

Optimizing Distributed Load Balancing for Workloads with Time-Varying Imbalance

Jonathan Lifflander (SNL)Phil B. Miller(IC)Nicole Slattengren (SNL)Francesco Rizzi(NGA)Philippe P. Pébaÿ(NGA)Matt T. Bettencourt* (NVI)

Based on a paper published at CLUSTER 2021

* Work performed while at SNL

SAND2021-6350

- **NGA** = NexGen Analytics, Inc
- **SNL** = Sandia National Labs
- **IC** = Intense Computing
- **NVI** = NVidia

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Laboratories

Sandia

Exceptional

service

in the

national

interest

What is DARMA?

A toolkit of libraries to support incremental AMT (Asynchronous Many-Task) adoption in production scientific applications

Module	Name	Description
DARMA/vt	Virtual Transport	MPI-oriented AMT HPC runtime
DARMA/checkpoint	Checkpoint	Serialization & checkpointing library
DARMA/detector	C++ trait detection	Optional C++14 trait detection library
DARMA/ LBAF	Load Balancing Analysis Framework	Python framework for simulating LBs and experimenting with load balancing strategies
DARMA/checkpoint-analyzer	Serialization Sanitizer	Clang AST frontend pass that generates serialization sanitization at runtime

DARMA Documentation: *https://darma-tasking.github.io/docs/html/index.html*

Background

- ► Context of AMT development
- MPI has dominated as a distributed-memory programming model (SPMD-style)
 - Deep technical and intellectual ecosystem
- Production Sandia applications are developed atop large MPI libraries/toolkits
 - e.g., Trilinos (linear solvers, etc.); STK (Sierra ToolKit) for meshing
 - There's little chance that the litany of MPI libraries used by production apps at Sandia will be rewritten to target an AMT runtime
- Conclusion
 - We must coexist and provide transitional AMT runtimes to **demonstrate incremental value**

Motivation

- ► Philosophy
- Our philosophy:
 - AMT runtimes must be highly interoperable allowing parts of applications to be incrementally overdecomposed
 - Transition between MPI/AMT must be inexpensive; expect frequent context switches from MPI to AMT runtime (many times, every timestep!)
- For domain developers:
 - Provide SPMD constructs in AMT runtimes for a natural transition while retaining asynchrony
 - Coexist with existing diversity of on-node techniques
 - CUDA, OpenMP, Kokkos, etc.
 - Allow MPI operations to be safely interwoven with AMT execution
 - We've found that serialization and checkpointing is a backdoor into introducing AMT libraries
- Paper reference
 - J. Lifflander, P. Miller, N. L. Slattengren, N. Morales, P. Stickney and P. P. Pébaÿ, *Design and Implementation Techniques for an MPI-Oriented AMT Runtime*, 2020 SC Workshop on Exascale MPI (ExaMPI), 2020, pp. 31-40, doi: 10.1109/ExaMPI52011.2020.00009

Premises

- Types of LB strategies
 - Centralized
 - Send all task graph to a single node and then scatter results
 - They don't scale (might work for 100s of processes)
 - Cost thus limits the value of running (must run infrequently)
 - Hierarchical
 - Form groups of nodes, spanning trees, etc.
 - log(P) scalable, but still limited as system sizes increase
 - Fully Distributed
 - Very inexpensive and scalable
 - Historically difficult to get a good load distribution due to limited information
- We improve upon an fully distributed strategy inspired from epidemic algorithms
 - H. Menon and L. Kalé, "A distributed dynamic load balancer for iterative applications," in Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, ser. SC '13.

LBAF – Load Balancing Analysis Framework

- Simulate load balancers to test new distributed
 LB algorithms sequentially in Python
- Research Workflow
 - Run application in VT and output LB data (1 per rank)
 - Phases, subphases, communication
 - Feed LB data into LBAF to test new load balancer algorithms
 - Explore new strategies
 - Output new mapping from LBAF based on strategy's determination
 - Run application in VT with the generated mapping from LBAF
 - We have a special LB that follows what it reads from a set of mapping files

Open source: https://github.com/DARMA-tasking/LB-analysis-framework

- Fully distributed
 - Inspired from epidemic algorithms
 - No central coordination or tree/group building
- Operates with two distinct stages
 - Gossip --- spread information by randomly selecting ranks to send load data
 - Transfer --- use information gained to make transfers from overloaded to underloaded to reduce imbalance

► Initialization

► Gossiping Phase – Informed Selection

► Transfer Phase

For all <u>overloaded</u> as long as L > t_{overload x} L_{average}

► Transfer Phase

For all <u>overloaded</u> as long as L > t_{overload x} L_{average}

Sandia National Laboratories

Improvements

► Iteration and Trials

- Apply the algorithm iteratively to keep improving imbalances before performing transfers
- Perform multiple trials of the iteration process to increase the odds of avoiding local minima

Algorithm 3 Iterative refinement of task-rank mapping. 1: $T^p_{\text{orig}} \leftarrow T^p$ 2: for $t \leftarrow 1, n_{\text{trials}}$ do $T^p \leftarrow T^p_{\text{orig}}$ \triangleright Reset for each trial 3: $M^p \leftarrow \emptyset$ 4: $\mathsf{Target}^p() \leftarrow \emptyset$ 5: for $i \leftarrow 1, n_{\text{iters}}$ do 6: INFORM($\ell_{ave}, \ell^p, 0$) 7: Transfer(ℓ_{ave}, ℓ^p) 8: Evaluate $\mathcal{I}_{\text{proposed}}$ using Eqn. 1 9: Save T_{best}^p , M_{best}^p , TARGET $_{\text{best}}^p$ for lowest $\mathcal{I}_{\text{proposed}}$ 10: end for 11: 12: end for 13: Execute transfers defined by T_{best}^p , M_{best}^p , TARGET $_{\text{best}}^p$ ()

► Recomputing the CMF during Transfer

- CMF -- cumulative mass function
- Probability distribution built during transfer stage to determine which rank to try to transfer work
- Sampled for each task to select a possible candidate for transfer
- As we assign new tasks to underloaded processors, we rebuild the CMF
 - As tasks are moved, other underloaded processors may be more profitable to select

```
Algorithm 2 The transfer stage to choose tasks for migration
based on partial knowledge gathered in the inform stage.
  1: h \leftarrow \text{threshold}
                                                                    ▷ Constant value
  2: function TRANSFER(\ell_{ave}, \ell^p)
Require: \sum_{n=1}^{|T^p|} (\text{Load}(T_n^p)) \equiv \ell^p
           O^p \leftarrow \text{OrderTasks}(T^p, \ell_{\text{ave}}, \ell^p)
  3:
                                                                    \triangleright Traversal order
                                                            \triangleright Index of task to try
            n \leftarrow 0
  4:
           if CMF is original then F \leftarrow \text{BuildCMF}(\ell_{\text{ave}})
  5:
           while \ell^p > h \times \ell_{ave} \wedge n < |O^p| do
                                                                     > Overloaded
  6:
                 if CMF is modified then F \leftarrow \text{BuildCMF}(\ell_{\text{ave}})
  7:
                 o_x \leftarrow O_n^p
  8:
                 p_x \in S^p using F
                                                    ▷ Pick rank sampling CMF
  9:
                 \ell_x \leftarrow \text{Load}_i^p \mid p_i \equiv p_x
                                                           ▷ Known load of rank
 10:
                 if EvaluateCriterion(\ell_x, o_x, \ell_{ave}, \ell^p) then
11:
                      \ell_x \leftarrow \ell_x + \text{Load}(o_x)
12:
                      \ell^p \leftarrow \ell^p - \text{Load}(o_x)
13:
                      T^p \leftarrow T^p \setminus \{o_x\}
14:
                      M^p \leftarrow M^p \cup \{o_x\} \triangleright \text{Record proposed transfer}
 15:
                       \operatorname{Target}^p() \leftarrow \operatorname{Target}^p() \cup \{o_x \mapsto p_x\}
 16:
                 end if
17:
                 n \leftarrow n+1
 18:
           end while
 19:
 20: end function
21: function BUILDCMF(\ell_{ave})
           if CMF is original then
 22:
                 \ell_s \leftarrow \ell_{\text{ave}}
 23:
           else if CMF is modified then \triangleright Described in § V-C
 24:
                 \ell_s \leftarrow \max(\ell_{ave}, \max(\text{Load}^p()))
 25:
 26:
            end if
           z \leftarrow \sum_{i=1}^{|S^p|} \left(1 - \frac{\operatorname{Load}^p(i)}{\ell_s}\right)
27:
           p_i \leftarrow \frac{1}{z} \left( 1 - \frac{\operatorname{Load}^p(i)}{\ell_s} \right)
28:
           \varphi_j \leftarrow \sum_{i=1}^j p_i
29:
            F \leftarrow \{\varphi_i\}_{i=1}^{|S^r|}
30:
 31:
            return F
 32: end function
```


► Relaxing the objective function during transfer

- Analysis under iteration using the Load Balancing Analysis Framework (LBAF) for a synthetic problem with huge amounts of imbalance
 - Using the original objective function

Iteration	Transfers	Rejected	Rejection Rate	Imbalance
(index)	(count)	(count)	(%)	(\mathcal{I})
0	-	-	-	280
1	9084	154931	94.46	187
2	4	1654	99.76	187
3	1	1130	99.91	187
4	7	2682	99.74	185
5	6	2396	99.75	183
6	2	1143	99.83	183
7	1	1041	99.90	183
8	0	882	100.0	183
9	0	882	100.0	182
10	3	1405	99.79	182

► Relaxing the objective function during transfer

- The high rejection rate hints that the objective function is too strict!
- Thus, we relax the objective function to allow transfers as long as the global max load doesn't increase
- We provide a proof of optimality in our paper for our new, relaxed criterion

	Iteration	Transfers	Rejected	Rejection	Imbalance
	(index)	(number)	(number)	rate (%)	(\mathcal{I})
function EVALUATE CRITERION $(l_{1}, o_{1}, l_{2}, l_{2})$	0	-	-	-	280
if Criterion is original then	1	11292	648	5.43	3.34
$\frac{1}{2} = \frac{1}{2} + \frac{1}$	2	4044	3603	47.12	1.60
else if Criterion is relaxed then \triangleright Described in § V return LOAD $(o_x) < \ell^p - \ell_x$	3	2201	3412	60.79	0.873
	C 4	1324	3586	73.03	0.632
	5	765	3171	80.56	0.632
end if	6	410	2969	87.87	0.626
end function	7	247	2794	91.88	0.626
	8	159	2749	94.53	0.626
	9	120	2682	95.72	0.626
	10	72	2643	97.35	0.623

► Task ordering

- During the transfer stage, each overloaded process must select tasks to try to transfer
 - Originally, arbitrary task selection was proposed
 - We propose three new mappings
 - Strawman (most load intensive)
 - Fewest migrations (algorithm 5)
 - Pick smallest task from overloaded that will bring load down to average
 - Most Lightweight Tasks (algorithm 6)
 - Find the "marginal" task, the most load intensive of lightweight tasks that must be migrated for a rank to not be overloaded

Algorithm 6 The algorithm for ordering tasks for selection that picks the most lightweight tasks first during the transfer phase (see line 3 in Algorithm 2).

1:	1: function OrderTasks_Lightest(T^p , ℓ_{ave} , ℓ^p)				
2:	$\ell_{\mathrm{ex}} \leftarrow \ell^p - \ell_{\mathrm{ave}}$	▷ Excess load on this rank			
3:	$c_1 \leftarrow \mathbf{lambda} \ (a, b) \mapsto$	▷ Sort ascending to start			
4:	{ return $Load(a) < Load(a)$	$D(b) \} $ > Ascending load			
5:	$S^p \leftarrow \text{Sort}(T^p, c_1)$				
6:	$\ell_{\text{marg}} \leftarrow \min_{j} \left\{ S_{j}^{p} \left \sum_{i} \right\} \right\}$	$_{=0}S_i^p \ge \ell_{\text{ex}} $ $\rbrace \triangleright$ Partial sum			
7:	$c_2 \leftarrow \mathbf{lambda} (a, b) \mapsto \{$	▷ Final sort comparator			
8:	return if $Load(a) \leq a$	$\ell_{\text{marg}} \wedge \text{Load}(b) \leq \ell_{\text{marg}}$			
9:	then $Load(a)$	> Load(b)			
10:	else Load (a) ·	< Load (b)			
11:	}				
12:	return Sort(S^p, c_2)				
13:	end function				

Implementation in VT

- We have built a production load balancer with all these improvements called *TemperedLB*
 - Implements trials, iterations, old/new CMF, and several transfer criterion
 - Open source
 - Can be found here: https://github.com/DARMA-tasking/vt

Application Results

- We evaluate our load balancing algorithm for EMPIRE, an electromagnetic/electrostatic plasma physics next-generation application
 - Initial PIC particle distributions can be spatially concentrated, creating heavy load imbalance
 - Particles may move rapidly across the domain, inducing dynamic workload variation over time

*Actual runs: 24 chunks per MPI rank

Max: maximum per-rank task load across all ranks; Min: minimum per-rank task load across all ranks; Lower bound (max): maximum of ℓ_{ave} and the load of the most load-intensive task.

Concluding Remarks

- Main contribution is a set of improvements to seminal work on fully distributed load balancers
 - We have identified some weaknesses in the load transfer phase of the original algorithm
 - We have established some new theoretical results to justify the optimality of our relaxed transfer criterion
- We have demonstrated the real-world benefits in a soon-to-be production application used for PIC computations
- We think that task orderings may improve performance in other contexts
- We are working on further testing our algorithmic improvements on other applications
 - NimbleSM: solid mechanics contact code planned as a pipeline to SierraSM
 - GEMMA: matrix assembly is imbalanced; challenge: not *phase-based* (no timesteps)