulations
- This is due to the lack of extreme scale AMR frameworks

1 trillion particle dark matter simulation on IBM BG/Q, Habib et al. (2013)

Enzo's Scaling Limitations

• Scaling limitations are due to AMR data structures

Refinement level

- Root grid is block decomposed, each block an MPI task
- Blocks are much larger than subgrid blocks owned by tasks
- Structure formation leads to task load imbalance
- Moving subgrids to other tasks to load balance breaks data locality due to parent-child communication

Hierarchical Timestepping

 $\Delta t/2$

 $\Delta t/4$

 $\Delta t/4$

time

 Δt

 $\Delta t/2$

 $\Delta t/4$

 $\Delta t/4$

Serialization over level updates also limits scalability and performance

"W cycle"

Hierarchical Timestepping

1.0e+00

4/17/17

Relative scale

Deep hierarchical timestepping is needed to reduce cost

"W cycle"

M. L. Norman - Charm++ Workshop 2017

14

Adopted Strategy

- Keep the best part of Enzo (numerical solvers) and replace the AMR infrastructure
- Implement using modern OOP best practices for modularity and extensibility
- Use the best available scalable AMR algorithm
- Move from bulk synchronous to data-driven asynchronous execution model to support patch adaptive timestepping
- Leverage parallel runtimes that support this execution model, and have a path to exascale
- Make AMR software library application-independent so others can use it

Software Architecture

Numerical solvers

Scalable data structures & functions

Parallel execution & services (DLB, FT, IO, etc.)

Hardware (heterogeneous, hierarchical)

Software Architecture

Enzo numerical solvers

Forest-of-octrees AMR

Charm++

Hardware (heterogeneous, hierarchical)

Software Architecture

Enzo-P
Cello
Charm++
Charm++ supported platforms

Forest (=Array) of Octrees

Burstedde, Wilcox, Gattas 2011

p4est weak scaling: mantle convection Burstedde et al. (2010), Gordon Bell prize finalist paper

Fig. 5. Weak scaling for a dynamically adapted dG solution of the advection equation (1) from 12 up to 220,320 cores. The mesh is adapted and repartitioned, maintaining 3200 tricubic elements per core. The maximum number of elements is 7.0×10^8 on 220,320 cores, yielding a problem with 4.5×10^{10} unknowns. The top bar chart shows the overhead imposed by all AMR operations, which begins at 7% for 12 cores and grows to 27% for 220,320 cores. The bottom bar chart demonstrates an end-to-end parallel efficiency of 70% for an increase in problem size and number of cores by a factor of 18,360.

What makes it so scalable? Fully distributed data structure; no parent-child

p4est: PARALLEL AMR ON FORESTS OF OCTREES

FIG. 1. One-to-one correspondence between a forest of octrees (left) and a geometric domain partitioned into elements (right), shown for a 2D example with two octrees k_0 and k_1 . The leaves of the octrees bijectively correspond to elements that cover the domain with neither holes nor overlaps. A left-to-right traversal of the leaves through all octrees creates a space-filling z-curve (black "zigzag" line) that imposes a total ordering of all octants in the domain. For each octree the z-curve follows the orientation of its coordinate axes. In this example the forest is partitioned among three processes p_0 , p_1 , and p_2 by using the uniform partitioning rule (2.5). This partition divides the space-filling curve and thus the geometric domain into three process segments of equal (±1) octant count.

Burstedde, Wilcox, Gattas 2011

1107

Charm++

PPL PARALLE PROGRAMM	L ING		Depa	rtment of Con Univ	nputer Science ersity of Illinois		Charm					
UIUC LABORATO	RY Home	Research	Papers	Talks	Software	Docs	People	Ð				
[+] Libraries and Algorithms	Parallel Lang Charm++	juages/Pa -	iradigms	:								
[+] Frameworks [-] Parallel Languages/Paradigms	Parallel Programming with Migratable Objects											
Dagger and Structured Dagger	Relevant links: exascale relevance, the manual, mini-apps, downloads, charmplusplus.c											
Charm++ AMPI - Adaptive Message Passing Interface	 this system will run unchanged on MIMD machines with or without a shared memory. It provides high-level mechanisms and strategies to facilitate the task of developing even highly complex parallel applications. Charm++ programs are written in C++ with a few library calls and an interface description language for publishing Charm++ objects. Charm++ supports multiple inheritance, late bindings, and polymorphism. Platforms: The system currently runs on IBM's Blue Gene/P, Blue Gene/L, Cray XT3, XT4, XT5, Infiniband clusters such as Ranger, LoneStar and Abe, clusters of UNIX workstations and even single processor UNIX. Solaris and Windows machines. It also runs on 											
Automatic Communication Optimizations MSA - Multiphase												
Charj: Compiler	accelerators such as the Cell BE and GPGPUs. The design of the system is based on the following tenets:											

(7.1) What is Charm++?

Charm++ parallel programs: collections of asynchronously-interacting objects

A Charm++ parallel program

- Charm++ program
 - Decomposed by objects
 - Charm++ objects called chares
 - invoke entry methods
 - asynchronous
 - communicate via messages
- Charm++ runtime system
 - maps chares to processors
 - schedules entry methods
 - migrates chares to load balance
- Additional features
 - checkpoint/restart
 - dynamic load balancing
 - fault-tolerance

(Laxmikant Kale et al. PPL/UIUC)

(7.1) What is Charm++?

Charm++ collections of chares

Chare Arrays

- distributed array of chares
- migratable elements
- flexible indexing

one chare per node (non-migratable)

Charm++ powers NAMD

NIH CENTER FOR M	ACROMOLECULAR MODELING & BIOINFORMATICS UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Type Keywords SEARCH													
THEO BIOPHYS Home Res	RETICAL and COMPUTATIONAL ICS GROUP search Publications Software Instruction News Galleries Facilities About Us													
Home Overview	NAME Molecular Dynamics													
Publications Research Software	NAMD, recipient of a 2002 Gordon Bell Award and a 2012 Sidney Fernbach Award, is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. Based on Charm++ parallel objects, NAMD scales to hundreds of cores for typical simulations and beyond 500,000 cores for the largest simulations. NAMD uses the popular molecular graphics program VMD for simulation setup and trajectory analysis, but is also file-compatible with AMBER, CHARMM, and X-PLOR. NAMD is distributed free of charge with source code. You can build NAMD yourself or download binaries for a wide variety of platforms. Our tutorials show you how to use NAMD and VMD for biomolecular modeling.													
▶ VMD	The 2005 reference paper Scalable molecular dynamics with NAMD has over 6,000 citations as of October 2016. NEW													
GPU Computing MDFF Other	Wit, grit and a supercomputer yield chemical structure of HIV capsid (article referring to NAMD simulations on Blue Waters reported in Zhao et al., Nature, 497:643-646, 2013.)													
Outreach	Rapid parameterization of small molecules using the force field toolkit, JCC, 2013.													
	HPCwire Editors' Choice Award: Best use of HPC in life sciences													
	NAMD Powers Molecules by Theodore Gray App for iPhone and iPad													
Download NAMD	Multilevel Summation Method for Electrostatic Force Evaluation, JCTC, 2014. Search all NAMD resources: Search NAMD web site and tutorials Google													
Download VMD	Spotlight: Molecular Dynamics - Child's Play (Nov 2014) Other Spotlights													

- Goal: implement *Enzo*'s rich set of physics solvers on a new, extremely scalable AMR software framework (*Cello*)
- Cello implements forest of quad/octree AMR on top of Charm++ parallel objects system
- **Cello** designed to be application and architecture agnostic (OOP)
- *Cello* available NOW at http://cello-project.org

Supported by NSF grants SI2-SSE-1440709

Enzo AMR

Cello AMR

\

M. L. Norman - Charm++ Workshop 2017

Demonstration of Enzo-P/Cello

Total energy

Demonstration of Enzo-P/Cello

Mesh refinement level

× This image cannot currently be displayed.

Demonstration of Enzo-P/Cello

Tracer particles

Enzo-P/Cello

Dynamic Load Balancing

Charm++ implements dozens of user-selectable methods

\$ charmrun +p4 bin/enzo-p input/load-balance-4.in +balancer RefineLB_

http://charm.cs.illinois.edu/manuals/html/charm++/7.html "The commonly used load balancers include BlockLB ComboCentLB, CommLB, DistributedLB, DummyLB, GreedyCommLB, GreedyLB, HybridLB, NeighborLB, OrbLB, RandCentLB, RefineCommLB, RefineLB, RefineSwapLB, RotateLB."

How does Cello implement FOT?

- A **forest** is array of **octrees** of arbitrary size K x L x M
- An octree has leaf nodes which are **blocks** (N x N x N)
- Each block is a chare (unit of sequential work)
- The entire FOT is stored as a chare array using a bit index scheme
- Chare arrays are fully distributed data structures in Charm++

² x 2 x 2 tree

(7.2) How is Charm++ used in Cello?

٠

٠

- User-defined chare array indices supported Cello indices for Block arrays: 3 × 10 bits for forest indices ■ 3 × 20 bits for the *octree encoding* 6 bits for the block level Up to 1024³ array of octrees Up to 20 octree levels ■ -31 ≤ level ≤ 31 Block id's use index: e.g. B100:11_1:01 Fach leaf node of the tree is a **block** Each block is a **chare**
- The forest of trees is represented as a chare array

(9.1) How are phases of the computation controlled?

Simulation evolution is controlled in control_charm.cpp

James Bordner, Michael L. Norman Using and Developing Enzo-P/Cello 2015-09-28/10-01 145 / 216

(9.2) Adaptive Mesh Refinement

Mesh refinement proceeds in several steps

- Apply refinement criteria (Refine)
- 2 Tell neighbor Blocks your desired level
 - Blocks form a chare array
 - remote entry method call to neighbor blocks
- 3 Receive neighbor level
 - entry method
 - called by neighbors
- 4 Update own level if needed (goto 2)
- 5 Exit after quiescence
 - no processor is executing an entry point
 - no messages are awaiting processing
 - and no messages in-flight

(9.2) Adaptive Mesh Refinement

- temporal level jump criterion
- spacial level jump criterion

(9.3) Refresh ghost zones

Neighbor in same refinement level

Face data copied to array

 FieldFace object

 Array sent to neighbor

 chare entry method
 array sent as message

 Array copied to ghost zones

Refresh ends when arrays from all neighbors have been received.

(9.3) Refresh ghost zones

Neighbor in coarser refinement level

- Face data coarsened to array
 - Restrict object
 - FieldFace array
- 2 Array sent to neighbor
- 3 Array copied to ghost zones

(9.3) Refresh ghost zones

Neighbor in finer refinement level

- Face data copied to array
 Array sent to neighbor
- 3 Data interpolated to ghost zones

Prolong object

Particles in Cello

SDSC 41

(1.1) Classes for representing particle data

ParticleData

- represents state-independent (intrinsic) data
- associated with Blocks (one object per mesh node)
- stores arrays of particle data

ParticleDescr

- represents state-dependent (extrinsic) data
- associated with Simulation objects (one per process)
- describes how to interpret particle data (types, attributes, etc.)

Particle

applications access particle data via Particle objects

(1.1) How Particle objects store particle data

- multiple particle types
- particles allocated in batches
 - fixed size arrays
 - fewer new/delete operations
 - efficient insert/delete operations
 - potentially useful for GPU's
- batches store particle attributes
 - (position, velocity, mass, etc.)
 - 8,16,32,64-bit integers
 - 32,64,128-bit floats

particle positions may be floating-point or integers

- floating-point for storing global positions
- integers for Block-local coordinates
 - solves reduced precision issue for deep hierarchies
 - less memory required for given accuracy

(1.1) How particle data is communicated between Blocks

communication is required when particles move outside a Block

- this is done using a 4x4x4 array
 - array contains pointers to ParticleData (PD) objects
 - one PD object per neighbor Block

migrating particles are

- scatter()-ed to PD array objects
- sent to associated neighbors
- gather()-ed by neighbors
- one sweep through particles
- one communication step per neighbor
 - similar for refinement / coarsening

WEAK SCALING TEST – HOW BIG AN AMR MESH CAN WE DO?

Unit cell: 1 tree per core 201 blocks/tree, 32³ cells/block

total energy

density

trace particles

array of supersonic blast waves 1³ 1 201 6.6 M 2³ 8 1,608 1 3° 77 5,427 1 4³ 64 12,864 1 6³ 125 1 1 6³ 126 1 1 10³ 1000 201,000 1 11³ 1824 1 1 11³ 1000 201,000 1 11³ 1000 201,000 1 11³ 1000 201,000 1 11³ 1000 201,000 1 11³ 1000 201,000 1 113 1000 201,000 1 113 1000 201,000 1 114 1010 1000 1000 1 114 1010 1000 1000 1000 114 1010 1000 1000 1000 114 1000 1000 1000 1000 115 1000 1000 1000	Weak scaling test: Alphabet Soup	N trees	Np = cores	Blocks/ Chares	Cells
2³81,6083³275,4274³6412,8645³1251266³21678³512710³1000201,00016³409610.9024³138241032³327681040³6400012.9M40³1059222.2M54³15746431.6M54³5274432.7M54³5274452.7M54³5214452.7M	array of supersonic blast waves <u>mesh</u>	1 ³	1	201	6.6 M
3 ³ 27 5,427 4 ³ 64 12,864 5 ³ 125 10 6 ³ 216 10 8 ³ 512 10 10 ³ 1000 201,000 16 ³ 4096 10,000 124 13824 1000 123 32768 1000 1203 1205M 120 14 ³ 10592 22.2M 15 ³ 15744 31.6M 16 ³ 15744 31.6M 16 ³ 15744 52.7M		2 ³	8	1,608	
4³6412,8645³12516³21618³512110³1000201,00016³4096116³32768124³32768132³32768148³1105922.2.M64³1574431.654³1574431.654³1574431.654³52.71.7	1 1 8 8 8 9 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 ³	27	5,427	
5 ³ 125 1 6 ³ 216 1 8 ³ 512 1 10 ³ 1000 201,000 16 ³ 4096 1 24 ³ 13824 1 32 ³ 32768 1 40 ³ 64000 12.9M 48 ³ 110592 22.2M 54 ³ 157464 31.6M 54 ³ 157464 31.6M 54 ³ 262144 52.7M	0 0 <th>4³</th> <th>64</th> <th>12,864</th> <th></th>	4 ³	64	12,864	
6³ 216 ! 8³ 512 ! ! 10³ 1000 201,000 ! 16³ 4096 . ! 24³ 13824 . ! 32³ 32768 . ! 40³ 64000 12.9M . 40³ 64000 12.9M . 54³ 110592 22.2M 0.7T 64³ 157464 31.6M 1.0T		5 ³	125		
8 ³ 512 100 201,000 10 ³ 4096 100 201,000 16 ³ 4096 100 201,000 24 ³ 13824 1000 201,000 32 ³ 32768 1000 12.9M 40 ³ 64000 12.9M 101 48 ³ 110592 22.2M 0.7T 54 ³ 157464 31.6M 1.0T 64 ³ 262144 52.7M 1.7T		6 ³	216		
10 ³ 1000 201,000 16 ³ 4096 1 24 ³ 13824 1 32 ³ 32768 1 40 ³ 64000 12.9M 48 ³ 110592 22.2M 54 ³ 157464 31.6M 64 ³ 262144 52.7M		8 ³	512		
163 4096 I 243 13824 I I 323 32768 I I 403 64000 12.9M I 483 110592 22.2M 0.7T 543 157464 31.6M 1.0T 643 262144 52.7M 1.7T		10 ³	1000	201,000	
24 ³ 13824 32 ³ 32768 40 ³ 64000 12.9M 48 ³ 110592 22.2M 0.7T 54 ³ 157464 31.6M 1.0T 64 ³ 262144 52.7M 1.7T	<pre>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</pre>	16 ³	4096		
32 ³ 32768 40 ³ 64000 12.9M 48 ³ 110592 22.2M 0.7T 54 ³ 157464 31.6M 1.0T 64 ³ 262144 52.7M 1.7T	* * * * * * * * * * * * * * * * * * *	24 ³	13824		
40 ³ 64000 12.9M 48 ³ 110592 22.2M 0.7T 54 ³ 157464 31.6M 1.0T 64 ³ 262144 52.7M 1.7T	1 2 7 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	32 ³	32768		
48 ³ 110592 22.2M 0.7T 54 ³ 157464 31.6M 1.0T 64 ³ 262144 52.7M 1.7T	• • <th>40³</th> <th>64000</th> <th>12.9M</th> <th></th>	40 ³	64000	12.9M	
54 ³ 157464 31.6M 1.0T 64 ³ 262144 52.7M 1.7T		48 ³	110592	22.2M	0.7T
64 ³ 262144 52.7M 1.7T		54 ³	157464	31.6M	1.0T
		64 ³	262144	52.7M	1.7T

		•••		n	n c	¢	\$		5	m	•			•					1		1		· •			i - 1			
	к. с		• •	• •	د د		• •			•	• •			• •	•			J C		•	•	•	• •		•	•		L S	
	1 - L			¶ (T •		• •		۹ K		s •	•	•	1 K		K C		• 1		\$		•	• •		•	s s		• •	
		• •	• •		• •	•			•			٠	•	•	•	6 T		• •		1 5		•	• •	•	•	s s		s - 1	•
	• 1	1 7	• •		• •		L 6				• •	•		6 N	•	•		•	٩	\$		٩	• •	•	•	¢		K 8	•
		• •	•	•	• •	•	•		•	•	د •				٩	• •	•	r t		•	•	-		L	1		٩	•	•
		• •	in F	F L	• •	E.			•						•	• •	•	•	•	• •			· •					m .	
Largest	• •		•••	, i , i			- m	-	•••	•	• •	1	M	•••	1	•••	۹ ۲	•••	•	1 I	ا ا ع	•	· •	•	1		•	• •	•
	τ (a 5		• •		•						m		• •		• •				•		-	z •		•		•	• •	•
AIVIK	10 E	4 F	in s				•		•	٩	• •		•	I E		m 4				t -	•	•	• •	•	•	• •		• •	
			K •				¢ •			•	• •		•	•	•	•	•	1		• •		•	• •	•	¢	•	•		٩
Simulation	1 4		•••			1		1		•					1	· ·					: 1								
• • •								\$					÷.		•				1					,			÷.		¢
in the	1 S						د ۲		L 7			•		с т	•			τ									•		
			1 F	۰ ۱							a s	-	•	•		۰. ۲	٩				•				F I			• •	•
world	K 5			• •	4 K		t m	•	•			•		• •	•			• •		• •		•		•	•			K •	•
		• •	• •	•	к л		• •	m	• •	•	• •			•	•	• •	•	• •	•	•			t •	•	•	•		• •	
	• •	s E					T F	•				•		¢ •	•	m 4	•	• •		1 6	•	•		•	1	: k	•	• •	•
							•			•				< s			n -		•									• •	
1.7 trillion					 				• •		 	•		•••		• •			\$									 	
			6 K		m s				• c				-	τ				1 F						m	-		•		
cells		ю т	1 M		• •		к к	•	E 1	•		•	E	с т	٩	s m	•	• 1	•	• •	•	•	- •	•	•			4 L	
		in i	• •		• •		1	•	•				K	• s		• •	•	•	•	•	•		• •	6	-	. n	•	K .	
		• E	•••	m =	•	•	τı	•	2			•		•		•	•		•		۲		• •		•	а I.		1 10	
		•••		• •	n P		1		•	an i			•	M 1	E	• 1	٩		٩	•	•	•	•••	•	1		•	• •	
262K cores				•••				•		-			•				•	• •	•	• •	•						•	· ·	
	s 1		4 8																		· -							• •	
on NCSA			• L									•		с в	E	m s		1 6						•		с л			
		s .		• •	E 5					m		•		• •			•	• •		τ.		•	• •	•				• •	•
Blue Waters	F L	• •		•••	• •		• •		•	•	L 10	E	•	6 L	•		n	• •	•	•		•	• •	×.		• •	•	• •	
Blac Maters	• •	s .	•	•				•	E 6	•	ک =	m		\$	•	• s	m	٤ ا		m .		•	•	•	1	•	•	• •	
	• •	• •	۰ ا		•••	•			•••	٩	•			n T			•	• •			L	•		•		: :			
				• ·	5 M	-	•••	•			•••	F E	n N	• •						• •			•	ň					
			• •				< •	L		ĸ						•	¢			•		,		,	;				
		• •	1 E			•			1 1			٩				• •		t •											
1.1.1	m =		•	s (•						• •	٩	• •	•	с в		•		•			L C		•		•
4/17/1 <mark>html</mark>		•	• •	• s		•	F 1	•	• •		•		•	T 1		• •	•	•		•		•			1			•	
7/ 4/ 4/	1.1	•	•			•	1 L	•	•	•	•	•	•	L T		•		1 7		•			• •			s - 1		•	

•

SCALING IN THE HUMAN DIMENSION – SEPARATION OF CONCERNS

(8.2) Design overview

Cello software components

(8.3) Enzo-P / Cello classes (C++)

Object-oriented design implements "separation of concerns", enhancing extensibility, maintainability, understandability

Adding a Method to Enzo-P is Easy (As easy as writing a sequential program)

Suppose we wish to add a FE heat equation solver to Enzo-P.

$u_t - \alpha \nabla^2 u = 0$

1. Parameter file: heat.in

```
% list field variables
```

```
Field { list = [ "temperature" ]; }
```

```
\% define initial conditions
```

```
\% define method parameters
```

```
Method {
    list = [ "heat" ];
    heat {
        alpha = 1.0;
    }
```

Developing with Cello

Writing scalable AMR applications with Cello is straightforward. For example, to use Cello to solve the heat equation with the Forward Euler method, two main steps are required:

- 1. Create an input parameter file
- 2. Add a new Method class

Other minor modifications are also needed for reading method parameters, calling the method's constructor, and updating a Charm++ control file.

2a. Include file: MethodHeat.hpp

```
class MethodHeat : public Method {
   // Create a MethodHeat object
   MethodHeat ( double a ) :a_(a){};
   // Apply FE to the block
   virtual void compute(Block *);
   // Compute the CFL restriction
   virtual double timestep (Block *);
```

2b. Source code: MethodHeat.cpp

```
MethodHeat::compute(Block * block) {
  // Get field block attributes
  Field field = block()->data()->field():
  iU = field.field_id ("temperature");
  U = (double *) field.values (iU);
  field.dimensions (iU,&mx,&my);
  field.size
                     (&nx,&ny);
  field.ghosts (iU,&gx,&gy);
  field.cell_width (&hx,&hy);
  rx = 1.0/(hx*hx); ry = 1.0/(hy*hy);
  // Apply forward Euler method
  for (int iy=gy; iy<ny+gy; iy++) {</pre>
     for (int ix=gx; ix<nx+gx; ix++) {</pre>
       i = ix + mx * iy;
       Uxx=(U[i-dx]-2*U[i]+U[i+dx])*rx;
       Uyy=(U[i-dy]-2*U[i]+U[i+dy])*ry;
       Unew[i]=U[i] + a_*dt*(Uxx + Uyy);
```


Voila', parallel AMR heat conduction

Current Work: Linear Solvers

- Poisson and implicit fluxlimited diffusion eqs.
- CG and BiCGStab implemented and functioning in parallel
 - Suffer from poor algorithmic scaling
- HG algorithm (D. Reynolds) under development (multigrid preconditioned BiCGStab)
 - Matlab prototype exhibits excellent algorithmic and parallel scalability

Takeaways

- *Cello* is a software framework for extreme scale AMR simulations
- Cello implements the most scalable AMR algorithm known: forest-of-octrees
- Parallelism is handled by *Charm++*, which supports fully distributed AMR data structures, asynchronous execution, dynamic load balancing, and fault tolerance, parallel IO
- Developing applications on top of *Cello* is easy as simple as writing a sequential program
- It is available NOW at *http://cello-project.org*

Path Forward

- Finish scalable gravity solver (we're close!)
- Do a 1 trillion cell/particle hydro cosmology simulation as a demonstration
- Implement block adaptive timestepping
 - Exercises Charm++'s dynamic execution capability
- Experiment with Charm's built-in DLB schemes on real applications

Resources

- Project site: <u>http://www.cello-project.org</u>
- Source code: <u>https://bitbucket.org/cello-project</u>
- Tutorials: on project site

THANK YOU!