
A synthetic tool for analysing adaptive 
workloads

Authors:  
Iker Martín-Álvarez
José I. Aliaga
María Isabel Castillo
Sergio Iserte
Rafael Mayo



Outline

Outline:
- Motivation
- Synthetic application

- Computation module
- Reconfiguration module
- Methric gatherer module
- Configuration file parameters

- Results
- Total execution times
- Malleability times
- Iteration times

- Conclusions
- Future work



Motivation (I)



Motivation (II)



Synthetic application



Synthetic application

Application composed of three modules:
- Computation module
- Reconfiguration module
- Metric gatherer module

and a configuration file



Computation module



Computation module - Computation procedures

Computation procedures:
- Compute-bound: Montecarlo Pi estimation
- Memory-bound: Matrix-vector multiplication
- Process number does not affect procedure 

final time (T_op)

Procedure 
time (T_op)

Iteration 
time (T_it)

Procedures 
per iteration 
(T_it)/(T_op)



Computation module - Communication procedures

Communication procedures:
- Point to point (MPI_Send/Recv)
- Collective one-to-all (MPI_Bcast)
- Collective all-to-all (MPI_Alltoall)
- Reduction (MPI_Reduce)

Communications cost:
- N bytes

Point to point 
protocol

All-to-all 
protocol



Reconfiguration module



Reconfiguration module - Steps (I)

Under development



job_info:
- Node number
- Core number
- Node names

Reconfiguration module - Steps (II)

Under development



Reconfiguration module - Steps (III)

Forced resize



Balanced-mapping Compact-mapping

Reconfiguration module - Physical mappings



Reconfiguration module - Process spawn



Data redistribution - Basics

Distribution from 4 to 10 processes of 
100 elementsDistribution of elements from parent P0 to its 

children C0, C1 and C2

Based on MPI_Alltoallv



Data redistribution - Asynchronous (I)

Additional 
contribution:

Allow asynchronous 
data redistribution

SR = Synchronous 
redistribution

AR = Asynchronous 
redistribution



Data redistribution - Asynchronous (II)

Asynchronous procedures:
- Point to point (MPI_Isend/Irecv)
- Collective all-to-all Parents (MPI_Ialltoallv)
- Collective all-to-all Children (MPI_Ialltoallv)
- Pthreads (MPI_Alltoallv)

MPI Non-blocking 
Primitives



Data redistribution - Asynchronous (II.1)

Asynchronous procedures:
- Point to point (MPI_Isend/Irecv)
- Collective all-to-all Parents (MPI_Ialltoallv)
- Collective all-to-all Children (MPI_Ialltoallv)
- Pthreads (MPI_Alltoallv)



Data redistribution - Asynchronous (III)

Stage 1

Stage 2



Metric gatherer module



Metric gatherer module

Based on MPI_Wtime

Also stored with 
each iteration:

- Number of 
Op executed

- If AR is being 
performed or 
not



Configuration files



Configuration file - General



Configuration file - Malleability



Configuration file - Groups (I)



Configuration file - Groups (II)

Real_It = T_it * FactorS

Real_It = 4 * 0.5 = 2s

Real_It = 4 * 0.1 = 0.4s



Synthetic application

Application composed of three modules:
- Computation module
- Reconfiguration module
- Metric gatherer module

and a configuration file



Results



- Two 10-core processor Intel Xeon 4210
- Two servers (40 cores)
- 11 Iterations of 4s or 0.4s per execution
- 10MB iteration communication
- One reconfiguration per execution
- FactorS is applied to have a perfect SpeedUp
- Both physical mappings
- Fully SR or AR of 1GB
- Pthreads option
- Mean of 5 executions

Results - Experiments



Results - Total execution times (I)

Compact mapping T_it = 4 seconds

Shrinking with AR

Expanding with SR

Oversubscription when more 
than 20 threads in one node.

80 processes, 120 threads in AR



Results - Total execution times (II)

Balanced mapping T_it = 4 seconds

Shrinking with AR

Expanding with SR

Oversubscription when more 
than 20 threads.



Results - Final execution times (III)

Compact mapping T_it = 0.4 seconds

Shrinking with AR

Expanding with SR

Oversubscription when more 
than 20 threads.



Results - Final execution times (IV)

Balanced mapping T_it = 0.4 seconds

Shrinking with AR

Expanding with SR

Oversubscription when more 
than 20 threads.



Results - Reconfiguration times (I)

Compact mapping T_it = 4 seconds Spawning processes is the 
most expensive operation

AR is always more 
expensive than SR



Results - Reconfiguration times (II)

Balanced mapping T_it = 4 seconds Spawning processes is the 
most expensive operation

AR is always more 
expensive than SR

Better performance than Cm: 
Oversubscription appears in 
less configurations 



Results - Reconfiguration times (III)

Compact mapping T_it = 0.4 seconds Spawning processes is the 
most expensive operation

AR is always more 
expensive than SR

AR is better for lower T_it 
values



Results - Reconfiguration times (IV)

Balanced mapping T_it = 0.4 seconds Spawning processes is the 
most expensive operation

AR is always more 
expensive than SR

AR is better for 
lower T_it values

Better performance than Cm: 
Oversubscription appears in 
less configurations 



Results - Iteration times under reconfiguration (I)

Compact mapping T_it = 4 seconds

Oversubscription 
reduces iteration 

performance 
drastically



Results - Iteration times under reconfiguration (II)

Compact mapping T_it = 0.4 seconds

Oversubscription 
reduces iteration 

performance 
drastically



Conclusions
&

Future work



Conclusions

Adaptable synthetic application for 
expanding, shrinking or migrating

Application allows to study which 
reconfiguration mechanism is preferred 

depending on the job state

SR when expanding the job, AR when 
shrinking

Oversubscription reduces performance for 
AR and SR



Allow users to indicate computational cost 
for iterations

Allow more complex data redistributions

Allow dynamical SDR & ADR for each 
reconfiguration in the same execution

Future Work (I)



Allow emulation of non-iterative applications

Resemble real application from traces

Communicate with RMS

Future Work (II)



A synthetic tool for analysing adaptive 
workloads

Authors:  
Iker Martín-Álvarez (martini@uji.es)
José I. Aliaga
María Isabel Castillo
Sergio Iserte
Rafael Mayo

mailto:martini@uji.es

