
CharmMPI: From Research
Code to Production Workhorse

Evan Ramos,
Charmworks, Inc.

Recap: What does CharmMPI do?

2

•Create MPI ranks as user-level threads that coexist in OS processes
• Within-node communication is low-latency and high-bandwidth
• Idle ranks can yield to other ULTs with work to do

•Allocate each rank’s call stack and heap at a deterministic location
• Can migrate ranks across network or snapshot them to disk

•Measure time spent in each rank & redistribute them to balance load
• Allows iterations to complete faster, decreasing total run time

How is CharmMPI’s functionality achieved?

3

•CharmMPI is a Charm++ program and the ULTs are chares
•ULTs provided by uFcontext, using boost.context ASM underneath
•Deterministic memory positioning provided by Isomalloc

• Call stacks allocated manually as part of startup procedure
• Runtime heap operations (malloc/free, new/delete) intercepted

•What else is part of a program’s state?

The Privatization Problem

4

int rank_global;

void print_ranks(void)
{
 MPI_Comm_rank(MPI_COMM_WORLD, &rank_global);
 MPI_Barrier(MPI_COMM_WORLD);
 printf("rank: %d\n", rank_global);
}

•Time-consuming and difficult to fix codebase manually
•Automated solution preferable

TLSglobals (2010)

5

•Thread-Local Storage Segment Pointer Swapping
• Add thread_local tag to global variable declarations and definitions (but not

accesses)
• Supported with migration on Linux (GCC, Clang 10+), macOS (Apple Clang,

GCC)
• O(1) context switching cost
• Good balance of ease of use, portability, and performance
• Still requires manual changes, just not intensive refactoring
• Clang/libtooling-based C/C++ automated transformer created at Charmworks
• Supported on x86/x86_64, AArch64 and POWER support in progress (2021)

PIEglobals (2020)

6

•Position-Independent Executable (PIE) Runtime Relocation
• ampicc, ampif90, etc. build the MPI program as a PIE shared object
• PIE binaries store and access globals relative to instruction pointer
• CharmMPI processes the shared object at program start:

• dlopen: dynamically load shared object once per OS process

• Walk ELF (Executable and Linkable Format) header: list program segments in memory

• Duplicate code & data segments for each virtualized rank w/ Isomalloc

• Update PIC (Position-Independent Code) relocations to point to new privatized addresses

• Calculate privatized location of entry point for each rank and call it

• Result: global variables become privatized and migratable with no changes

PIEglobals: Advancements in 2021

7

• Shared objects opened once per logical node instead of per rank
• Critical to avoid crashes in glibc due to interaction of dlopen and pthreads

•Automatically combined with TLSglobals whenever available
• Prevents issues due to preexisting thread_locals and system libraries with TLS

•Added rank tracking infrastructure to AMPI’s Charm implementation
• Necessary for user-defined reductions: function pointers differ by rank

•Validated on ARM and POWER architectures
•Merged to Charm’s main branch

CharmMPI with PIEglobals: Successes

8

•miniGhost
•Nekbone
•MFEM
• Laghos
•Continued collaboration with major ISV on an industrial FEA code

CharmMPI with PIEglobals: Frontiers

9

•OpenFOAM
•mpi4py

CharmMPI Development History
• Adaptive MPI began as research in PPL @ UIUC around 2001

• Continued work until present, with more focused effort beginning in 2014

• Charmworks awarded DOE SBIR in 2017
• Phase II grant concluded in 2021

• Made robust, standard compliant, and improved performance

10

What steps were originally needed to use AMPI?

11

•Edit your code’s build system to point toolchain to ampicc full path, or
pass as parameters to configure step
•Handle globals
•Handle entry point

• C/C++: #include "mpi.h" before main
• Fortran: Rename program XYZ to subroutine MPI_Main

•Want migration and load balancing? Don’t forget to link with -module
CommonLBs -memory isomalloc (editing Makefile, or passing
parameters)
•Don’t forget to run with +isomalloc_sync ++no-va-randomization or

migration could fail
• Learn how to use charmrun

CharmMPI’s Ease of Use Improvements

12

•Goal: less to explain, less to remember, fewer barriers to entry
•ampicc automatically passes -memory isomalloc -module CommonLBs
•+isomalloc_sync on by default and implementation cleaned up
•Disable ASLR by default: keep code pointers on call stack deterministic
•Added directory containing unadorned mpicc, for use like Modules

• cd "netlrts-linux-x86_64/bin/ampi" && export PATH="$(pwd):$PATH"

•Added AMPI_BUILD_FLAGS environment variable to simplify passing
-tlsglobals, -pieglobals, etc. to ampicc
•PIEglobals can use main as an entry point (C, C++, and Fortran!)
•Added +n argument to charmrun to specify node count directly
•CharmMPI Onboarding Tutorial published

• https://github.com/UIUC-PPL/charm/wiki/CharmMPI-Onboarding-Tutorial

https://github.com/UIUC-PPL/charm/wiki/CharmMPI-Onboarding-Tutorial

CharmMPI’s Robustness Improvements

13

•Portability with Cray, macOS, shared objects, Clang solidified
•Replaced Isomalloc’s bespoke mempool with glibc’s dlmalloc
• Isomalloc rewritten to divide address space by logical unit (MPI rank),

not Charm processing element (PE), avoiding contention
• Isomalloc now wraps more heap APIs (posix_memalign, aligned_alloc)
• Isomalloc uses in-place network transfers when available, avoiding

memory usage spikes during migration and potential out-of-memory
•Use a Fortran entry point for Charm when running Fortran code
•AMPI-only build target to specifically tailor Charm++ configuration
• charmc and charmrun now support arguments with spaces
• conv-core, conv-util, conv-partition, conv-ldb, conv-machine, tmgr,

and hwloc_embedded all combined into one libconverse.a/.so

Case Study: LAMMPS on CharmMPI

14

•Upstream replaced unsafe strtok function with custom C++ parsing
•Accepted patch to fix a remaining thread-safety issue in regex parsing
•With above, rank virtualization successful
•Migration faced obstacle of stale stdio.h file handles after migration
• Solution: Intercept & proxy FILE* APIs, reopen and seek at destination
/* mpi.h: */
#include <stdio.h>

FILE* ampi_fopen(const char* filename, const char* mode);
int ampi_fclose(FILE* stream);
size_t ampi_fread(void* ptr, size_t size, size_t nmemb, FILE* stream);
size_t ampi_fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream);
/* ... */
#define fopen ampi_fopen
#define fclose ampi_fclose
#define fread ampi_fread
#define fwrite ampi_fwrite
/* ... */

evan@hpccharm.com

