
Addressing the Challenges of
Heterogeneous Computing in NAMD

David J. Hardy

Senior Research Programmer

Theoretical and Computational Biophysics Group

Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign

Charm++ Workshop

October 18-19, 2021

NAMD: Nanoscale Molecular Dynamics

• Parallel molecular dynamics application written
in C++ with Charm++ objects

• Runs on all major operating systems, on laptops
up through supercomputers

• Specializes in parallel scaling of large
biomolecular simulations

• Many advanced features:

- Enhanced sampling methods

- Alchemical free energy methods

- Collective variables module (Colvars)

- TCL and Python scripting

• Over 25,000 registered users

• Over 15,000 citations of our NAMD reference
papers (Google Scholar)

2

Investigations of coronavirus (SARS-CoV-2) spike dynamics.
Credit: Tianle Chen, Karan Kapoor, Emad Tajkhorshid (UIUC).
Simulations with NAMD, movie created with VMD.

https://www.ks.uiuc.edu/Research/namd/
Phillips, et al. J. Chem. Phys. 153, 044130 (2020)

https://www.ks.uiuc.edu/Research/namd/

Molecular Dynamics Simulation
• Most fundamentally, integrate Newton’s equations of motion:

3

integrate for up to billions of time steps

most of the computational work
(Lennard-Jones) (electrostatics)

Parallelism for MD Simulation Limited to Each Timestep

4

Computational workflow of MD:

initialize particle

positions

particle

forces

force

calculation

about 99% of
computational work

update

 positions

about 1% of
computational work

reduced quantities (energy, temperature, pressure)
position coordinates (trajectory snapshot)

occasional

output

aLoop millions
of timesteps

Hybrid Decomposition of Data and Work

• Atoms are decomposed into fixed volume patches within
the system

• Forces that move atoms are calculated in parallel at each
step between adjacent patches

• Work decomposition into compute objects creates much
greater amount of parallelization, facilitates measurement-
based load balancing with Charm++

• Migrate atoms to adjacent patches, updating domain
decomposition after every cycle (e.g. 20 steps)

5

Spatial decomposition of
atoms into patches

Work decomposition of
patch interactions

Kale et al., J. Comp. Phys. 151:283-312, 1999

NAMD Decomposes Force Terms into
Fine-Grained Objects for Scalability

6

Charge spreading

Force interpolation

Offload forces to GPU

NAMD Scaling on CPUs and GPUs

7

2.0
4.0
8.0

16.0
32.0
64.0

128.0

pe
rfo

rm
an

ce
 (n

s/
da

y)

10 100 1000
number of nodes

0.1
0.3
1.0
3.0
9.0

27.0

Summit

Frontera

Replications of the
Satellite Tobacco Mosaic Virus (STMV)

5x2x2 grid = 21M Atoms=

= 7x6x5 grid = 224M Atoms

NAMD Simulating SARS-CoV-2 on Frontera and Summit

8

(A) Virion, (B) Spike, (C) Glycan shield conformations

A

B

C

Dnm
10 200

nm

5

10

0

Scaling performance:
• ~305M atom virion
• ~8.5M atom spike

Collaboration with Amaro Lab at UCSD, images rendered by VMD
Winner of Gordon Bell Special Prize at SC20, project involved overall 1.13 Zettaflops of NAMD simulation

strong scaling
51% efficiency

Casalino, et al. IJHPCA, 2021 https://doi.org/10.1177%2F10943420211006452

https://doi.org/10.1177%2F10943420211006452

Original GPU-Offload Scheme

Partition work between CPU and GPU

9

force
calculation
on GPUs

update
coordinates

on CPUs

Short-range non-bonded forces (90%)

Long-range PME electrostatics (5%)

Bonded forces (2%)

Corrections for excluded interactions (2%)

Integrator, rigid bond constraints (1%)
Enhanced sampling methods: additional forces, grid potentials, collective variables

Showing approximate percentage of total work per step:

• GPUs weren’t that fast back then

• Profiling shows GPUs are fully
occupied by forces - no idle time

• Streaming forces allows overlap of
CPU and GPU computation

10

Maxwell GPU is fully utilized

Original GPU-Offload Scheme

Good enough until Pascal (2016)

11

Hardware has ~70% perf improvement!

Peak Performance in TFLOPS

0

16

Pascal (P100) Volta (V100)

15.7

9.3

NAMD (in 2018) less than 20% perf improvement!

Original GPU-Offload Scheme

Benchmarking on newer GPUs revealed problems

ns/day

0

20

40

60

GPU-offload

53.846.4

Pascal (P100) Volta (V100)

ApoA1
92k atoms

Simulation details:
NVE, CHARMM force field, cutoff distance 12Å,
MTS with 2fs time step and 4fs PME, rigid bond constraints.
https://www.ks.uiuc.edu/Research/namd/benchmarks/

https://www.ks.uiuc.edu/Research/namd/benchmarks/

Original GPU-Offload Scheme

CPU-bound on Volta and beyond

• GPUs became much faster!

• Attempt to overlap CPU and GPU
causes performance bottleneck

• Unable to fully utilize GPU

12

Forces

Integration

Forces

Integration

Profile using Nsight Systems with NVTX tags to trace
execution of CPU kernels:

• Offloading force calculation is not enough!

• Overall utilization of modern GPUs is limited by remaining CPU work

• We want better GPU performance

‣ Strong scaling of small- to medium-sized systems is not well served by traditional
supercomputers

‣ Majority of MD users run system sizes < 1M atoms that are suitable for a single GPU

• Must transition from GPU-offload to GPU-resident!

13

Original GPU-Offload Scheme

Performance limitations on modern GPUs

New GPU-Resident Scheme

Move integrator to GPU and maintain data between time steps

14

Calculate forces

Integrate atom
positions

Aggregate
position data,
copy to GPU

Integrate atom
positions

Calculate forces

Aggregate
position data,
copy to GPU

Stream
forces back

to CPU

CPU

GPU

GPU-offload

CPU

GPU

Integrate atom
positions

Calculate forces

Fill position
buffers

Fetch force
buffers

Convert force
to SOA form

Integrate atom
positions

Calculate forces

Fill position
buffers

Fetch force
buffers

Convert force
to SOA form

Integrate atom
positions

GPU-resident
(manages GPU kernels)

New GPU-Resident Scheme

Profiling shows new scheme fully utilizes GPU, no more CPU bottleneck

15

Forces
Integration

Forces
Integration

Forces

Integration

Forces

Integration

Before (GPU-offload):

After (GPU-resident):

New GPU-Resident Scheme

Performance for constant energy (NVE) simulation on single GPU

16

0

100

200

300

400

JAC (23K atoms) ApoA1 (92K) F1 ATPase (300K) STMV (1M)

11.5
43.1

161.1

331.7

5.920.0
61.9

185.4

GPU-offload GPU-resident

ns/day

Intel Xeon Gold
6134 @ 3.2 GHz

NVIDIA A100-PCIe

Simulation details:
CHARMM force field, cutoff distance 12Å,
MTS with 2fs time step and 4fs PME, rigid bond constraints.
Performance tuning parameter “margin” set to 4Å.
https://www.ks.uiuc.edu/Research/namd/benchmarks/

https://www.ks.uiuc.edu/Research/namd/benchmarks/

17

0

1,000

2,000

3,000

4,000

12Å cutoff (CHARMM) 8Å cutoff (AMBER)

3,225.9

2,054.1

283.8283.7

GPU-offload GPU-resident

ns/day

ApoA1
92k atoms

DGX-2 running 16 replicas,
one for each NVIDIA V100

New GPU-Resident Scheme

Aggregate throughput for constant energy (NVE) simulation on GPU-dense hardware

Simulation details:
CHARMM force field uses cutoff distance 12Å,
AMBER force field uses cutoff distance 8Å,
MTS with 2fs time step and 4fs PME, rigid bond constraints.
Performance tuning parameter “margin” set to 4Å.
https://www.ks.uiuc.edu/Research/namd/benchmarks/

https://www.ks.uiuc.edu/Research/namd/benchmarks/

• Extend GPU-resident implementation
for many interconnected GPUs on a
single-node

• Upcoming leadership class
supercomputers will also have many
GPUs per node

18

Goal: Support GPU-Dense Architectures

Scaling a single simulation across multiple GPUs

Adapting NAMD’s Scalability to GPU-Resident Version

Apply similar decomposition of data and work among GPUs

19

• Each CPU thread binds to a
particular GPU

• Aggregate compute and patch
data per thread to launch
integration and force kernels

• Maintain a single thread per
GPU to make things easier

• Exploit tightly coupled (peered)
GPUs (NVLink, PCIe, …)

Adapting NAMD’s Scalability to GPU-Resident Version

Some communication required: multicasts and reductions

20

• GPUs need to communicate
information among themselves
during simulation

• Update atom positions in each patch
during integration

• Perform position multicast to
compute objects

• Compute new forces

• Perform force reduction back to
patches

Integration

Integration

Position Multicast

Force Eval

Force Reduction

Adapting NAMD’s Scalability to GPU-Resident Version

Rapid prototyping using NCCL for collectives

21

• The multicast and reduction operations can be
expressed as ALLREDUCE primitives

• Use NCCL (NVIDIA Collective and
Communications Library) to get it working
quickly

• NCCL also abstracts the underlying GPU
topology, while still achieving high bandwidth

• However, using ALLREDUCE results in wasted
communication

‣ Too hard to use scatter/gather because our data lacks
regularity

‣ Better performance expected if we do our own
communication

STMV
1.06M atoms
2fs timestep

Multi-GPU Scaling on DGX-2

Using NCCL for communication collectives

22

0

10

20

30

40

50

60

70

GPUs
1 2 4 8 16

38.4
33.9

26.1

15.7
9.7

8.59.48.77.97.6

GPU-offload GPU-resident

ns/day

Simulation details:
NVE, CHARMM force field, cutoff distance 12Å,
MTS with 2fs time step and 4fs PME, rigid bond constraints.
Performance tuning parameter “margin” set to 4Å.
https://www.ks.uiuc.edu/Research/namd/benchmarks/

https://www.ks.uiuc.edu/Research/namd/benchmarks/

Multi-GPU Scaling on DGX-2

How to improve scalability on large GPU counts?

23

Force Reduction Integration Position Multicast

NCCL’s ALLREDUCE accounts for 40% of GPU kernel execution time on 8 GPUS!

24

• Force sum reductions take
longer than position
multicasts

• Need to replace them with a
specialized kernel for our
problem, since not all values
need to be reduced!

• Use CUDA peer-to-peer
functionalities for better
performance

Multi-GPU Scaling on DGX-2

Replacing NCCL: Point-to-point force sum reductions

Multi-GPU Scaling on DGX-2

Replacing NCCL: Point-to-point position multicasts

25

• Same logic as before:
Replace ALLREDUCE with a
specialized kernel

• Each GPU fills its positions
by accessing its peers’
memories (better
performance with NVLINK)

• Retrieve only those positions
owned by that GPU for
better scaling

Multi-GPU Scaling on DGX-2

Overcoming CPU thread synchronization latency with spinlock barrier

26

0

10

20

30

40

50

60

70

GPUs
1 2 4 8 16

65.1
58.8

36.2

19.6

9.9

8.59.48.77.97.6

GPU-offload GPU-resident

ns/daySTMV
1.06M atoms
2fs timestep

Spinlock barrier

Simulation details:
NVT 300K, CHARMM force field, cutoff distance 12Å,
with 2fs time step, without PME, rigid bond constraints.
Performance tuning parameter “margin” set to 4Å.
https://www.ks.uiuc.edu/Research/namd/benchmarks/

~70% perf improvement over NCCL with condition variable barrier

https://www.ks.uiuc.edu/Research/namd/benchmarks/

Multi-GPU Scaling on DGX-A100

27

pe
rfo

rm
an

ce
 (n

s/
da

y)

0

100

200

number of GPUs
1 2 3 4 5 6 7 8

164.9
154.5

147.1

128.7

115.9

96.1

70.6

38.5

97.7
92.4

85.4
77.6

67.3

54.9

39.8

22.3

66.863.4
57.6

51.5
43.3

35.7
25.1

13.8

Simulation details:
Green line: 8Å cutoff, HMR, 4fs PME, rigid bonds
Blue line: 8Å cutoff, MTS 2fs, 4fs PME, rigid bonds
Red line: 12Å cutoff, MTS 2fs, 4fs PME, rigid bonds
https://www.ks.uiuc.edu/Research/namd/benchmarks/

STMV
1.067M atoms

DGX-A100

Point-to-point position multicasts and force reductions, spinlock barrier

https://www.ks.uiuc.edu/Research/namd/benchmarks/

Future Improvements to GPU-Resident
Overcoming scaling bottleneck from PME long-range electrostatics

28

• PME (particle-mesh Ewald)
requires calculating FFT

- 3D FFTs for PME are too small to
parallelize effectively with cuFFT

- Too much latency is introduced
with slab or pencil decomposition

• Assign PME to a single device

- But over assignment can cause
load imbalance

PME Evaluation

Idle Devices

Future Improvements to GPU-Resident
Replacing PME with better scaling MSM algorithm

29

• MSM (multilevel summation method)
provides a better scaling alternative to PME

• Hierarchical grid calculation offers tree-like
work decomposition, similar in structure to
FMM (fast multipole method)

• Localized 3D convolutions involving nearest
neighbor communication are well suited to
GPU computation

• Coarsest level grid has 3D FFT, but it can be
made as small as desired

Hardy, Stone, Schulten. J. Paral. Comp. (2009)

Hardy, Wu, et al. J. Chem. Theory Comput. (2015)

Hardy, Wolff, et al. J. Chem. Phys. (2016)

Kaya, Hardy, Skeel. J. Chem. Phys. (2021)

Future Improvements to GPU-Resident
Offload domain decomposition (atom migration) to GPU

• Domain decomposition (atom migration)
presently poses a large CPU bottleneck,
mitigated by:

- Increasing patch margin

- Performing only when necessary

• Bypass CPU thread synchronization and
data buffering

• Multi-GPU implementation will require
additional communication

• Restructure fundamental data structures
for fast recalculation of force auxiliary
arrays

20 MD Steps
Approx. 32 ms 1 migration step

Approx. 77 ms

Time for atom migration is equal to 48 MD steps

30

NAMD’s default is 20 steps per migration

Profiling on single GPU

Future Improvements to GPU-Resident
Multi-node scaling

• Minimize multi-node communication latency
between GPU-resident NAMD processes running
on different nodes

• Exploit Infiniband-connected DGX-like nodes
using RDMA hardware acceleration

- Use fabric-based (switch, NIC) collective operations
and reductions to avoid host CPU involvement

• Ultimately, Charm++ will be needed for large scale
runs

- Use GPU-direct communication

- Load balancing needs to understand GPU workloads

31

Integration

Integration

Force Eval

Position Multicast

Force Reduction

Challenge: Support for New GPUs
• AMD GPU support (Josh Vermaas, Julio Maia)

- Use Hipify to translate CUDA to HIP, no need for direct HIP implementation

- Few additional tweaks required:

‣ HIP wavefront size 64 vs CUDA warp size 32

‣ Need some macro definitions in extra header file

‣ Workaround for texture memory interpolation

- GPU-offload already available, Julio is developing GPU-resident

• Intel GPU support (Tareq Malas, Jaemin Choi)

- DPC++ is significantly different from CUDA, requires its own implementation

- Assisted by a conversion tool

- Significant modifications required after conversion

- Recently have working force kernels for GPU-offload

32

Challenge: GPU-Resident Feature Support
• Essential standard integration methods supported

- Constant energy, constant temperature (Langevin damping and stochastic rescaling), constant pressure
(Langevin piston)

- Multiple time stepping

- Rigid bond constraints

• Some advanced features already supported

- Alchemical free energy methods FEP and TI (Haochuan Chen, Julio Maia) 

Chen, et al. J. Chem. Inf. Model. 60 (11), 5301-5307 (2020)

- Multi-copy simulation (e.g. replica-exchange)

- External electric field

• Other features require extensive porting to GPU

- Colvars (collective variables) module

33

Acknowledgments
• NAMD development is funded by NIH P41-GM104601

• DPC++ porting is funded in part by Intel

• GPU programming team: Julio Maia (AMD); David Clark (NVIDIA); Tareq Malas (Intel); Jaemin Choi, John Stone (UIUC)

34

NIH Center for Macromolecular Modeling and Bioinformatics
Beckman Institute, University of Illinois at Urbana-Champaign (2018)

