“ CharmMPI: From Research
, Code to Production Workhorse

Evan Ramos,
Charmworks, Inc.

5 TN

Recap: What does CharmMPI do?

* Create MPI ranks as user-level threads that coexist in OS processes
* Within-node communication is low-latency and high-bandwidth
* |dle ranks can yield to other ULTs with work to do
* Allocate each rank’s call stack and heap at a deterministic location
e Can migrate ranks across network or snapshot them to disk
* Measure time spent in each rank & redistribute them to balance load
* Allows iterations to complete faster, decreasing total run time

MPI: P=4 AMPI: P=4, VP=16
o(1|2]3
0 1
4 (5|6 |7
819 |10|11
2 3
12113114 |15

12l Charmworks

How is CharmMPI’s functionality achieved?

* CharmMPI is a Charm++ program and the ULTs are chares
* ULTs provided by uFcontext, using boost.context ASM underneath

* Deterministic memory positioning provided by Isomalloc
e Call stacks allocated manually as part of startup procedure
* Runtime heap operations (malloc/free, new/delete) intercepted

* What else is part of a program’s state?

121 Charmworks

The Privatization Problem

int rank global;

void print ranks(void)

{
MPI Comm rank (MPI COMM WORLD, &rank global) ;

MPI Barrier (MPI_COMM WORLD) ;
printf ("rank: %d\n", rank global) ;
}

* Time-consuming and difficult to fix codebase manually
e Automated solution preferable

121 Charmworks

TLSglobals (2010)

* Thread-Local Storage Segment Pointer Swapping

* Add thread local tag to global variable declarations and definitions (but not
accesses)

e Supported with migration on Linux (GCC, Clang 10+), macOS (Apple Clang,
GCC)

* O(1) context switching cost

* Good balance of ease of use, portability, and performance

* Still requires manual changes, just not intensive refactoring

* Clang/libtooling-based C/C++ automated transformer created at Charmworks

 Supported on x86/x86_64, AArch64 and POWER support in progress (2021)

12l Charmworks

PlIEglobals (2020)

* Position-Independent Executable (PIE) Runtime Relocation
* ampicc, ampif90, etc. build the MPI program as a PIE shared object
* PIE binaries store and access globals relative to instruction pointer

* CharmMPI processes the shared object at program start:

* dlopen: dynamically load shared object once per OS process
Walk ELF (Executable and Linkable Format) header: list program segments in memory
Duplicate code & data segments for each virtualized rank w/ Isomalloc
Update PIC (Position-Independent Code) relocations to point to new privatized addresses
Calculate privatized location of entry point for each rank and call it

* Result: global variables become privatized and migratable with no changes

12l Charmworks 6

PlEglobals: Advancements in 2021

* Shared objects opened once per logical node instead of per rank
* Critical to avoid crashes in glibc due to interaction of dlopen and pthreads

* Automatically combined with TLSglobals whenever available
* Prevents issues due to preexisting thread locals and system libraries with TLS

* Added rank tracking infrastructure to AMPI’s Charm implementation
* Necessary for user-defined reductions: function pointers differ by rank

 Validated on ARM and POWER architectures
* Merged to Charm’s main branch

121 Charmworks

CharmMPI with PIEglobals: Successes

* miniGhost

* Nekbone

* MFEM

* Laghos

* Continued collaboration with major ISV on an industrial FEA code

121 Charmworks

CharmMPI with PIEglobals: Frontiers

* OpenFOAM
* mpidpy

12l Charmworks

CharmMPI Development History

* Adaptive MPI began as research in PPL @ UIUC around 2001

* Continued work until present, with more focused effort beginning in 2014

e Charmworks awarded DOE SBIR in 2017

* Phase Il grant concluded in 2021
* Made robust, standard compliant, and improved performance

121 Charmworks

10

What steps were originally needed to use AMPI?

* Edit your code’s build system to point toolchain to ampicc full path, or
pass as parameters to configure step
* Handle globals

* Handle entry point
o C/C++: #include "mpi.h" before main
e Fortran: Rename program XYZ to subroutine MPI|_Main

* Want migration and load balancing? Don’t forget to link with -module
CommonlLBs -memory isomalloc (editing Makefile, or passing
parameters)

* Don’t forget to run with +isomalloc_sync ++no-va-randomization or
migration could fail

e Learn how to use charmrun

121 Charmworks 11

CharmMPI’s Ease of Use Improvements

* Goal: less to explain, less to remember, fewer barriers to entry
* ampicc automatically passes -memory isomalloc -module CommonlLBs
* +isomalloc_sync on by default and implementation cleaned up
* Disable ASLR by default: keep code pointers on call stack deterministic

* Added directory containing unadorned mpicc, for use like Modules
* cd "netlirts-linux-x86_64/bin/ampi" && export PATH="S(pwd):SPATH"

* Added AMPI|_BUILD FLAGS environment variable to simplify passing
-tIsglobals, -pieglobals, etc. to ampicc

* PIEglobals can use main as an entry point (C, C++, and Fortran!)

* Added +n argument to charmrun to specify node count directly

* CharmMPI Onboarding Tutorial published
 https://github.com/UIUC-PPL/charm/wiki/CharmMPI-Onboarding-Tutorial

121 Charmworks 12

https://github.com/UIUC-PPL/charm/wiki/CharmMPI-Onboarding-Tutorial

CharmMPI’s Robustness Improvements

* Portability with Cray, macOS, shared objects, Clang solidified

* Replaced Isomalloc’s bespoke mempool with glibc’s dimalloc

* Isomalloc rewritten to divide address space by logical unit (MPI rank),
not Charm processing element (PE), avoiding contention

* Isomalloc now wraps more heap APIs (posix_memalign, aligned_alloc)

* Isomalloc uses in-place network transfers when available, avoiding
memory usage spikes during migration and potential out-of-memory

* Use a Fortran entry point for Charm when running Fortran code

* AMPI-only build target to specifically tailor Charm++ configuration

e charmc and charmrun now support arguments with spaces

* conv-core, conv-util, conv-partition, conv-ldb, conv-machine, tmgr,
and hwloc_embedded all combined into one libconverse.a/.so

12l Charmworks 13

121 Charmworks

Case Study: LAMMPS on CharmMPI

* Upstream replaced unsafe strtok function with custom C++ parsing

* Accepted patch to fix a remaining thread-safety issue in regex parsing
* With above, rank virtualization successful

* Migration faced obstacle of stale stdio.h file handles after migration

* Solution: Intercept & proxy FILE* APIs, reopen and seek at destination

/* mpi.h: */
#include <stdio.h>

FILE* ampi fopen(const char* filename, const char* mode) ;

int ampi_ fclose (FILE* stream);

size t ampi fread(void* ptr, size t size, size_t nmemb, FILE* stream);

size_t ampi fwrite(const void* ptr, size_ t size, size_t nmemb, FILE* stream);
/* ... */

#define fopen ampi fopen

#define fclose ampi fclose

#define fread ampi fread

#define fwrite ampi fwrite

/[* ... */

14

~N

evan@hpccharm.com

12l Charmworks

5 TN

