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Need	for	Load-balancing

• Several	HPC	applications	exhibit	load	imbalance,	
for	example:
• Dynamic	computation	changes	like	in	AMR
• Variability	in	particles	per	computation	unit	in	
Molecular	Dynamics

• Load	balancing	achieves
• High	performance
• High	Resource	utilization
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Load	Imbalance	in	AMR	application
Reference:	AMR	mini-app	in	Charm++



Charm++	Programming	Model	and	RTS

• Asynchronous	message-driven	execution	
model
• Supports	over-decomposition
• Dividing	computation	into	more	units	
than	hardware	processing	units

• Supports	Migratability of	work	units
• Hence,	load	balancing	is	possible
• Supports	a	suite	of	load	balancing	
strategies
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Charm++	RTS	view	of	over-decomposition	

Over-decomposition	of	
work	into	Charm++	objects

Mapping	of	Charm++	
objects	to	processors



Need	for	Adaptive	Load	Balancing	Selection

• HPC	application	have	dynamically	varying	load	
imbalance
• Applications	exhibit	varying	characteristics

• Varying	over	input	sizes
• Varying	over	phases	within	an	application	run
• Varying	core	counts

• Load	Imbalance	characteristics	also	vary	as	a	result
• Need	for	choosing	the	optimal	load	balancing	
strategy
• Previous	work

• Metabalancer	chooses	the	best	load	balancing	period
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Lassen’s	Propagating	Wave	Front
Reference:	Lassen	from	LLNL	



Differences	in	Load	Balancing	Strategies

• Different	applications	require	different	load	balancing	strategies
• Communication	intensive	applications	require	comm-aware	load	balancers	
such	as	graph	partitioning-based	LBs
• Computation-based	load	imbalance	may	require

• From-scratch	load	balancers
• Refinement-based	

• Applications	may	require	different	strategies	at	different	stages	of	the	
run
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Load	balancing	Strategies	in	Charm++

Available	load	balancing	strategies
• Centralized:	

• GreedyLB :	From-scratch	re-mapping	of	objects	to	PEs
• RefineLB :	Re-mapping	of	objects,	taking	into	account	current	mapping	of	objects
• HierarchicalLB :	HybridLB performs	GreedyLB at	sub-trees	and	RefineLB at	higher-levels

• Distributed:	
• DistributedLB :	A	distributed	strategy	for	load	statistics	propagation	for	mapping	of	chares	
from	overloaded	to	underloaded processors

• Communication-aware:	
• MetisLB :	Objects	are	mapped	based	on	partitioning	of	communication	graph
• ScotchLB :	Communication	graph	partitioning,	also	taking	into	account	load	imbalance
• ScotchRefineLB :	Similar	to	ScotchLB but	takes	existing	mapping	of	chares	into	account
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Performance	of	Load-balancing	strategies

• Different	strategies	perform	differently	with	
different	applications,	different	datasets,	
varying	core	counts	etc.
• Figure	shows	performance	of	Lassen	on	
varying	number	of	cores
• HybridLB shows	better	speedup	for	smaller	
number	of	cores
• DistributedLB performs	better	for	large	core	
counts
• Even	for	the	same	application	with	weak-
scaling,	we	observe	variations	in	performance
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Meta-Balancer:	For	Automated	Strategy	Selection

• How	do	we	select	a	strategy	from	the	set	of	
strategies?
• Train	a	Random	Forest	Machine	learning	
model	offline	with	training	data	
• At	application	runtime,	capture	application	
characteristics
• Adaptive	run-time	system	component

• Identifies	when	to	balance	load	and	which	
strategy	to	use

• Invokes	LB	and	continues	to	monitor	
application	load	imbalance	characteristics
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Perform	multiple	
runs

Train	Random	
Forest	Model

Capture	Features

Feed	test	data	to	
Trained	Model

Generate	Load-
balancing	strategy	

decision

Invoke	Load-
balancer



Meta-Balancer	– Statistics	collection

• Objects	deposit	load	information	at	the	iteration	
boundary
• Aggregation	of	object	load	statistics	at	PEs
• AtSync application	calls	are	used	to	collect	statistics	on	each	
PE
• There	is	no	waiting	on	barrier	unlike	regular	load	balancing	at	
AtSync
• Hence	they	are	very	low	overhead	AtSync calls

• Tree	based	reductions	to	collect	statistics
• Double	array	with	about	30	features	are	aggregated	by	
reduction
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Random	Forest	Machine	Learning	technique

• Random	forest	ML	technique	to	predict	the	best	load	balancing	
strategy	- classification	task
• We	use	100	trees	for	good	prediction	accuracy
• Nodes	in	the	tree	represent	features	with	associated	threshold	values
• Leaf	Nodes	are	load-balancing	strategy	classes	with	assigned	
probabilities
• Tunable	model	parameters	for	accuracy
• Tree	depth
• Types	of	classifier	etc.
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Random	Forest	Machine	Learning	technique

• Why	not	use	a	decision	tree?
• Issues	in	coming	up	with	the	right	threshold	per	internal	node
• They	can	result	in	overfitting

• We	use	a	decision	tree	to:
• Provide	a	general	idea	of	different	scenarios	applicable	to	different	LB	
strategies
• Decide	on	Features	that	can	be	used	to	train	a	model

• Random	Forest	Model
• Uses	several	trees	to	determine	the	LB	with	highest	probability
• Trees	are	constructed	by	considering	random	sets	of	features
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Decision	Tree	– How	strategies	vary	with	differing	load	imbalance	
characteristics
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Statistics	Collected
• PE	stats

• Number	of	PEs
• PE	load	imbalance
• PE	utilization	(min,	max,	avg)

• Obj stats	
• Num objs
• Per	PE	Obj load	(min,	max,	avg)

• Migration	overhead
• Communication	stats

• Total	messages,	Total	bytes,	External	messages	fraction,	External	bytes	fraction,	Avg hops,	Avg hop	bytes,	Avg
comm neighbors

• Machine	stats
• Latency,	Bandwidth
• Comm cost	by	Compute	cost

• Overhead	over	Benefit	of	Centralized	strategy
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Features	generated	from	Statistics

• PE	stats
• PE	load	imbalance	=	PE	max	load	/	PE	avg load
• Relative	rate	of	change	of	load	(max	load,	avg load)

• Communication	cost	by	Compute	cost
• Communication	cost	based	on	latency,	bandwidth
• Computation	cost	is	the	sum	of	time	taken	to	execute	work

• Overhead	by	Benefit	of	Centralized	strategy
• Overhead	of	centralized	GreedyLB strategy	is	O(num_objs *	log	(p))
• Benefit	of	the	centralized	strategy	is	based	on	the	assumption	that	it	achieves	
perfect	balance
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Training	Set

• Synthetic	benchmark	lb_test to	study	different	
behavior
• varying	communication	pattern
• computation	load
• migration	cost
• message	sizes

• These	parameters	allow	us	to	introduce	
application	characteristics
• Load	imbalance
• Dynamic	load	imbalance
• Compute	vs	Communication-intensive
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Communication-intensive	synthetic	run

Computation-intensive	synthetic	run



Predictions	on	Test	Data

• 75	configurations	were	used	in	training	set	
and	25	in	test	set
• Variations	in	parameters	allowed	to	simulate	
different	application	characteristics
• Eg:	Communication-intensive,	Compute-intensive

• score	=	Tpredicted_lb /	Tbest_lb-1	
• Larger	the	score,	worse	the	performance

17

Prediction	Scores



Histogram	of	Features

• Histogram	of	features	used	for	sample	test	data

• 100	trees	are	traversed	by	the	classifier	to	find	the	
load	balancer	with	maximum	probability

• We	output	how	often	a	feature	is	used	to	make	a	
decision	on	the	path

• Some	key	features	were:
• PE_load_Imb
• Avg_utilization
• Overhead_vs_benefit
• Comm_vs_Compute
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Using	Trained	Model	for	applications

• Trained	Random	Forest	Model	from	synthetic	runs	was	used	with
• Lassen
• PRK	Particle-In-Cell	Simulation
• NPB	BT-MZ
• PDES
• LeanMD

• Some	of	the	mini-application	results	are	presented	here
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Lassen	– Wave	propagation	application

• Used	to	study	detonation	shock	
dynamics
• Suffers	from	varying	load	imbalance
• Meta-Balancer	is	able	to	choose	a	
good	load	balancer
• In	most	cases,	atleast the	2nd best	load	
balancer

• Meta-Balancer	predicts	LB	(DistLB -
1024	cores)	that	improves	
performance	by	2X	for	worst	LB
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Prediction	for	Particle-In-Cell	Simulation

• Charm++	implementation	of	PRK	PIC
• Used	for	simulation	of	plasma	
particles
• Load	imbalance	results	from	
imbalanced	distribution	of	particles	
and	particle	motion
• Meta-Balancer	is	able	to	predict	
GreedyLB that	improves	performance	
by	more	than	2X	for	worst	LB
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PRK	PIC	Prediction	for	LB	strategies
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Prediction	for	NPB	BT-MZ

• Use	of	Random	Forest	Algorithm	
for	prediction	of	Load	balancer
• Example:	NPB	BT-MZ,	an	AMPI	
benchmark
• Uneven	zone	size	– load	
imbalance
• Communication	intensive
• Input	classes	used:	C	and	D
• For	core	128,	256	cores,	
prediction	is	the	second	best
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Prediction	for	NPB	BT-MZ

• Score	of	prediction	with	respect	to	performance	speedup	is	
shown
• For	core	128,	256	cores,	prediction	is	the	second	best
• Smaller	cores	show	might	have	variability	due	to	short	run	time
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Load-Balancing	Score	for	NPB	BT-MZ



Tree	Path	description	for	BT-MZ

• Result	Analysis:
• What	features	work?

• Figure	shows	BT-MZ’s	LB	prediction	
• LB_Gain (overhead_vs_benefit)	is	>	0.09

• Hence	centralized	strategy	is	acceptable
• NUM_PEs	is	low

• Hence	Greedy	is	acceptable	(instead	of	
Hybrid)

• Migration	overhead	is	low
• Hence	Greedy	is	acceptable	than	Refine

• Rate	of	imbalance	is	low
• Hence	greedy	is	acceptable,	since	it	can	be	
called	infrequently	with	low	overhead
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Random	Forest’s	tree	for	BT-MZ’s	LB	prediction



Summary:	Meta-Balancer		for	Strategy	Selection

• Random	Forest	algorithm	for	training	and	to	predict	suitable	load	
balancing	strategy	with	high	accuracy
• Adaptive	run-time	component	to	make	the	load	balancing	strategy	
selection	decision
• Several	applications	benefit	from	strategy	selection
• Our	Result	Analysis	looks	at	why	a	Load-balancing	strategy	was	
predicted	with	high	probability
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Thank	You
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