
Selected Topics in

Dynamic Load Balancing

Ronak Buch, Kavitha Chandrasekar, Juan Galvez, Hao Jin, Harshitha Menon, Michael Robson

rabuch2@illinois.edu

April 17, 2017

15th Annual Workshop on Charm++ and its Applications

Parallel Programming Laboratory, University of Illinois at Urbana-Champaign



Table of Contents

1. Introduction

2. Greedy Refine

3. Topology Aware Load Balancing

4. Heterogeneous Load Balancing

5. Load Balancing Library

6. Conclusion
1



Introduction



Background

Load balancing is a key feature of Charm++, integral to achieving scalability and

performance.

Charm++ load balancing has existed for a long time, but we are always looking to

improve.

New algorithms to improve performance.

New approaches to tackle new hardware.

2



Background

Load balancing is a key feature of Charm++, integral to achieving scalability and

performance.

Charm++ load balancing has existed for a long time, but we are always looking to

improve.

New algorithms to improve performance.

New approaches to tackle new hardware.

2



Background

Load balancing is a key feature of Charm++, integral to achieving scalability and

performance.

Charm++ load balancing has existed for a long time, but we are always looking to

improve.

New algorithms to improve performance.

New approaches to tackle new hardware.

2



Overview

New features have been added to the load balancing infrastructure of Charm++,

including:

• Improvements to greedy algorithm

• Topology aware load balancing

• Heterogeneous load balancing

• Load balancing library

3



Greedy Refine



Greedy Background

Basic GreedyLB in Charm++ places objects in max heap and PEs in min heap.

Continuously pops heaviest object and maps to least loaded PE until object heap

is empty.

90, A

40, B 50, C

(a) Obj Heap

0,PE0

0,PE1

(b) PE Heap

Figure: Step 0

4



Greedy Background

Basic GreedyLB in Charm++ places objects in max heap and PEs in min heap.

Continuously pops heaviest object and maps to least loaded PE until object heap

is empty.

50, C

40, B

(a) Obj Heap

0,PE1

90,PE0

(b) PE Heap

Figure: Step 1

4



Greedy Background

Basic GreedyLB in Charm++ places objects in max heap and PEs in min heap.

Continuously pops heaviest object and maps to least loaded PE until object heap

is empty.

40, B

(a) Obj Heap

50,PE1

90,PE0

(b) PE Heap

Figure: Step 2

4



Greedy Background

Basic GreedyLB in Charm++ places objects in max heap and PEs in min heap.

Continuously pops heaviest object and maps to least loaded PE until object heap

is empty.

(a) Obj

Heap

90,PE0

90,PE1

(b) PE Heap

Figure: Step 3 4



Greedy Issues

The greedy algorithm generally results in a good distribution of load.

However, it does not consider locality.

Often, this results in extremely high communication cost, with most objects in

the system migrating at every load balancing step.

Can we do better?

Yes, by modifying GreedyLB to limit the number of migrations.

5



Greedy Issues

The greedy algorithm generally results in a good distribution of load.

However, it does not consider locality.

Often, this results in extremely high communication cost, with most objects in

the system migrating at every load balancing step.

Can we do better?

Yes, by modifying GreedyLB to limit the number of migrations.

5



Greedy Issues

The greedy algorithm generally results in a good distribution of load.

However, it does not consider locality.

Often, this results in extremely high communication cost, with most objects in

the system migrating at every load balancing step.

Can we do better?

Yes, by modifying GreedyLB to limit the number of migrations.

5



Greedy Refine

New load balancer, GreedyRefineLB. Same as GreedyLB, but in each step

decide whether to assign object to least loaded PE, or keep on same PE.

For some values α and β:

llp: least loaded processor

prevPe: previous PE of obj

M : α · maximum load of GreedyLB solution

Stay on prevPe if (prevPe.load ≤ llp.load ∗ β) and (prevPe.load + obj .load ≤ M)

Else move to llp

6



Greedy Refine Results

Figure: Load Balancing Results α0, β0

7



Greedy Refine Results (con’t)

Figure: Load Balancing Results α1, β1

8



Greedy Refine Results (con’t)

Figure: Load Balancing Results α2, β2

9



Greedy Refine Implementation

How do we pick α and β?

Finding good values is difficult, so, instead, we try multiple values and select the

best result.

Charm++ had no way to compute and compare the results of multiple candidate

load balancing solutions in parallel, so we implemented a new concurrent mode.

To enable, set concurrent flag to true and then call ApplyDecision() on the

PE of the best solution.

For example, GreedyRefineLB computes 225 different candidate solutions and

chooses the best one (fewest migrations with max load under a threshold).

10



Topology Aware Load Balancing



Topology Aware Mapping

Topology aware mapping has been used to great effect in the past to improve the

performance of MPI and Charm++ programs.

Reducing the distance messages must travel reduces the number of network hops

and the likelihood of contention.

Rather than mapping ranks or PEs based on topology, we can dynamically map

objects based on topology, load, and communication.

More sophisticated than static mapping, can cope with changing communication

patterns and load.

11



GTopoCommLB

GTopoCommLB is a load balancer that combines load information with

communication and topology information.

Performs multi-objective optimization, tries to minimize hopbytes while satisfying

a maximum load tolerance constraint.

Optimal load tolerance is difficult to ascertain. Too low, and it can produce an

infeasible problem or harm hopbytes, but too high, and it can allow load to be

poorly balanced.

⇒ Use concurrent mode to run multiple instances with different maximum load

tolerances.

12



GTopoCommLB Results

For Stencil3d on Blue Waters, 1024 nodes, 16k processors, 64k objects.

Instrumentation enabled at iteration 10, one LB step at iteration 15.

GTopoCommLB maximum load 2% higher than GreedyLB.

GTopoCommLB hopbytes 7x smaller than GreedyLB.

GTopoCommLB performance 49% higher than DummyLB. (GreedyLB performs very

badly due to communication performance)

13



Heterogeneous Load Balancing



Heterogeneous Loads

With the advent of GPUs and other accelerator devices to HPC, standard CPU

load balancing is no longer sufficient to distribute work.

There are many challenges:

• Different hardware may have different performance for the same work.

• Data movement overhead may outweigh hardware performance gains.

• The execution model varies depending on the hardware target.

Some programs may have CPU only and GPU only work, while others may have

work that can execute on any device, and yet others may have both sorts.

14



Vector Load Balancing

First, we consider programs with CPU only and GPU only work.

To load balance, we use the Charm++ runtime to measure load data for each

hardware target. Thus, an object has a two-dimensional load vector,

< cpuload , gpuload >.

The work should be distributed such that both dimensions are minimized.

Currently, we are using greedy strategies to place objects. We are in the process

of exploring other algorithms.

15



Synthetic Vector Load Balancing Results

Figure: Object Loads

16



Synthetic Vector Load Balancing Results (con’t)

Figure: Regular GreedyLB Results

17



Synthetic Vector Load Balancing Results (con’t)

Figure: VectorLB Results

18



Production Vector Load Balancing Results

Figure: ChaNGa Load Balancing Results

19



Accel Load Balancing

Some programs have work that can be retargeted to different hardware devices.

This is a different problem than before since the static division of labor no longer

exists.

Now, we must find the optimal “split” point to equally divide the work between

the CPU and GPU.

• Different workloads react in different ways to different hardware.

• Unknown a priori.

To do this, the runtime dynamically assigns work to different hardware targets

based on some strategy. The user can specify static assignment strategies or

dynamic strategies where the runtime searches for the optimal split.

20



Accel Load Balancing Results

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percent Device

0

5

10

15

20

25

30

Ti
m

e 
(s

ec
on

ds
)

Figure: Accel Stencil3d Load Balancing Results
21



Accel Load Balancing Results (con’t)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percent Device

0

2

4

6

8

10

12

14

16

18

Ti
m

e 
(s

ec
on

ds
)

Figure: Accel MD Load Balancing Results
22



Future Work

We plan on combining the vector load balancing and accel load balancing

strategies in the future, providing a more holistic response capability to shifting

load.

Currently, data movement costs are not considered. We plan on adding

cognizance of whether the data is located on the CPU or GPU.

Additional constraints will be added to the vector load balancer, such as a

maximum memory threshold per PE or even application specific parameters.

23



Load Balancing Library



Load Balancing Library

We have decoupled load balancing strategies from Charm++ and released them as

a library at

https://charm.cs.illinois.edu/gerrit/gitweb?p=MPI_LB_Library.git

It can easily be linked into an MPI program and be used to make object

placement decisions.

The library includes a feature to automatically measure computation and

communication for MPI programs. These data can also be manually specified.

No mechanism for migration is included; the end user is responsible for that.

24

https://charm.cs.illinois.edu/gerrit/gitweb?p=MPI_LB_Library.git


Conclusion



Summary

• GreedyRefineLB provides results close to GreedyLB with a tunable number

of migrations.

• GTopoCommLB provides an application of topology aware mapping to load

balancing, reducing communication contention.

• Various new strategies for heterogeneous load balance were introduced, both

for static and dynamic heterogeneity.

• Charm++’s load balancing strategies are now available independently of the

runtime system for use with MPI and other applications.

25



Questions?

25


	Introduction
	Greedy Refine
	Topology Aware Load Balancing
	Heterogeneous Load Balancing
	Load Balancing Library
	Conclusion

