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Growth in specialized workloads

Variety of data-centric hardware required

Separate programming models and toolchains for each 
architecture are required today

Software development complexity limits freedom of 
architectural choice

Programming Challenges
for Multiple Architectures
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Freedom to Make Your Best Choice
 Choose the best accelerated technology. The software doesn’t decide 

for you 

Realize all the Hardware Value
 Performance across CPU, GPUs, FPGAs, and other accelerators

Develop & Deploy Software with Peace of Mind
 Open industry standards provide a safe, clear path to the future
 Compatible with existing languages and programming models 

including C++, Python, SYCL, OpenMP, Fortran, and MPI

oneAPI
One Programming Model for Multiple 
Architectures and Vendors

Industry Initiative Intel
Product
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Middleware & Frameworks

Application Workloads Need Diverse Hardware
oneAPI Industry 
Initiative
Break the Chains of Proprietary Lock-in

Open to promote community and industry 
collaboration

Enables code reuse across architectures 
and vendors

API-Based ProgrammingDirect Programming

Low-Level Hardware Interface

Math Threading DPC++ 
Library

Analytics/
ML DNN ML Comm

Video Processing

Libraries

Data Parallel C++

oneAPI Industry Specification

The productive, smart path to freedom for accelerated 
computing from the economic and technical burdens of 
proprietary programming models

Visit oneapi.com for more details

CPU GPU FPGA Other accel.
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.
A cross-architecture language 

based on C++ and SYCL 
standards

Powerful libraries designed 
for acceleration of domain-

specific functions

Low-level hardware 
abstraction layer 



Why is NAMD adopting oneAPI?

• Support upcoming exascale computers: ANL Aurora (Intel)

• oneAPI / DPC++ provides advantages
- Modern C++ interface to GPU devices

- Host-side code is much simpler than OpenCL

- Same data structure definitions for both host and device

- DPC++ incorporates open-standard SYCL with community extensions

- Code portability across various hardware targets: CPU, GPU, FPGA
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NAMD execution flow

• 90%: Non-bonded forces, short-range cutoff

• 5%: Long-range electrostatics, gridded (e.g. PME)

• 2%: Bonded forces (bonds, angles, etc.)

• 2%: Correction for excluded interactions

• 1%:Integration, constraints, thermostat, barostat

Intel Confidential

force
calculation

update
coordinates
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Improve Parallelism: Decompose Data and Work

• Atoms are decomposed into fixed volume patches
within the system

• Forces that move atoms are calculated in parallel at 
each step between adjacent patches

• Work decomposition into compute objects creates 
much greater amount of parallelization, facilitates 
measurement-based load balancing with Charm++

• Migrate atoms to adjacent patches, updating domain 
decomposition after every cycle (e.g., 20 steps)
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Spatial decomposition of
atoms into patches

Work decomposition of
patch interactions



NAMD Decomposes Force Terms into
Fine-grained Objects for Scalability
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NAMD has a LOT of CUDA code
• Start oneAPI / DPC++ porting with stable code base (version 2.14)

• NAMD 2.14 contains:
- 38 C/h source files for the CUDA implementation (16K lines)

- 8 *.cu files (6.8K lines)

• For example, porting the non-bonded force term to DPC++
- Most computationally intensive part of the overall force calculation

- 13 files (3 .cu, 4 .C, 6 .h), 7K lines

- 11 kernels
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How does DPC++ differ from CUDA?

• Can provide what each thread will execute in parallel as a regular C++ function

• Uses C++ exceptions to catch errors (try-catch block)

• Memory management & transfers
- Asynchronous by default

- Associated with a SYCL queue (including allocations/frees)

• Shared memory allocations → local memory accessors (created before kernel invocation)

• Does not assume a certain SIMD width (warp and sub-group)
- Should generalize warp-based mechanisms

- Can enforce a sub-group size with [[reqd_sub_group_size(SIZE)]]
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Accelerated Development with DPCT

• Utilized Intel® DPC++ Compatibility Tool (DPCT) to accelerate code 
development

• Started with porting the CUDA implementation
- DPCT saves > 80% of code porting effort

- For example, threadIdx.x → ndItem.get_local_id(2)

• Provides a good source to practice DPC++ syntax
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Porting Strategy
• We used a divide-and-conquer strategy, by using preprocessor switches to 

decouple the components in the CUDA code
- Significantly reduces development and debugging complexity

• Separated components include
- Non-bonded force & device utilities

- Bonded force

- PME

• Utilized oneDPL to use C++17 parallel STL sort and scan operations on 
the offload device
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DPC++ Offloading of the Force Computations
• Successful DPC++ offloading of NAMD to:

- Intel® Xeon® CPU

- Intel Gen9 integrated graphics

- Intel DG1 and ATS discrete graphics

• Enabled multi-GPU and multi-node scalability with DPC++

• Includes implementation of DPC++ offload code management in NAMD
- Interface with Charm++

- Perform data management (transfer and storage)

- Multiple CPU threads offloading to multiple DPC++ devices

• Validated benchmarks: Tiny (512 atoms), ApoA1 (90K), F1-ATPase (328K), STMV (1M)
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Offloading PME with DPC++

• Completed porting of both PME code paths
- PMEOffload (Jim), usePMECUDA (Antti-Pekka)

- First pass with DPCT, manual updates for warp intrinsics & atomics

- Replaced cuFFT with oneMKL FFT

• Validated correctness with single GPU (Gen9, ATS) and CPU offload
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DPC++ Improves Vectorization

• Using flexible vector width optimization towards performance 
portability to various architectures

• Changed use of CUDA warp primitives to generalized code 
supporting DPC++ sub-groups for efficient vector computation on 
different target architectures
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• Make the DPC++ implementation available to NAMD community

- Merge into the main public repository – targeting end-of-year

• Port NAMD GPU-resident code path (NAMD 3.0) to DPC++

• Use Intel® Vtune Profiler and Intel® Advisor tools to continuously optimize NAMD 
DPC++ for performance on Aurora supercomputer

• Experiment with NAMD DPC++ on NVIDIA and AMD GPUs
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Future Plans



• Chasing bugs in ported large applications from CUDA to DPC++ can 
be involved
- Especially when dealing with large irregular arrays of structures

- Large arrays may be pipelined to multiple kernels and code crashes at later 
stage when numbers become far from the expected value (e.g. NaNs)

- Sometimes we are porting a complex application outside of our domain of 
expertise
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Debugging Challenges



• Code porting mostly involves changing the syntax and library calls
- All/most of the algorithm and result remain the same

- Most/all non kernels code remains intact

• Add utilities to capture kernels’ input/output across languages (DPC++, CUDA)
- Write to a file the input/output data of the kernels in reference language

- Read the data files in the development code and compare the arrays

• Results
- Developed easy to add macros around the kernel call

- Allows the developer to capture the first difference location in code and data
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Proposed Solution
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