
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Optimizing Distributed Load Balancing for
Workloads with Time-Varying Imbalance

Jonathan Lifflander (SNL)
Nicole Slattengren (SNL)
Philippe P. Pébaÿ (NGA)

Based on a paper published at CLUSTER 2021

Phil B. Miller (IC)
Francesco Rizzi (NGA)
Matt T. Bettencourt* (NVI)

NGA = NexGen Analytics, Inc
SNL = Sandia National Labs
IC = Intense Computing
NVI = NVidia

SAND2021-6350

* Work performed while at SNL

What is DARMA?

Module Name Description

DARMA/vt Virtual Transport MPI-oriented AMT HPC runtime

DARMA/checkpoint Checkpoint Serialization & checkpointing library

DARMA/detector C++ trait detection Optional C++14 trait detection library
DARMA/LBAF Load Balancing Analysis

Framework
Python framework for simulating LBs and
experimenting with load balancing strategies

DARMA/checkpoint-analyzer Serialization Sanitizer Clang AST frontend pass that generates
serialization sanitization at runtime

DARMA Documentation: https://darma-tasking.github.io/docs/html/index.html

A toolkit of libraries to support incremental AMT (Asynchronous Many-Task) adoption
in production scientific applications

 MPI has dominated as a distributed-memory programming model (SPMD-style)
 Deep technical and intellectual ecosystem

 Production Sandia applications are developed atop large MPI libraries/toolkits
 e.g., Trilinos (linear solvers, etc.); STK (Sierra ToolKit) for meshing
 There’s little chance that the litany of MPI libraries used by production apps at Sandia will be

rewritten to target an AMT runtime

 Conclusion
 We must coexist and provide transitional AMT runtimes to demonstrate incremental value

Background
➤ Context of AMT development

 Our philosophy:
 AMT runtimes must be highly interoperable allowing parts of applications to be incrementally

overdecomposed
 Transition between MPI/AMT must be inexpensive; expect frequent context switches from MPI to

AMT runtime (many times, every timestep!)

 For domain developers:
 Provide SPMD constructs in AMT runtimes for a natural transition while retaining asynchrony
 Coexist with existing diversity of on-node techniques

 CUDA, OpenMP, Kokkos, etc.
 Allow MPI operations to be safely interwoven with AMT execution
 We’ve found that serialization and checkpointing is a backdoor into introducing AMT libraries

 Paper reference
 J. Lifflander, P. Miller, N. L. Slattengren, N. Morales, P. Stickney and P. P. Pébaÿ, Design and

Implementation Techniques for an MPI-Oriented AMT Runtime, 2020 SC Workshop on Exascale MPI
(ExaMPI), 2020, pp. 31-40, doi: 10.1109/ExaMPI52011.2020.00009

Motivation
➤ Philosophy

 Types of LB strategies
 Centralized

 Send all task graph to a single node and then scatter results
 They don’t scale (might work for 100s of processes)
 Cost thus limits the value of running (must run infrequently)

 Hierarchical
 Form groups of nodes, spanning trees, etc.
 log(P) scalable, but still limited as system sizes increase

 Fully Distributed
 Very inexpensive and scalable
 Historically difficult to get a good load distribution due to limited information

 We improve upon an fully distributed strategy inspired from epidemic algorithms
 H. Menon and L. Kalé, “A distributed dynamic load balancer for iterative applications,” in

Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’13.

Premises

LBAF – Load Balancing Analysis Framework

 Simulate load balancers to test new distributed
LB algorithms sequentially in Python

 Research Workflow
 Run application in VT and output LB data (1 per rank)

 Phases, subphases, communication
 Feed LB data into LBAF to test new load balancer

algorithms
 Explore new strategies

 Output new mapping from LBAF based on strategy’s
determination

 Run application in VT with the generated mapping
from LBAF
 We have a special LB that follows what it reads from a

set of mapping files
Open source: https://github.com/DARMA-tasking/LB-analysis-framework

Base Algorithm

 Fully distributed
 Inspired from epidemic algorithms
 No central coordination or tree/group building

 Operates with two distinct stages
 Gossip --- spread information by randomly selecting ranks to send load data
 Transfer --- use information gained to make transfers from overloaded to underloaded to reduce

imbalance

Base Algorithm
➤Initialization

Base Algorithm
➤Gossiping Phase – Round 1

Base Algorithm
➤Gossiping Phase – Rounds 2,…n

Base Algorithm
➤Gossiping Phase – Informed Selection

Base Algorithm
➤Transfer Phase

Base Algorithm
➤Transfer Phase

 Apply the algorithm iteratively to keep improving imbalances before performing
transfers

 Perform multiple trials of the iteration process to increase the odds of avoiding local
minima

Improvements
➤Iteration and Trials

 CMF -- cumulative mass function
 Probability distribution built during

transfer stage to determine which
rank to try to transfer work

 Sampled for each task to select a
possible candidate for transfer

 As we assign new tasks to
underloaded processors, we rebuild
the CMF
 As tasks are moved, other underloaded

processors may be more profitable to
select

Improvements
➤Recomputing the CMF during Transfer

 Analysis under iteration using the Load Balancing Analysis Framework (LBAF) for a
synthetic problem with huge amounts of imbalance
 Using the original objective function

Improvements
➤Relaxing the objective function during transfer

 The high rejection rate hints that the objective function is too strict!
 Thus, we relax the objective function to allow transfers as long as the global

max load doesn’t increase
 We provide a proof of optimality in our paper for our new, relaxed criterion

Improvements
➤Relaxing the objective function during transfer

 During the transfer stage, each
overloaded process must select tasks
to try to transfer
 Originally, arbitrary task selection was

proposed
 We propose three new mappings

 Strawman (most load intensive)
 Fewest migrations (algorithm 5)

– Pick smallest task from overloaded that
will bring load down to average

 Most Lightweight Tasks (algorithm 6)
– Find the “marginal” task, the most load

intensive of lightweight tasks that must
be migrated for a rank to not be
overloaded

Improvements
➤Task ordering

Implementation in VT

 We have built a production load balancer with all these improvements called
TemperedLB
 Implements trials, iterations, old/new CMF, and several transfer criterion
 Open source
 Can be found here: https://github.com/DARMA-tasking/vt

 We evaluate our load balancing algorithm for EMPIRE, an
electromagnetic/electrostatic plasma physics next-generation application
 Initial PIC particle distributions can be spatially concentrated, creating heavy load imbalance
 Particles may move rapidly across the domain, inducing dynamic workload variation over time

Application Results

*Actual runs: 24 chunks per MPI rank

Application Results: TemperedLB Performance
➤ B-DOT Problem on ARM cluster

Application Results: TemperedLB Performance
➤ B-DOT Problem on ARM cluster

Application Results: TemperedLB Performance
➤ B-DOT Problem on ARM cluster

Application Results: TemperedLB Performance
➤ B-DOT Problem on ARM cluster

Application Results: TemperedLB Performance
➤ B-DOT Problem on ARM cluster

Concluding Remarks

 Main contribution is a set of improvements to seminal work on fully distributed load
balancers
 We have identified some weaknesses in the load transfer phase of the original algorithm
 We have established some new theoretical results to justify the optimality of our relaxed

transfer criterion

 We have demonstrated the real-world benefits in a soon-to-be production
application used for PIC computations

 We think that task orderings may improve performance in other contexts
 We are working on further testing our algorithmic improvements on other

applications
 NimbleSM: solid mechanics contact code planned as a pipeline to SierraSM
 GEMMA: matrix assembly is imbalanced; challenge: not phase-based (no timesteps)

	Optimizing Distributed Load Balancing for Workloads with Time-Varying Imbalance
	What is DARMA?
	Background
	Motivation
	Premises
	LBAF – Load Balancing Analysis Framework
	Base Algorithm
	Base Algorithm
	Base Algorithm
	Base Algorithm
	Base Algorithm
	Base Algorithm
	Base Algorithm
	Improvements
	Improvements
	Improvements
	Improvements
	Improvements
	Implementation in VT
	Application Results
	Application Results: TemperedLB Performance
	Application Results: TemperedLB Performance
	Application Results: TemperedLB Performance
	Application Results: TemperedLB Performance
	Application Results: TemperedLB Performance
	Concluding Remarks

