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Quinoa

● Quinoa developed by Jozsef Bakosi at Los Alamos National Lab

● Original CFD application developed natively in Charm++

● Open Source license

● http://quinoacomputing.org/

Long Term Goal:

● Combined CFD with Structural Mechanics
○ Parallel collision detection for Mesh-to-Mesh transfer
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ExaM2M: Scalable Mesh-to-Mesh Transfer

● Library for performing mesh-to-mesh transfers on unstructured meshes

● Sequential algorithm developed by Jozsef Bakosi

● Parallel version being implemented in Charm++ as a collaborative effort
○ Utilizes an existing collision detection library in Charm++

3Nakahashi, K., Togashi, F., & Sharov, D. (2000). Intergrid-Boundary Definition Method for 
Overset Unstructured Grid Approach AIAA Journal, 38(11), 2077-2084.



Basic Algorithm

1. Setup mesh data
○ Standalone application: read meshes from file, partition with Zoltan

○ Library: receive mesh data from calling application

○ Mesh data stored in a Worker chare array (virtualized)

2. Pass mesh data to Charm++ collision detection library
○ Source of the transfer submits bounding boxes for each tetrahedron

○ Destination of the transfer submits bounding boxes containing its vertices

○ Returns a list of potential collisions

3. Distribute potential collision list to destination mesh

4. Send vertices that potentially collide to the source mesh

5. Check for actual collisions and interpolate solution
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Phase 1 - Broad Phase

● Find potential collisions by colliding 

bounding boxes

● General case - Handled by library

● Fast to determine potential collisions

Two-Phase Collision Detection

Phase 2 - Narrow Phase

● Weed out false positives from Phase 1

● Application specific

● Fewer collisions to check due to Phase 1
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Collision Detection Library

● Detect collisions (intersections) between objects scattered across processors

● Finds applications in many domains: computer graphics, computational physics, 

robotics, computer aided design etc.

● In our case we are colliding the tetrahedrons of the source mesh with vertices of the 

destination mesh
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Step One: Populate Voxels

● The collision detection library is based on a 

sparse grid of voxels

● A voxel is a 3D cell in a regular, axis-aligned, 

sparse grid

● Voxels are chare array elements that utilize 

demand creation -- They are created in 

step 1 of the algorithm as objects are 

added
No objects mean no voxel
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Step Two: Serial Collision Detection

● Voxels run serial collision detection (using 

bounding boxes) on the objects they know
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Step Three: Return List of Potential Collisions

● Reduction concatenates a global list of 

possible collisions to return to caller for 

further processing
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ExaM2M - Narrow Phase Collision Processing

1. Distribute collisions back to destination mesh

2. Each destination mesh chare distributes its own 

potential collisions to source mesh -- may have 

multiple potentials per source chare

3. Source mesh determines actual collisions, 

interpolates solution, and returns results to the 

destination mesh
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Initial Results

Two 48 million cell meshes

Runs on Cori up to 2048 cores
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Initial Results - Centralized Collision Reporting
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Initial Results - Centralized Collision Reporting
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Dealing with the Bottleneck

● Original use case for collision detection library expected very 

few collisions

● For mesh-to-mesh, many times we expect a lot of overlap
○ Results in a costly reduction, and serial processing of collisions

○ Consumers of this data are distributed, no need to centralize it

Solution: Keep results distributed across PEs, with each PE 

reporting to the relevant mesh chares
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Initial Results

22



Additional Milestones

● Converted ExaM2M to a library
○ Completion detection still W.I.P.

● Tested within Quinoa
○ Need to add support for multiple iterations

○ Need to add support for multiple meshes

○ Partially asynchronous operation - want fully asynchronous eventually
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Future Work

● Large scale tests with Quinoa

● Diagnose and address narrow phase performance issues

● More robust synchronization within the library

● Load balancing w.r.t. (persistent) voxels
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