
10/24/2021

1

Advances in
Charm-based Languages (II)

JUSTIN J. SZADAY (SZADAY2@ILLINOIS.EDU)
PHD STUD ENT, PPL

U NIV ERSITY OF ILL INOIS AT U RBANA CHAMPAIGN

1

Outline
1. Context

2. Our Approach

3. Enhancements

4. Results

5. Future Work

6. Conclusions

2

1

2

10/24/2021

2

Why DSLs?
Hardware complexity continues to rise, posing challenges in:
◦ Programming heterogenous systems
◦ Updating specialized software for new hardware
◦ Choosing the best hardware configuration

In response to these challenges, we need:
◦ Better tools (e.g., auto-tuners) for navigating problem spaces
◦ Lift the abstraction level away from hardware complexities
◦ Languages better suited for HPC than C/C++ and Fortran

3

Domain-specific languages (DSLs) can help address these needs

CONTEXT

DSLs in HPC
DSLs integrate domain knowledge to enhance:
◦ Productivity – direct access to common abstractions
◦ Efficiency – smaller search space that tools "know" how to navigate

Research in HPC supports distributed DSLs:
◦ PyOP2 (2012-) mesh-based codes, embedded in Python
◦ GridTools (2016-) stencil computations, embedded in C++
◦ OpenPME (2017-) particle and mesh methods, standalone

4

However, DSLs that scale beyond a single node are rare!

CONTEXT

3

4

10/24/2021

3

DSL Frameworks Help Scalability
Scalable DSLs require additional considerations:
◦ Data partitioning, communication, synchronization, etc.

DSL frameworks help overcome these "barriers"

DSL frameworks span various abstraction levels:
◦ Low-level: fork-join, messaging
◦ Mid-to-high-level: channels, tasks
◦ Domain-specific:

◦ QUARC (2016-), a framework for DSLs with lattice and grid domains
◦ DAWN (2020-), a compiler toolchain for weather and climate applications

5CONTEXT

How are DSLs Built?
Development approaches for frameworks and DSLs vary:
◦ Low-level compiler or communication tools
◦ Existing libraries (e.g., OpenPME is built on OpenFPM)
◦ Incorporate runtime adaptivity:

◦ OpenABL (2018), a DSL for Parallel and Distributed Agent-Based Simulations
◦ Marlon (2019), a DSL for Multi-Agent Reinforcement Learning on Networks

6

Our work with Charm++ blends the latter two approaches

CONTEXT

5

6

10/24/2021

4

What Charm++ Offers DSLs
Charm’s migratable objects have worthwhile properties for DSLs:
◦ Intrinsic over-decomposition and runtime adaptivity
◦ Flexible local view of control and data

Noting these benefits, past Charm-based works built:
◦ Parallel abstractions: Trees, Futures, PGAS-like Structures (i.e., MSA)
◦ DSLs: Charisma, DivCon

7

These DSLs did not leverage a framework:
repetitive to develop, harder to maintain

OUR APPROACH

Migratable Objects Pose Challenges
Migratable objects require rich OOP support, but DSL frameworks:
◦ Often leave classes and generic types as “exercises”
◦ Performance suffers without first-class support

Embedding migratable objects in……

8OUR APPROACH

• Lacking standards
• STL containers force copying
• Syntactic constraints cause

verbosity

C++ Interpreted or JIT'd languages
• Harms performance
• Although Python and the JVM have

improved for some domains

7

8

10/24/2021

5

Our Approach

9

EÍR: A compiler framework to build DSLs based on Charm++

Extensible
Compiler

Infrastructure

Rich OOP and
Charm++
Support

Compiler and
Runtime

Optimizations

Enhanced
Abstractions

• Extensible compiler supports DSL
analysis and transformation passes

• Rich support for OOP and Charm++:
• Automatically registers and

de/serializes user-defined types
• C++ backend with runtime and

compiler-level communication
optimizations

• Enhanced runtime-level support
for performance-critical abstractions

OUR APPROACH

Our Goals
To prove and drive the generality of EÍR:
◦ We built a Scala-inspired, general-purpose language with EÍR
◦ Embedded DSLs within it, like Charisma (for data-independent data-flows)

Beyond this, we have explored:
◦ Elevate visibility of internal mechanisms when:

◦ Useful for constructing other parallel abstractions
◦ Avoidable performance impact

◦ Facilitate optimizations through stronger guarantees:
◦ Discourage user-level locks, regulate data-sharing, etc.

◦ Extend the underlying model to minimize "semantic gaps."

10OUR APPROACH

9

10

10/24/2021

6

Eliminating Tedium

11

Charm++

...
template<typename T> entry void print(T t);
...

extern entry void printer print<std::string>(std::string);
extern entry void printer print<double>(double);
...

...
@entry def print<A>(a: A);
...
printerProxy.print(“hi!”);
printerProxy.print(42.0);
...

EÍR // no registration
// necessary

// need to register all specializations

ENHANCEMENTS

De/serialization Optimizations

12

Identity
aware/finer-

graph packing

Global pointer-
to-offset

optimizations

In-place
message

optimizations

• Effortlessly handles recurrent relationships (doubly-linked graphs)
• Each unique object is packed only once
• Back-references are used for duplicates

• Deserialize POD-types as pointers to an offset within a message buffer
• Retains ownership of the message with a reference-counted pointer
• No overhead for encapsulation
• Charm++ requires an extra copy

• Edit a retained message “in-place” then resend it (e.g., arrays)
• EIR uses a control-flow analysis pass to find “repacking” opportunities

struct array_holder {
val arr: array<double>;
...

ENHANCEMENTS

11

12

10/24/2021

7

What are in-place optimization opportunities?

@overlap for (var block = 0; block < nBlocks; block += 1) {
when inputA(_ == block, blockA: array<double, 2>),

inputB(_ == block, blockB: array<double, 2>) => {
...
if (...) {

self@[...].inputA(block + 1, blockA);
self@[...].inputB(block + 1, blockB);

}
}

}

13

receive via
pointer-to-offset

send to amenable
entry method

unused after
send

ENHANCEMENTS

Effects of In-Place Optimizations

14

27276.83769

47745.39107

13011.52959

21294.25498

0

10000

20000

30000

40000

50000

60000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

TI
M

E
(M

S)

TILE SIZE

EÍR, Cannon's Matmul, Comm-Only
(4 Physical Nodes, 169PEs)

non-smp, non-ip

non-smp, ip

Matches Standard Charm++
(-fno-inplace EÍR)

ENHANCEMENTS

13

14

10/24/2021

8

SDAG (Structured Dagger)
SDAG is used to represent parallel control flow in Charm++
◦ Expresses the dependencies between messages and local control flow
◦ Can direct progress through phases of a computation

15

for (it = 0; it < numIts; it += 1) {
serial { update_neighbors(...); }
for (imsg = 0; imsg < numNeighbors; imsg += 1) {

when recv_update(...) { ... }
}
serial { check_and_compute(...); }
if (it != (numIts – 1)) {

when recv_iter_summary(...) { ... }
}

}
when recv_total_summary(...) { ... }

ENHANCEMENTS

Extending SDAG with Mailboxes
Mailboxes enable Erlang-like selective receives:
◦ Blend pattern matching and message processing (rich predicates!)
◦ SDAG, only one reference number per “when” clause

16

entry void receive(CMK_REFNUM_TYPE);

entry void run(int nIters) {
serial { this->send(nIters); }
forall [i] (0:(nIters - 1),1) {

forall [j] (0:(CkNumPes() - 1),1) {
when receive [join(i, j)] (CMK_REFNUM_TYPE) {}

}
}

}

@mailbox def receive(it: int, pe: int);

@threaded @entry def run(numIters: int) {
self.send(numIters);
@overlap for (var i = 0; i < numIters; i += 1) {

@overlap for (var j = 0; j < ck::numPes(); j += 1) {
when receive(_ == i, _ == j) => ();

}
}

}[0-255] Range Unconstrained

15

16

10/24/2021

9

Example Pattern Matching
trait response<T> { ...}

class pong with response<string> {...}

class ping with response<string> {...}

@mailbox def receive(src: int, msg: response<string>);

@threaded @entry def exchange() {
@overlap for (var it = 0; it < ck::numPes(); it += 1) {

await all {
when receive(src, msg: ping) if src == it => { ... }
when receive(src, msg: pong) if src == it => acknowledge(src, msg);

}
}
self[@]contribute(...);

}

Only matches
ping/pong
responses

17ENHANCEMENTS

Other Mailbox Features

18

Compound
Clauses

Await All

“Overlapped”
Execution

when foo(…), bar(…) => { … }

await all {
when foo(…) => {…}
when bar(…) => {… when baz(…) => {…}}

}

Only the ordering of baz after bar is enforced,
foo can execute between or after them.

ENHANCEMENTS

17

18

10/24/2021

10

Sections
Sections facilitate efficient operations over subsets of collectives
Their current Charm++ API is constrained:
◦ Explicit, centralized creation
◦ User-managed “cookies” for correctness

Work is underway to improve sections in Charm++,
◦ Integrating innovations from Charm4py:

◦ Elimination of “cookies”
◦ Distributed section creation

19

compiler
support can

help too!

ENHANCEMENTS

Sections (cont.)

self@[0:2:n][@]contribute(data, int::+, cb);

20

CkGetSectionInfo(cookie, ...); // section cookie must be updated each time
CProxySection_...::contribute(sizeof(data), &data, CkReduction::sum_int, cookie, cb);

RTS
registered
functions

Goals

ENHANCEMENTS

◦ Eliminate section registration, “create” sections at the call-site
◦ Statically-typed callbacks and combiner function
◦ Enable using lambda functions for these parameters:

self[@]contribute(..., (i, j) => ..., i => println(`the result was $i!`));

19

20

10/24/2021

11

Other Features of EÍR
Rich support for generic types,
◦ Support for parameter packs and tuple manipulation
◦ Swift-like “where” clauses to enforce constraints on generics
◦ Like “std::enable_if” or “requires” in C++20 (i.e., SFINAE)

Operator overloading,
◦ Objects can be used as “functors”
◦ Arbitrary identifiers for infix operators (ranges by “1 to n”)

Pattern matching,
◦ User-defined “extractor” methods (like Scala)
◦ Optional values can be matched with:

“case some(x) => …” or “case none() =>”

21RESULTS

Other Features of EÍR (cont.)
Features woven together to form a rich STL that…
◦ Also includes parallel abstractions:

◦ Distributed Hash Tables and Tuple Spaces
◦ Channels
◦ Futures

Written various mini-apps:
◦ Jacobi’s method in 2D
◦ Cannon’s matrix-matrix multiplication

22

21

22

10/24/2021

12

Results (cont.)
Performance typically matches or exceeds Charm++:
◦ Gains usually in the 5~20% range...
◦ Unless larger optimizations are involved (e.g., Cannon’s)
◦ Complexities in message delivery preclude larger gains
◦ Required to facilitate mailboxes, lightweight sections, etc.

Thus, we have recently focused on micro-benchmarking:
◦ Roundtrip “ping pong” time
◦ OSU-style bandwidth

We are “closing the gap” between our infrastructure and Charm++

23RESULTS

Future Work
Aside from correcting the issues mentioned…
◦ Limitations of the C++ backend, microbenchmark performance...

We have many ideas for future work with/on our infrastructure:
◦ Write more mini-apps: LeanMD, BarnesHut, HPCCG, etc.
◦ Integrate DSLs from Charm’s “back-catalog” (DivCon and MSA)
◦ Expose a textual representation for EÍR

◦ Perhaps an XML-based AST like Omni’s XcodeML?

◦ Ensure EÍR’s generated code is robustly migratable
◦ Provide facilities for using hardware accelerators

24FUTURE WORK

23

24

10/24/2021

13

Conclusions
EÍR, a compiler framework to build DSLs based on Charm++
◦ Optimizations for message packing
◦ Enhanced message processing via mailboxes
◦ Offers “lightweight” sections

Plan to publish soon – more to say then!

Please reach out if you’re interested!

25CONCLUSIONS

26

25

26

10/24/2021

14

What’s in the Box?
◦ Lightweight sections…

◦ Creation, reductions, and multicasts

◦ Mailboxes
◦ Futures
◦ Aggregations
◦ Hashing
◦ De/serialization
◦ Migratable threading primitives
◦ And… more!

27

Code Generation in EÍR
Like Charj before it, EÍR is written in Scala and targets C++:
◦ Competitive performance
◦ Trivializes interoperability with Charm++ libraries

◦ EÍR's C++ backend currently has some limitations (e.g., generics and
lambdas) compared to targeting a purpose-built backend (e.g., MLIR)

◦ However, with additional effort, we can overcome them

28

EÍR DSL
Passes

Common
Passes

C++ Code
Generation

27

28

