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Recap: What does CharmMPI do?
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•Create MPI ranks as user-level threads that coexist in OS processes
• Within-node communication is low-latency and high-bandwidth
• Idle ranks can yield to other ULTs with work to do

•Allocate each rank’s call stack and heap at a deterministic location
• Can migrate ranks across network or snapshot them to disk

•Measure time spent in each rank & redistribute them to balance load
• Allows iterations to complete faster, decreasing total run time



How is CharmMPI’s functionality achieved?
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•CharmMPI is a Charm++ program and the ULTs are chares
•ULTs provided by uFcontext, using boost.context ASM underneath
•Deterministic memory positioning provided by Isomalloc

• Call stacks allocated manually as part of startup procedure
• Runtime heap operations (malloc/free, new/delete) intercepted

•What else is part of a program’s state?



The Privatization Problem
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int rank_global;

void print_ranks(void)
{
  MPI_Comm_rank(MPI_COMM_WORLD, &rank_global);
  MPI_Barrier(MPI_COMM_WORLD);
  printf("rank: %d\n", rank_global);
}

•Time-consuming and difficult to fix codebase manually
•Automated solution preferable



TLSglobals (2010)
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•Thread-Local Storage Segment Pointer Swapping
• Add thread_local tag to global variable declarations and definitions (but not 

accesses)
• Supported with migration on Linux (GCC, Clang 10+), macOS (Apple Clang, 

GCC)
• O(1) context switching cost
• Good balance of ease of use, portability, and performance
• Still requires manual changes, just not intensive refactoring
• Clang/libtooling-based C/C++ automated transformer created at Charmworks
• Supported on x86/x86_64, AArch64 and POWER support in progress (2021)



PIEglobals (2020)
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•Position-Independent Executable (PIE) Runtime Relocation
• ampicc, ampif90, etc. build the MPI program as a PIE shared object
• PIE binaries store and access globals relative to instruction pointer
• CharmMPI processes the shared object at program start:

• dlopen: dynamically load shared object once per OS process

• Walk ELF (Executable and Linkable Format) header: list program segments in memory

• Duplicate code & data segments for each virtualized rank w/ Isomalloc

• Update PIC (Position-Independent Code) relocations to point to new privatized addresses

• Calculate privatized location of entry point for each rank and call it

• Result: global variables become privatized and migratable with no changes



PIEglobals: Advancements in 2021
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• Shared objects opened once per logical node instead of per rank
• Critical to avoid crashes in glibc due to interaction of dlopen and pthreads

•Automatically combined with TLSglobals whenever available
• Prevents issues due to preexisting thread_locals and system libraries with TLS

•Added rank tracking infrastructure to AMPI’s Charm implementation
• Necessary for user-defined reductions: function pointers differ by rank

•Validated on ARM and POWER architectures
•Merged to Charm’s main branch



CharmMPI with PIEglobals: Successes

8

•miniGhost
•Nekbone
•MFEM
• Laghos
•Continued collaboration with major ISV on an industrial FEA code



CharmMPI with PIEglobals: Frontiers
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•OpenFOAM
•mpi4py



CharmMPI Development History
• Adaptive MPI began as research in PPL @ UIUC around 2001

• Continued work until present, with more focused effort beginning in 2014

• Charmworks awarded DOE SBIR in 2017
• Phase II grant concluded in 2021

• Made robust, standard compliant, and improved performance
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What steps were originally needed to use AMPI?
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•Edit your code’s build system to point toolchain to ampicc full path, or 
pass as parameters to configure step
•Handle globals
•Handle entry point

• C/C++: #include "mpi.h" before main
• Fortran: Rename program XYZ to subroutine MPI_Main

•Want migration and load balancing? Don’t forget to link with -module 
CommonLBs -memory isomalloc (editing Makefile, or passing 
parameters)
•Don’t forget to run with +isomalloc_sync ++no-va-randomization or 

migration could fail
• Learn how to use charmrun



CharmMPI’s Ease of Use Improvements
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•Goal: less to explain, less to remember, fewer barriers to entry
•ampicc automatically passes -memory isomalloc -module CommonLBs
•+isomalloc_sync on by default and implementation cleaned up
•Disable ASLR by default: keep code pointers on call stack deterministic
•Added directory containing unadorned mpicc, for use like Modules

• cd "netlrts-linux-x86_64/bin/ampi" && export PATH="$(pwd):$PATH"

•Added AMPI_BUILD_FLAGS environment variable to simplify passing 
-tlsglobals, -pieglobals, etc. to ampicc
•PIEglobals can use main as an entry point (C, C++, and Fortran!)
•Added +n argument to charmrun to specify node count directly
•CharmMPI Onboarding Tutorial published

• https://github.com/UIUC-PPL/charm/wiki/CharmMPI-Onboarding-Tutorial 

https://github.com/UIUC-PPL/charm/wiki/CharmMPI-Onboarding-Tutorial


CharmMPI’s Robustness Improvements

13

•Portability with Cray, macOS, shared objects, Clang solidified
•Replaced Isomalloc’s bespoke mempool with glibc’s dlmalloc
• Isomalloc rewritten to divide address space by logical unit (MPI rank), 

not Charm processing element (PE), avoiding contention
• Isomalloc now wraps more heap APIs (posix_memalign, aligned_alloc)
• Isomalloc uses in-place network transfers when available, avoiding 

memory usage spikes during migration and potential out-of-memory
•Use a Fortran entry point for Charm when running Fortran code
•AMPI-only build target to specifically tailor Charm++ configuration
• charmc and charmrun now support arguments with spaces
• conv-core, conv-util, conv-partition, conv-ldb, conv-machine, tmgr, 

and hwloc_embedded all combined into one libconverse.a/.so



Case Study: LAMMPS on CharmMPI
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•Upstream replaced unsafe strtok function with custom C++ parsing
•Accepted patch to fix a remaining thread-safety issue in regex parsing
•With above, rank virtualization successful
•Migration faced obstacle of stale stdio.h file handles after migration
• Solution: Intercept & proxy FILE* APIs, reopen and seek at destination
/* mpi.h: */
#include <stdio.h>

FILE* ampi_fopen(const char* filename, const char* mode);
int ampi_fclose(FILE* stream);
size_t ampi_fread(void* ptr, size_t size, size_t nmemb, FILE* stream);
size_t ampi_fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream);
/* ... */
#define fopen ampi_fopen
#define fclose ampi_fclose
#define fread ampi_fread
#define fwrite ampi_fwrite
/* ... */
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