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Motivation

Simulate the merger and obtain the
light curve to understand the
observations better:

Multi-physic is need:
At peak brightness, the rare 2002 red
nova V838 Monocerotis briefly
rivalled the most powerful stars in
the Galaxy. Credit: NASA/ESA/H. o Radiation )
E. Bond (STScl)

e Hydro
o Gravity

Reference

@ Tylenda, R, et al. "V1309 Scorpii: merger of a contact binary." Astronomy & Astrophysics 528 (2011): A114.
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© Software framework
@ Octo-Tiger
e HPX
o Kokkos and HPX
e APEX

© Scaling

@ Synchronous (MPI) vs asynchronous communication (libfabric)
@ Scaling on ORNL's Summit
@ Kokkos - HPX

9 Performance profiling
@ Astrophysic validation
© Conlusion and Outlook

Patrick Diehl (CCT/LSU) HPX & Octo-Tiger October 2021 3/34



Software framework
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Astrophysics open source program?! simulating the evolution of star

systems based on the fast multipole method on adaptive Octrees.

Hydro
Gravity

Radiation (benchmarking)

Octo-Tiger

Communication: MPI/libfabric
Backends: CUDA, HIP, Kokkos

Reference

@ Marcello, Dominic C., et al. "octo-tiger: a new, 3D hydrodynamic code for stellar mergers that uses hpx parallelization.”
Monthly Notices of the Royal Astronomical Society 504.4 (2021): 5345-5382.

1https ://github.com/STE11AR-GROUP/octotiger
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https://github.com/STEllAR-GROUP/octotiger

Example of a merger simulation
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Figure 2. The early stages of mass transfer in a binary star system. The accreting star is five times more massive than the donor str.

Reference

@ Heller, Thomas, et al. "Harnessing billions of tasks for a scalable portable hydrodynamic simulation of the merger of two
stars” The International Journal of High Performance Computing Applications 33.4 (2019): 699-715.
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Example of a merger simulation

Orbits: 4.13005
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Figure 3. A 3-D contour plot of the system in Figure 2 after an accretion disc begins to form. 3-D: three-dimensional.

Reference

@ Heller, Thomas, et al. "Harnessing billions of tasks for a scalable portable hydrodynamic simulation of the merger of two
stars.” The International Journal of High Performance Computing Applications 33.4 (2019): 699-715.
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HPX

HPX is a open source C++ Standard Library for Concurrency and
Parallelism?.

Features

@ HPX exposes a uniform, standards-oriented API for ease of
programming parallel and distributed applications.

@ HPX provides unified syntax and semantics for local and remote
operations.

@ HPX exposes a uniform, flexible, and extendable performance counter
framework which can enable runtime adaptivity.

Reference

| A\

@ Kaiser, Hartmut, et al. "Hpx-the c++ standard library for parallelism and concurrency.” Journal of Open Source
Software 5.53 (2020): 2352.

2https ://github.com/STE11AR-GROUP/hpx
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https://github.com/STEllAR-GROUP/hpx

HPX's architecture

Application
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Reference

@ Kaiser, Hartmut, et al. "Hpx-the c++ standard library for parallelism and concurrency.” Journal of Open Source
Software 5.53 (2020): 2352.
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HPX support in Kokkos

Combine Tasks via futures in different ways

® HPX-Kokkos integration needs to work for
both host-side and device-side execution

Device-Side execution: Kernels need to be
futurized to be integrated into the DAG

® — Use uderlying CUDA/HIP Api with
callbacks or events to set hpx futures ready
automatically

Reference

Kokkos £1.then(...) Task 3
Kernel 1
Kokkos
Task 2 Kokkos
Kernel 5
Task 6

when_all(...)

@ Edwards, H. Carter, Christian R. Trott, and Daniel Sunderland. "Kokkos: Enabling manycore performance portability
through polymorphic memory access patterns.” Journal of parallel and distributed computing 74.12 (2014): 3202-3216.

@ DaiB, Gregor, et al. "Beyond Fork-Join: Integration of Performance Portable Kokkos Kernels with HPX." 2021 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2021.
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e APEX: Autonomous
Performance
Environment for
Exascale: Performance
measurement library for
distributed,
asynchronous
multitasking systems.

Reference

APEX Introspection

System Info
T | R

& -

o= <> Y™

APEX Policy Engine

CUPTI used to capture CUDA events
NVML used to monitor the GPU

OTF2 and Google Trace Events trace
output

Task Graphs and Trees

Scatterplots of timers and counters

@ Huck, Kevin A, et al. "An autonomic performance environment for exascale.” Supercomputing frontiers and innovations

2.3 (2015): 49-66.
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@ To support performance
measurement in systems
that employ user-level
threading, APEX uses a
dependency chain in
addition to the call stack
to produce traces and
task dependency graphs.

System Info

(/proc, getrusage,
LM Sensors, etc.)

& -

<> <> P

APEX Policy Engine

CUPTI used to capture CUDA events
NVML used to monitor the GPU

OTF2 and Google Trace Events trace
output

Task Graphs and Trees

Scatterplots of timers and counters

Reference

@ Huck, Kevin A, et al. "An autonomic performance environment for exascale.” Supercomputing frontiers and innovations

2.3 (2015): 49-66.
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Scaling
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Synchronous (MPI) vs asynchronous communication

(libfabric)
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Configuration

| Piz Daint

CPU | 1 x Intel®Xeon "E5-2690 v3, 2.60GHz, 12 cores

&

GPU 1 % NVIDIA®Tesla®P100
RAM G4 GB
I Cray Aries routing and communications ASIC

Table 3: Configuration of Piz Daint.

Level of refinement | sub-grids | memory usage (GB)

13 5,417 B

14 10,928 16.37
15 42,947 56.92
16 2.24-10° 271.94
17 1.5-10° 2,305.92

Table 4: Number of tree nodes (sub-grids) per level of refine-
ment (LoR) and the memory usage of the corresponding level.

Reference

@ DaiB, Gregor, et al. "From piz daint to the stars: Simulation of stellar mergers using high-level abstractions.”
Proceedings of the international conference for high performance computing, networking, storage and analysis. 2019.
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Synchronous

chronous communication
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Figure 2: Relative speedup with respect to the processed sub-
grids on one node for level 14. The red lines show the results
using HPX’s MP1 parcelport and the blue lines using HPX’s
libfabric parcelport, respectively. Note that for level 16 and
level 17 some data points are missing due to restricted node
hours for development projects.

Number of nodes

Figure 3: Ratio of processed sub grids per second between
HPXs libfabric and MPI Parcelport on Piz Daint (higher num-
bers mean libfabric is faster).

Reference

@ DaiB, Gregor, et al. "From piz daint to the stars: Simulation of stellar mergers using high-level abstractions.”
Proceedings of the international conference for high performance computing, networking, storage and analysis. 2019.
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Scaling on ORNL's Summit
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Node level scaling: Hydro
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Figure 2: Cells processed per second for the node level
scaling. For one up to 6 localities on one Summit
node. One locality was assigned to seven CPUs and one
NVIDIA® V100 GPU.

Reference

@ Diehl, Patrick, et al. "Octo-Tiger's New Hydro Module and Performance Using HPX+ CUDA on ORNL'’s Summit.”
arXiv:2107.10987 (2021). (Accepted IEEE Cluster 21)
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Distributes scaling: Hydro
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Figure 3: Cells processed per second for the distributed
scaling from one Summit node up to 128 Summit nodes.
Note that all six NVIDIA® V100 GPUs per node were
used.

Reference

@ Diehl, Patrick, et al. "Octo-Tiger's New Hydro Module and Performance Using HPX+ CUDA on ORNL's Summit.”
arXiv:2107.10987 (2021). (Accepted IEEE Cluster 21)
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Node level scaling: Hydro + Gravity
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Figure 4: Cells processed per second for the node level

scaling.

For one up to 6 localities on one Summit

node. One locality was assigned to seven CPUs and one
NVIDIA® V100 GPU.

@ Diehl, Patrick, et al. "Octo-Tiger's New Hydro Module and Performance Using HPX+ CUDA on ORNL'’s Summit.”
arXiv:2107.10987 (2021). (Accepted IEEE Cluster 21)

Patrick Diehl (CCT/LSU)

HPX & Octo-Tiger

October 2021 18/34



Distributed scaling: Hydro + Gravity
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4 T T T T T T T T T T
Sub-grid size Sub-grid size
2 —— 8% ik g
g 3 16% 8 S 16%
?f- ——  Optimal
a o
] o4

7 2 F
g 2
2 n
= 1 22
> I N
3
9]

0 20

L 1 Il L 1 1 1 Il l Il
o0 91 22 93 i 95 96 97 ol 9l 92 93 g1 of  o9b 97
# nodes # nodes
(a) (b)

Figure 5: Cells processed per second for the distributed
scaling from one Summit node up to 128 Summit nodes.
Note that all six NVIDIA & V100 GPUs per node were
used.

Reference

@ Diehl, Patrick, et al. "Octo-Tiger's New Hydro Module and Performance Using HPX+ CUDA on ORNL's Summit.”
arXiv:2107.10987 (2021). (Accepted IEEE Cluster 21)
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Kokkos - HPX
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Overhead
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Figure 4. Timings of FMM kernel execution for different configurations
using event polling or CUDA callbacks, combined CPU/GPU or GPU only
execution, and different CPU and GPU programming models/frameworks
in each case.

Reference

@ DaiB, Gregor, et al. "Beyond Fork-Join: Integration of Performance Portable Kokkos Kernels with HPX." 2021 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2021.
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Distributed scaling

Cells processed per second

Distributed scaling (Summit)
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Fig. 1. Cells processed per second (a) and speedup (b). On Piz Daint (blue line) we
were able to use 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1400, 1600, 1800, and 2000 nodes.
On Summit (violet line) we used 1, 2, 4, 8, 16, 32, 64, and 128 nodes. The speedup
was obtained with respect to the smallest amount of nodes the scenas (18 Million
cells) fitted on. Note that for the runs with and without APEX a different time on the
smallest nodes were used.
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Performance profiling
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Overhead measurements

Distributed scaling (CPU)
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Fig. 2. Cells processed per second on Piz Daint we were able to use 4, 8, 16,
32, 64, 128, 256, 512, 1024, 1400, 1600, 1800, and 2000 nodes. For these
runs, we executed the same scenario as in Figure la without GPUs. For each
amount of nodes, a run without APEX and with APEX pure CPU profiling
was done. Since the overhead here is around, lpercent it indicates that the
most overhead is introduced by the CUDA™ measurements using CUPTI.
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Fig. 1. Cells processed per second (a) and speedup (b). On Piz Daint (blue
line) we were able to use 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1400, 1600,
1800, and 2000 nodes. On Summit (violet line) we used 1, 2, 4, 8, 16,
64, and 128 nodes. The speedup was obtained with respect to the \mdllul
amount of nodes the scenario (18 Million cells) fitted on. Note that for the
runs with and without APEX a different time on the smallest nodes were
used.

HPX & Octo-Tiger October 2021 24 /34



Task trees and task graphs

(a) Task tree example. (b) Task graph example.

Figure 1: Task tree and task graph of Octo-Tiger as captured by APEX. Intensity of red color is correlated with the
node’s contribution to the overall runtime. The recursive structure of the octree is evident in the expanded tree. High
resolution images are available here (https://doi.org/10.6084/m9.figshare. 14666184.v1).

Reference

@ Diehl, Patrick, et al. "Octo-Tiger's New Hydro Module and Performance Using HPX+ CUDA on ORNL'’s Summit.”
arXiv:2107.10987 (2021). (Accepted IEEE Cluster 21)
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Sampled profile of tasks on Piz Daint and Summit

async schedule_parcel

- Pizbaint Mean: 191121
- Summit Mean: 14.579

usec
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Astrophysic validation
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Resolution ence: Double white dwarf merger
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Figure 4: The separation between the stars’ centers of mass is depicted in (a), normalized to the initial separation.
The donor mass loss rate is shown in (b), normalized to one donor mass per initial orbital period. The orbital angular
momentum is shown in (c), normalized to the initial orbital angular momentum. The time coordinate for all three plots
is shown in units of the initial orbital period.

Reference

@ Diehl, Patrick, et al. "Performance Measurements Within Asynchronous Task-Based Runtime Systems: A Double White
Dwarf Merger as an Application.” Computing in Science & Engineering 23.3 (2021): 73-81.
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Higher reconstruction in the hydro module

Table 5: The average error in the density field for the rotating star test using the old and new hydro modules. In these
units, the central density of the staris 1.

Refinement Level  Opening Criterion old New
6 0.5 241 107% 145 3 1073
6 0.35 522 % 107%  3.59 x 1071
7 0.5 252 107° 151 = 1073
7 0.35 449 1071 278 % 107!

Reference

@ Diehl, Patrick, et al. "Octo-Tiger's New Hydro Module and Performance Using HPX+ CUDA on ORNL's Summit.”
arXiv:2107.10987 (2021). (Accepted IEEE Cluster 21)
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Comparison with Flash |
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Figure 2. OCTO-TIGER vs. FLASH for a resolution of 256 and an angle of 45 deg for the shock tube. Difference in the x-velocities between simulations and
analytic solution at the end of the simulation, time ¢ = 0.2. The boundary condition in the top row is outflow without material inflow (diode), while in the
lower row it is an outflow condition that allows material to inflow back to the simulation domain (outflow)

Reference

@ Marcello, Dominic C., et al. "octo-tiger: a new, 3D hydrodynamic code for stellar mergers that uses hpx parallelization.”
Monthly Notices of the Royal Astronomical Society 504.4 (2021): 5345-5382.
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Comparison with Flash Il
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Figure 22. Scaling test carried out on the pulsating polytrope problem of a small size. QB2 refers to QueenBee2, BR3 refers to the BigRed3. The simulations
contain 128% ~ 2M cells or 16° = 4096 subgrids. The short horizontal segments mark the 0.5 efficiency

Reference

@ Marcello, Dominic C., et al. "octo-tiger: a new, 3D hydrodynamic code for stellar mergers that uses hpx parallelization.”
Monthly Notices of the Royal Astronomical Society 504.4 (2021): 5345-5382.
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Conlusion and Outlook
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Conclusion and Outlook

Integration of CUDA GPUs within HPX/Kokkos
— AMD still on development
— ISC paper in preparation

Scaling results with the new Kokkos/HPX implementation
Optimizing and scaling result with the AMD GPUs

Benchmark the radiation and port to GPU — most compute intense
kernel

Thanks for your attention! Questions?
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