
Meta-Balancer:	
Automated	Selection	of	Load	

Balancing	Strategies

Presenter:	Kavitha	Chandrasekar

Work	done	by:	Harshitha	Menon,	Kavitha	Chandrasekar,	Laxmikant	V.	Kale

1



Outline

Motivation
Need	for	Dynamic	Load-balancing	and	Strategy	Selection

Implementation	in	Charm++
Meta-Balancer	Framework

Discussion	of	application	results

2



Need	for	Load-balancing

• Several	HPC	applications	exhibit	load	imbalance,	
for	example:
• Dynamic	computation	changes	like	in	AMR
• Variability	in	particles	per	computation	unit	in	
Molecular	Dynamics

• Load	balancing	achieves
• High	performance
• High	Resource	utilization

3

Load	Imbalance	in	AMR	application
Reference:	AMR	mini-app	in	Charm++



Charm++	Programming	Model	and	RTS

• Asynchronous	message-driven	execution	
model
• Supports	over-decomposition
• Dividing	computation	into	more	units	
than	hardware	processing	units

• Supports	Migratability of	work	units
• Hence,	load	balancing	is	possible
• Supports	a	suite	of	load	balancing	
strategies

4

Charm++	RTS	view	of	over-decomposition	

Over-decomposition	of	
work	into	Charm++	objects

Mapping	of	Charm++	
objects	to	processors



Need	for	Adaptive	Load	Balancing	Selection

• HPC	application	have	dynamically	varying	load	
imbalance
• Applications	exhibit	varying	characteristics

• Varying	over	input	sizes
• Varying	over	phases	within	an	application	run
• Varying	core	counts

• Load	Imbalance	characteristics	also	vary	as	a	result
• Need	for	choosing	the	optimal	load	balancing	
strategy
• Previous	work

• Metabalancer	chooses	the	best	load	balancing	period

5

Lassen’s	Propagating	Wave	Front
Reference:	Lassen	from	LLNL	



Differences	in	Load	Balancing	Strategies

• Different	applications	require	different	load	balancing	strategies
• Communication	intensive	applications	require	comm-aware	load	balancers	
such	as	graph	partitioning-based	LBs
• Computation-based	load	imbalance	may	require

• From-scratch	load	balancers
• Refinement-based	

• Applications	may	require	different	strategies	at	different	stages	of	the	
run

6



Load	balancing	Strategies	in	Charm++

Available	load	balancing	strategies
• Centralized:	

• GreedyLB :	From-scratch	re-mapping	of	objects	to	PEs
• RefineLB :	Re-mapping	of	objects,	taking	into	account	current	mapping	of	objects
• HierarchicalLB :	HybridLB performs	GreedyLB at	sub-trees	and	RefineLB at	higher-levels

• Distributed:	
• DistributedLB :	A	distributed	strategy	for	load	statistics	propagation	for	mapping	of	chares	
from	overloaded	to	underloaded processors

• Communication-aware:	
• MetisLB :	Objects	are	mapped	based	on	partitioning	of	communication	graph
• ScotchLB :	Communication	graph	partitioning,	also	taking	into	account	load	imbalance
• ScotchRefineLB :	Similar	to	ScotchLB but	takes	existing	mapping	of	chares	into	account

7



Performance	of	Load-balancing	strategies

• Different	strategies	perform	differently	with	
different	applications,	different	datasets,	
varying	core	counts	etc.
• Figure	shows	performance	of	Lassen	on	
varying	number	of	cores
• HybridLB shows	better	speedup	for	smaller	
number	of	cores
• DistributedLB performs	better	for	large	core	
counts
• Even	for	the	same	application	with	weak-
scaling,	we	observe	variations	in	performance

8

�

���

�

��� ��� ��� ����

�
��
�
��
�
��
��
��
�

������ �� �����

��������
�������
�������

��������
������

��������

Performance	of	Lassen	with	different	LBs



Meta-Balancer:	For	Automated	Strategy	Selection

• How	do	we	select	a	strategy	from	the	set	of	
strategies?
• Train	a	Random	Forest	Machine	learning	
model	offline	with	training	data	
• At	application	runtime,	capture	application	
characteristics
• Adaptive	run-time	system	component

• Identifies	when	to	balance	load	and	which	
strategy	to	use

• Invokes	LB	and	continues	to	monitor	
application	load	imbalance	characteristics

9

Perform	multiple	
runs

Train	Random	
Forest	Model

Capture	Features

Feed	test	data	to	
Trained	Model

Generate	Load-
balancing	strategy	

decision

Invoke	Load-
balancer



Meta-Balancer	– Statistics	collection

• Objects	deposit	load	information	at	the	iteration	
boundary
• Aggregation	of	object	load	statistics	at	PEs
• AtSync application	calls	are	used	to	collect	statistics	on	each	
PE
• There	is	no	waiting	on	barrier	unlike	regular	load	balancing	at	
AtSync
• Hence	they	are	very	low	overhead	AtSync calls

• Tree	based	reductions	to	collect	statistics
• Double	array	with	about	30	features	are	aggregated	by	
reduction

10



Random	Forest	Machine	Learning	technique

• Random	forest	ML	technique	to	predict	the	best	load	balancing	
strategy	- classification	task
• We	use	100	trees	for	good	prediction	accuracy
• Nodes	in	the	tree	represent	features	with	associated	threshold	values
• Leaf	Nodes	are	load-balancing	strategy	classes	with	assigned	
probabilities
• Tunable	model	parameters	for	accuracy
• Tree	depth
• Types	of	classifier	etc.

11



Random	Forest	Machine	Learning	technique

• Why	not	use	a	decision	tree?
• Issues	in	coming	up	with	the	right	threshold	per	internal	node
• They	can	result	in	overfitting

• We	use	a	decision	tree	to:
• Provide	a	general	idea	of	different	scenarios	applicable	to	different	LB	
strategies
• Decide	on	Features	that	can	be	used	to	train	a	model

• Random	Forest	Model
• Uses	several	trees	to	determine	the	LB	with	highest	probability
• Trees	are	constructed	by	considering	random	sets	of	features

12



Decision	Tree	– How	strategies	vary	with	differing	load	imbalance	
characteristics

13

High	rate	of	
change	of	
imbalance

High	
comm

load/compute	
load

Topology	
sensitive

Large	core	
counts

GreedyLB

High	load	
imbalance

High	rate	of	
change	of	
imbalance

No	LB

CommRefineLB ScotchLB MetisLB TopoAware
(Refine)LB

Test	data

RefineLB DsitributedLB

Migration	
cost	low

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes
Yes

High
Low

None



Statistics	Collected
• PE	stats

• Number	of	PEs
• PE	load	imbalance
• PE	utilization	(min,	max,	avg)

• Obj stats	
• Num objs
• Per	PE	Obj load	(min,	max,	avg)

• Migration	overhead
• Communication	stats

• Total	messages,	Total	bytes,	External	messages	fraction,	External	bytes	fraction,	Avg hops,	Avg hop	bytes,	Avg
comm neighbors

• Machine	stats
• Latency,	Bandwidth
• Comm cost	by	Compute	cost

• Overhead	over	Benefit	of	Centralized	strategy

14



Features	generated	from	Statistics

• PE	stats
• PE	load	imbalance	=	PE	max	load	/	PE	avg load
• Relative	rate	of	change	of	load	(max	load,	avg load)

• Communication	cost	by	Compute	cost
• Communication	cost	based	on	latency,	bandwidth
• Computation	cost	is	the	sum	of	time	taken	to	execute	work

• Overhead	by	Benefit	of	Centralized	strategy
• Overhead	of	centralized	GreedyLB strategy	is	O(num_objs *	log	(p))
• Benefit	of	the	centralized	strategy	is	based	on	the	assumption	that	it	achieves	
perfect	balance

15



Training	Set

• Synthetic	benchmark	lb_test to	study	different	
behavior
• varying	communication	pattern
• computation	load
• migration	cost
• message	sizes

• These	parameters	allow	us	to	introduce	
application	characteristics
• Load	imbalance
• Dynamic	load	imbalance
• Compute	vs	Communication-intensive

16

Communication-intensive	synthetic	run

Computation-intensive	synthetic	run



Predictions	on	Test	Data

• 75	configurations	were	used	in	training	set	
and	25	in	test	set
• Variations	in	parameters	allowed	to	simulate	
different	application	characteristics
• Eg:	Communication-intensive,	Compute-intensive

• score	=	Tpredicted_lb /	Tbest_lb-1	
• Larger	the	score,	worse	the	performance

17

Prediction	Scores



Histogram	of	Features

• Histogram	of	features	used	for	sample	test	data

• 100	trees	are	traversed	by	the	classifier	to	find	the	
load	balancer	with	maximum	probability

• We	output	how	often	a	feature	is	used	to	make	a	
decision	on	the	path

• Some	key	features	were:
• PE_load_Imb
• Avg_utilization
• Overhead_vs_benefit
• Comm_vs_Compute

18

PE
_L
oa
d_
Im
b

PE
_L
oa
d_
RS

D
PE

W
ith
BG

Im
b

PE
_B
GL

oa
d_
Pe
rce

nt
LB
_G

ain
Av
g_
Ut
il

Mi
n_
Ut
il

Ma
x_
Ut
il

Av
g_
Ob

j_L
oa
d

Mi
n_
Ob

j_L
oa
d

Ma
x_
Ob

j_L
oa
d

Nu
m_

Ob
js_

Pe
r_
PE

Nu
m_

PE
s

To
tal
_B
yte

s
To
tal
_M

sg
s

Ex
t_B

yte
s_
Pe
rce

nt
Ex
t_M

sg
s_
Pe
rce

nt
Int
_B
yte

s_
Pe
rce

nt
Int
_M

sg
s_
Pe
rce

nt
Av
g_
Co

mm
_N

br
s

Re
l_R

ate
_M

ax
_L
oa
d

Re
l_R

ate
_A
vg
_L
oa
d

Av
g_
Ho

ps
Av
g_
Ho

pb
yte

s
Co

mm
_v
s_
Co

mp
ute

Ov
er
he
ad
_v
s_
Be
ne
fit

Mi
gr
ati
on
_O

ve
rh
ea
d0

10

20

30

40

50

60

70

80

90

100

Histogram	of	features	used	
by	Random	Forest	for	
synthetic	test	data



Using	Trained	Model	for	applications

• Trained	Random	Forest	Model	from	synthetic	runs	was	used	with
• Lassen
• PRK	Particle-In-Cell	Simulation
• NPB	BT-MZ
• PDES
• LeanMD

• Some	of	the	mini-application	results	are	presented	here

19



Lassen	– Wave	propagation	application

• Used	to	study	detonation	shock	
dynamics
• Suffers	from	varying	load	imbalance
• Meta-Balancer	is	able	to	choose	a	
good	load	balancer
• In	most	cases,	atleast the	2nd best	load	
balancer

• Meta-Balancer	predicts	LB	(DistLB -
1024	cores)	that	improves	
performance	by	2X	for	worst	LB

20

�

��

��

��

��

��

��

��

��

��

��� ��� ��� ����

�
��
���
�
��
�

������ �� �����

�� ��
����� ��

���� ��
��������� ��

Application	times	for	all	LBs

Lassen	Prediction	for	LB	strategies



Prediction	for	Particle-In-Cell	Simulation

• Charm++	implementation	of	PRK	PIC
• Used	for	simulation	of	plasma	
particles
• Load	imbalance	results	from	
imbalanced	distribution	of	particles	
and	particle	motion
• Meta-Balancer	is	able	to	predict	
GreedyLB that	improves	performance	
by	more	than	2X	for	worst	LB

21

PRK	PIC	Prediction	for	LB	strategies

 0

 10

 20

 30

 40

 50

 60

 70

 80

128 256 512 1024

A
pp

 t
im

e 
(s

)

Number of cores

No LB
Worst LB

Best LB
Predicted LB



Prediction	for	NPB	BT-MZ

• Use	of	Random	Forest	Algorithm	
for	prediction	of	Load	balancer
• Example:	NPB	BT-MZ,	an	AMPI	
benchmark
• Uneven	zone	size	– load	
imbalance
• Communication	intensive
• Input	classes	used:	C	and	D
• For	core	128,	256	cores,	
prediction	is	the	second	best

22

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

32 64 128 256

A
pp

 t
im

e 
(s

)

Number of cores

No LB
Worst LB

Best LB
Predicted LB

NPB	BT-MZ	Prediction	for	LB	strategies



Prediction	for	NPB	BT-MZ

• Score	of	prediction	with	respect	to	performance	speedup	is	
shown
• For	core	128,	256	cores,	prediction	is	the	second	best
• Smaller	cores	show	might	have	variability	due	to	short	run	time

23

Load-Balancing	Score	for	NPB	BT-MZ



Tree	Path	description	for	BT-MZ

• Result	Analysis:
• What	features	work?

• Figure	shows	BT-MZ’s	LB	prediction	
• LB_Gain (overhead_vs_benefit)	is	>	0.09

• Hence	centralized	strategy	is	acceptable
• NUM_PEs	is	low

• Hence	Greedy	is	acceptable	(instead	of	
Hybrid)

• Migration	overhead	is	low
• Hence	Greedy	is	acceptable	than	Refine

• Rate	of	imbalance	is	low
• Hence	greedy	is	acceptable,	since	it	can	be	
called	infrequently	with	low	overhead

24

LB_Gain
< 0.09

PE_Load_RSD
< 0.04

Num_PEs
< 2150.41

Rel_Rate_Max_Load
< 0.01

Avg_Util
< 0.51

Migration_Overhead
< 1.54

Total_Bytes
< 2244902.24

Avg_Hopbytes
< 10.54

Min_Util
< 0.91

PE_Load_RSD
< 0.13

Rel_Rate_Max_Load
< 0.05

Rel_Rate_Avg_Load
< 0.25

Avg_Hops
< 2.50

Min_Util
< 0.30

Total_Msgs
< 3740.00

NoLB NoLB RefineLB ScotchLB MetisLB DistLB GreedyLB DistLB GreedyLB DistLB ScotchLB RefineLB GreedyLB HybridLB RefineLB HybridLB

Random	Forest’s	tree	for	BT-MZ’s	LB	prediction



Summary:	Meta-Balancer		for	Strategy	Selection

• Random	Forest	algorithm	for	training	and	to	predict	suitable	load	
balancing	strategy	with	high	accuracy
• Adaptive	run-time	component	to	make	the	load	balancing	strategy	
selection	decision
• Several	applications	benefit	from	strategy	selection
• Our	Result	Analysis	looks	at	why	a	Load-balancing	strategy	was	
predicted	with	high	probability

25



Thank	You

26


