@ National
Laboratories

Exceptional

service
in the
national

interest

Optimizing Distributed Load Balancing for
Workloads with Time-Varying Imbalance

Jonathan Lifflander (SN1) Phil B. Miller (IC)
Nicole Slattengren (SNIL) Francesco Rizzi (NGA)
Philippe P. Pébay (NGA) Matt T. Bettencourt™ (NVI)

Based on a paper published at CLUSTER 2021

* Work performed while at SNL NGA = NexGen Analytics, Inc
SNL = Sandia National Labs
SAND2021-6350 -
IC = Intense Computing

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Sandia
What is DARMA? (i) Mo

A toolkit of libraries to support incremental AMT (Asynchronous Many-Task) adoption
in production scientific applications

e hame ———owrption

DARMA/vt Virtual Transport MPI-oriented AMT HPC runtime
DARMA/checkpoint Checkpoint Serialization & checkpointing library
DARMA/detector C++ trait detection Optional C++14 trait detection library
DARMA/LBAF Load Balancing Analysis Python framework for simulating LBs and
Framework experimenting with load balancing strategies
DARMA/checkpoint-analyzer Serialization Sanitizer Clang AST frontend pass that generates

serialization sanitization at runtime

DARMA Documentation: https://darma-tasking.qgithub.io/docs/html/index.htm|

Sandia
Background @ Lmoratories
» Context of AMT development

= MPI has dominated as a distributed-memory programming model (SPMD-style)

= Deep technical and intellectual ecosystem

» Production Sandia applications are developed atop large MPI libraries/toolkits
= e.g., Trilinos (linear solvers, etc.); STK (Sierra ToolKit) for meshing

= There’s little chance that the litany of MPI libraries used by production apps at Sandia will be
rewritten to target an AMT runtime

= Conclusion
= We must coexist and provide transitional AMT runtimes to demonstrate incremental value

Sandia
Motivation @ Laboratories
» Philosophy

= Qur philosophy:

= AMT runtimes must be highly interoperable allowing parts of applications to be incrementally
overdecomposed

= Transition between MPI/AMT must be inexpensive; expect frequent context switches from MPI to
AMT runtime (many times, every timestep!)

= For domain developers:

= Provide SPMD constructs in AMT runtimes for a natural transition while retaining asynchrony
= Coexist with existing diversity of on-node techniques
= CUDA, OpenMP, Kokkos, etc.

= Allow MPI operations to be safely interwoven with AMT execution
= We've found that serialization and checkpointing is a backdoor into introducing AMT libraries

= Paperreference

= J. Lifflander, P. Miller, N. L. Slattengren, N. Morales, P. Stickney and P. P. Pébay, Design and
Implementation Techniques for an MPI-Oriented AMT Runtime, 2020 SC Workshop on Exascale MPI
(ExaMPI), 2020, pp. 31-40, doi: 10.1109/ExaMPI152011.2020.00009

i
P re m I S e S @ LNaaborattllries

= Types of LB strategies

= Centralized
= Send all task graph to a single node and then scatter results
= They don’t scale (might work for 100s of processes)
= Cost thus limits the value of running (must run infrequently)
= Hierarchical
= Form groups of nodes, spanning trees, etc.
= |log(P) scalable, but still limited as system sizes increase
= Fully Distributed
= Very inexpensive and scalable
= Historically difficult to get a good load distribution due to limited information

= We improve upon an fully distributed strategy inspired from epidemic algorithms

= H. Menon and L. Kalé, “A distributed dynamic load balancer for iterative applications,” in
Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC’13.

Sandia
LBAF — Load Balancing Analysis Framework @ Limoratories

= Simulate load balancers to test new distributed
LB algorithms sequentially in Python

= Research Workflow

= Run application in VT and output LB data (1 per rank)
= Phases, subphases, communication
= Feed LB data into LBAF to test new load balancer
algorithms
" Explore new strategies
= Qutput new mapping from LBAF based on strategy’s
determination
= Run application in VT with the generated mapping

from LBAF

= We have a special LB that follows what it reads from a
set of mapping files

Open source: https://github.com/DARMA-tasking/LB-analysis-framework

Sandia
Base Algorithm @ Laboraiories

= Fully distributed

= |nspired from epidemic algorithms
= No central coordination or tree/group building

= QOperates with two distinct stages

= Gossip --- spread information by randomly selecting ranks to send load data

= Transfer --- use information gained to make transfers from overloaded to underloaded to reduce
imbalance

Base Algorithm
» |nitialization

Lunderlnaded < Lavaraga < Luvnrluadad

()

Sandia
National _
Laboratories

Sandia
Base Algorithm @ Limoratories
» Gossiping Phase — Round 1

For all underioaded

initial load .

»
information - fanout k

Sandia
Base Algorithm @ Limoratories
» Gossiping Phase — Rounds 2,...n

For all recipients

— .
.-' aggregated load
‘3.;, information

n%
O
@

.F
L R ¥)

fanout k

Sandia
Base Algorithm @ Laboraiories

» Gossiping Phase — Informed Selection

Underload knowledge
accumulates over rounds

Sandia
Base Algorithm @ Laboraiories

» Transfer Phase

For all mﬂi |ﬂ|'|9 asL> tcwnrinm:l :r.‘-a“ﬂgn

01 such that

. L underioaded <
Laverage - L(01)

0n such that

e
., - Lunderioaded <
iy
: . megw - L[ﬂn}
Ay
o %o
»
-
candidates known .
to be underloaded by

Base Algorithm
» Transfer Phase

For all overloaded as long as L > foverioad x Laverage

01 such that

L underloaded <
Laverage - L(01)

On such that

- L underloaded <
- .. Laverage = L(0On)
- N
@ *
bias (pseudo) .
random selection .

by load value '

()

Sandia
National _
Laboratories

Sandia
Improvements (Fh) i,
» |teration and Trials

= Apply the algorithm iteratively to keep improving imbalances before performing
transfers

= Perform multiple trials of the iteration process to increase the odds of avoiding local
minima

Algorithm 3 Iterative refinement of task-rank mapping.
1: TP. « TP

orig

2: for t < 1, nirials do
3: TP « TP

> Reset for each trial

orig
4: MP ()
5: TAarGET? () « ()
6: for i + 1, njterc do
7: INFORM(Vye, £, 0)
8: TRANSFER(,ye, £7)
9: Evaluate Zp,oposea using Eqn. |1
10: Save T} .. M ., Tarcet] ., for lowest Z o5 0sed
11: end for
12: end for

. P P
13: Execute transfers defined by T} ., M, .

TarceT] ()

Improvements
» Recomputing the CMF during Transfer

= CMF -- cumulative mass function

= Probability distribution built during
transfer stage to determine which
rank to try to transfer work

= Sampled for each task to select a
possible candidate for transfer

= As we assign new tasks to
underloaded processors, we rebuild
the CMF

= As tasks are moved, other underloaded
processors may be more profitable to
select

Algorithm 2 The transfer stage to choose tasks for migration
based on partial knowledge gathered in the inform stage.

1: h < threshold
2: function TTI}ANSFER(gaVC,)
Require: Zf:ll(LOAD(Tﬁ)) = /(P

> Constant value

3 OP «—ORDERTASKS(T?, e, /P) 1> Traversal order
4: n+0 > Index of task to try
5: if CMF is original then F' <~ Bui.oCMF(/,.)

6: while /7 > h x {,,. An < |OP| do > Overloaded
7: if CMF is modified then F' < BUILDCMF({,.)
8: 0, +— OF

9: pe € SP using F > Pick rank sampling CMF
10: ly < Loap] | p; = p, > Known load of rank
11: if EVALUATECRITERION(Y,., 0., lave, £P) then

12: l, <l + Loap(o,)

13: (P « (P — Loap(o,)

14: TP TP\ {o.}

IS: MP « MP U {o,} > Record proposed transfer
16: TARGET?() < TarGET” () U {0, > P}

17: end if

18: n+<n+1

19: end while

20: end function
21: function BUILDCMF(¥,y.)
22: if CMF is original then

23: ls Lave

24: else if CMF is modified then © Described in § V-C
25: Ly + max({,ye, max(Loap?()))

26: end if

P P
7.z N (1 R “))

28 pi %(1 - L"%T(’))
290 i i pi
|S?|
30: F{pi}iZ,
31 return F
32: end function

Sandia
National _
Laboratories

Sandia
Improvements (Fh) i,
» Relaxing the objective function during transfer
= Analysis under iteration using the Load Balancing Analysis Framework (LBAF) for a

synthetic problem with huge amounts of imbalance

= Using the original objective function

Iteration Transfers Rejected Rejection Rate Imbalance

(index) (count) (count) (%) (Z)
0 - - - 280
1 9084 154931 94.46 187
2 4 1654 99.76 187
3 1 1130 99.91 187
4 7 2682 99.74 185
5! 6 2396 99.75 183
6 2 1143 99.83 183
7 1 1041 99.90 183
8 0 882 100.0 183
9 0 882 100.0 182

10 3 1405 99.79 182

Sandia
Improvements (Fh) i,
» Relaxing the objective function during transfer

= The high rejection rate hints that the objective function is too strict!

= Thus, we relax the objective function to allow transfers as long as the global
max load doesn’t increase

= We provide a proof of optimality in our paper for our new, relaxed criterion

Iteration Transfers Rejected Rejection Imbalance

(index) (number) (number) rate (%) ()
function EVALUATECRITERION(Y ., 04, Yave, (P) ? 1 '292 6- A8 5' 13 28g a4
if Criterion is original then 9 1044 3603 47 12 1.60
return £; +Loap(0;) < lave 3 2201 3412 60.79 0.873
else if Criterion is relaxed then > Described in § V-C| ' '
4 1324 3586 73.03 0.632
return Loap(oz) < (7 — £, 5 765 3171 80.56 0.632
end if 6 410 2969 87.87 0.626
end function 7 247 2794 91.88 0.626
8 159 2749 94.53 0.626
9 120 2682 95.72 0.626
10 72 2643 97.35 0.623

Improvements
» Task ordering

= During the transfer stage, each
overloaded process must select tasks
to try to transfer

= QOriginally, arbitrary task selection was
proposed

= We propose three new mappings
= Strawman (most load intensive)

= Fewest migrations (algorithm 5)

— Pick smallest task from overloaded that
will bring load down to average

= Most Lightweight Tasks (algorithm 6)

|II

— Find the “marginal” task, the most load
intensive of lightweight tasks that must
be migrated for a rank to not be
overloaded

Algorithm 5 The algorithm for ordering tasks for selection
that minimizes the number of migrations during the transfer

phase (see line [3/in Algorithm 2).

1: function OrRDERTASKS_FEWESTMIGRATIONS(T?, Ve, £7)

2:

10:
11:
12:

R A U

log — P — o > Excess load on this rank
if max; TV < /. then
return ORDERTASKS_DESCENDING(T?, {aye, £7)
end if
lewt ¢ min; {TF|TF > lex } > Cutoff load
¢ < lambda (a,b) — { > Load sort comparator
if Loap(a) < fey A LoaDp(b) < feyt
then return Loap(a) > Loap(b)
else return Loap(a) < Loap(b)

}
return Sort(717,c)

13: end function

Algorithm 6 The algorithm for ordering tasks for selection
that picks the most lightweight tasks first during the transfer
phase (see line 3|in Algorithm 2).

1: function ORDERTASKS_LIGHTEST(T?, /., £7)

2:

e A O

10:
11:
12:

Lo ¢ 0P — ave > Excess load on this rank
¢1 < lambda (a,b) — > Sort ascending to start
{ return Loap(a) < Loap(b) } > Ascending load
SP «— SorT(T?,cq) _
linarg +— min; { Sf Z?_OSf > IZCX} > Partial sum
co + lambda (a,b) — {17 > Final sort comparator
return if Loap(a) < linarg A L0OAD(D) < rnarg
then Loap(a) > Loap(b)
else Loap(a) < Loap(b)

}

return Sort(S?,cs)

13: end function

Sandia
National _
Laboratories

Sandia
Implementation in VT @ Laboraiories

= We have built a production load balancer with all these improvements called
TemperedLB

= |mplements trials, iterations, old/new CMF, and several transfer criterion

= (Open source
= Can befound here: https://github.com/DARMA-tasking/vt

Application Results (i) Nore

Laboratories

= We evaluate our load balancing algorithm for EMPIRE, an
electromagnetic/electrostatic plasma physics next-generation application

= |nitial PIC particle distributions can be spatially concentrated, creating heavy load imbalance
= Particles may move rapidly across the domain, inducing dynamic workload variation over time

@ particle ® particle ® particle
B rankO E chunk 2 | rankO
chunk 3 (striped)
: hunk 4
s W renkl
chunk 6 (solid)
chunk 7

(a) SPMD mesh decomposition (b) Overdecomposition (4 chunks/rank) (c) Overdecomposition with LB

*Actual runs: 24 chunks per MPI rank

Sandia
Application Results: TemperedLB Performance () fi..
» B-DOT Problem on ARM cluster

8
AMT :
: Particle update
without LB
SPMD 0.81x B Non-particle update
61 (no AMT) :
AMT w/
1X GrapevinelLB

AMTw/ AMTw/ AMT w/
GreedyLB HierLB TemperedlLB

1.9x 1.9x 1.9x

1.3x

N

Execution time (103 seconds)
B

Sandia
Application Results: TemperedLB Performance (Fn) .
» B-DOT Problem on ARM cluster

5
3 : :
&) LB + Diagnostics
= 4
= R
>0 /
= L]
uv
PO 3 mm SNV SVRRVN
o £
o 8 o -
E s .
28 2 ' e
LU PO i O
Lo 1.
o —— AMT without LB —— AMT w/GrapevineLB —— AMT w/GreedyLB
& —— SPMD (no AMT) —— AMT w/HierLB —— AMT w/TemperedLB
0 200 400 600 800 1000 1200 1400 1600

Timestep

Sandia
Application Results: TemperedLB Performance (Fh) i,
» B-DOT Problem on ARM cluster

% '———\/\/\ —— AMT without LB

9 61 —— AMT w/GrapevinelLB

©

T 4 \\

£

iV 21

0 1 5P
(c) 8

g _

L —— AMT w/HierLB

s —— AMT w/GreedyLB

< —— AMT w/TemperedLB

; e i g

o

0.0 - - - - - - -
0 200 400 600 800 1000 1200 1400 1600

Timestep

gmax
7= 1

za,ve

Sandia
Application Results: TemperedLB Performance () s,
» B-DOT Problem on ARM cluster

1.4 ' ' ' ' ' ' '
. —— AMT w/GrapevinelLB (max) AMT w/GrapevinelLB (min) /
8]
g— 1.27 A A //-“"\f
q) o7 P
E P P
] —— AMT w/HierLB (max) AMT w/HierLB (min)
(b) S 0.6{ —— AMT w/GreedyLB (max) AMT w/GreedyLB (min) e —— ﬁ
% —— AMT w/TemperedLB (max) AMT w/TemperedLB (min)
©
S 0.4 A - e
[0)
O
€ 0.2
Q. —— Lower bound (max)
0 200 400 600 800 1000 1200 1400 1600
Timestep

Max: maximum per-rank task load across all ranks;
Min: minimum per-rank task load across all ranks;
Lower bound (max): maximum of /,,. and the load of the most load-intensive task.

Sandia
Application Results: TemperedLB Performance (Fh) i,
» B-DOT Problem on ARM cluster

~ 2.5
b —— AMT w/TemperedLB using Migrate Most Lightweight Tasks
j:’ —— AMT w/TemperedLB using Migrate Load-Intensive Tasks
£ 2.011— AMT w/TemperedLB using Fewest Migrations
o+
c
k.=,
45 1.51
(d) ¢
(V) L" A
o 1.01 R ... i it tssmarsneee]
s | :ES% i L
©
o 0.5
O
©
% 0.0 ; i i . ; - .
0 200 400 600 800 1000 1200 1400 1600

Timestep

Sandia
Concluding Remarks @ Loracories

= Main contribution is a set of improvements to seminal work on fully distributed load
balancers
= We have identified some weaknesses in the load transfer phase of the original algorithm

= We have established some new theoretical results to justify the optimality of our relaxed
transfer criterion

= We have demonstrated the real-world benefits in a soon-to-be production
application used for PIC computations

= We think that task orderings may improve performance in other contexts

= We are working on further testing our algorithmic improvements on other
applications
= NimbleSM: solid mechanics contact code planned as a pipeline to SierraSM
= GEMMA: matrix assembly is imbalanced; challenge: not phase-based (no timesteps)

	Optimizing Distributed Load Balancing for Workloads with Time-Varying Imbalance
	What is DARMA?
	Background
	Motivation
	Premises
	LBAF – Load Balancing Analysis Framework
	Base Algorithm
	Base Algorithm
	Base Algorithm
	Base Algorithm
	Base Algorithm
	Base Algorithm
	Base Algorithm
	Improvements
	Improvements
	Improvements
	Improvements
	Improvements
	Implementation in VT
	Application Results
	Application Results: TemperedLB Performance
	Application Results: TemperedLB Performance
	Application Results: TemperedLB Performance
	Application Results: TemperedLB Performance
	Application Results: TemperedLB Performance
	Concluding Remarks

