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• Chares can offload computational kernels to the GPU (e.g., CUDA)

• Need to maximize asynchrony to prevent chares from not yielding to other chares
• CUDA streams

• Charm++ Hybrid API (HAPI) for asynchronous completion notification

Charm++ on GPU Systems
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https://charm.readthedocs.io/en/latest/charm++/manual.html#using-gpu-support-through-hapi


Computation-Communication Overlap



• Minimize synchronization for overlap

• Prioritize communication using CUDA stream priorities or coordination with CUDA events

• More details can be found in this ESPM2’20 paper

Automatic Computation-Communication Overlap
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https://doi.org/10.1109/ESPM251964.2020.00006


• MiniMD: proxy app for molecular dynamics
• Charm++ (decomposition, communication) and Kokkos (GPU kernels, host-device transfers)

• Beats CUDA-aware MPI even without GPU-aware communication due to overlap

• Limitation: overlap with overdecomposition does not improve performance at end of strong scaling

• https://github.com/minitu/miniMD/tree/charm/kokkos

Automatic Computation-Communication Overlap
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https://github.com/minitu/miniMD/tree/charm/kokkos


GPU-aware Communication



• Productivity: users can provide GPU buffers directly to the communication APIs

• Performance: direct transfers between GPUs (bypass host memory)

• Underlying technology: CUDA IPC, GPUDirect

• E.g., CUDA-aware MPI

GPU-Aware Communication
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• Also, Adaptive MPI and Charm4py

• How can we support all of our parallel programming models?

• How do we retain message-driven execution?

• Our approach: build on GPU support in UCX
• Caveat: UCX tagged API caters to MPI send/recv semantics

GPU-Aware Communication in Charm++
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Unified Communication X



• Sender’s data is packed together with metadata 

(e.g., information about target chare & method) 

• Message asynchronously sent to receiver

• Sits in receiver’s message queue until it is picked 

up by scheduler

Messaging API in Charm++
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void Sender::foo() {
// Send host buffer to a peer chare
chare_proxy[peer].bar(1024, my_buf);

}

void Receiver::bar(int count, double* buf) {
// Scheduler calls this method after picking
// up message from its message queue
for (i = 0; i < count; i++) {

f(buf[i]);
}

}

Metadata Host buffer

Sender Chare

Receiver Chare

PE Message queue



GPU Messaging API
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• Documentation

• Builds on Zero Copy API to preserve 

message-driven execution

• Still need metadata on host memory

• CkDeviceBuffer
• Contains information about GPU src/dst buffers

• Sent to receiver together with other metadata

• Receiver posts separate receives for GPU 

data once host-side message arrives

void Sender::foo() {
// Send GPU buffer to a peer chare
chare_proxy[peer].bar(1024, CkDeviceBuffer(my_buf));

}

// Post entry method: First called by the runtime
// Before receiving incoming GPU buffer
void Receiver::bar(int& count, double*& buf) {
// Specify destination GPU buffer
buf = recv_buf;

}

// Regular entry method: Called by the runtime
// once the GPU buffer has arrived
void Receiver::bar(int count, double* buf) {
// Has access to received GPU buffer
some_kernel<<<...>>>(count, buf);

}

Send host-side message

Sender Chare

Receiver Chare

Send GPU buffer

Host-side message arrival

1 2

GPU buffer arrival

Post receive for GPU buffer3

https://charm.readthedocs.io/en/latest/charm++/manual.html#direct-gpu-messaging


Channel API
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• Channels can be created between a pair of 

chares (not constrained to GPU data)

• Exchange only data with explicit sends & 

receives (similar to MPI)

• Does not transfer control flow

• Reduces overhead from receive for GPU data 

being delayed

• Will be part of release 7.1
• https://github.com/UIUC-PPL/charm/pull/3484

void Sender::foo() {
// Send GPU buffer to a peer chare
channel.send(data, size, &future);
CkWaitFuture(future);

}

void Receiver::bar() {
// Receive GPU buffer
channel.recv(data, size, &future);
CkWaitFuture(future);

}

Sender Chare

Receiver Chare

* Can also use Charm++ callbacks instead of futures

https://github.com/UIUC-PPL/charm/pull/3484


• Substantial improvements in latency & bandwidth

• TODO: Combine computation-communication overlap & GPU-aware communication

• More details in AsHES’21 paper

GPU-aware Communication Performance
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Intra-node Latency and Bandwidth on OLCF Summit

https://doi.ieeecomputersociety.org/10.1109/IPDPSW52791.2021.00079


CharminG: A GPU-resident Runtime System



• Computation is moving to GPU

• Program flow & communication are still driven by CPU
• Overheads from interactions (e.g., synchronization) & data transfers between CPU and GPU

• How do we utilize the upcoming direct GPU-NIC connections (e.g., OLCF Frontier) more efficiently?

• Can we improve performance by moving the entire execution to the GPU?

• Related work: Juggler [M. E. Belviranli, PPoPP ‘18]
• Per-SM task scheduler

• Task dependencies are resolved on the fly and entirely on the GPU

• Limited to a single node

• Not modularized, runtime system is embedded within the application

Motivation
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https://dl.acm.org/doi/abs/10.1145/3178487.3178492


• Develop fully GPU-resident runtime system

• Using Charm++ principles
• Overdecomposition

• Asynchronous message-driven execution

• Migratability

• Enable adaptive runtime features without interactions with host CPU

• Implemented working prototype

CharminG: Charm++ in GPUs

15



System Design
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Scheduler
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• Persistent kernel, single thread per GPU

• PE 0 (thread 0 on GPU 0) executes user’s main function
• Creates chare objects and initiates program flow

(invoke entry methods)

• All PEs keep receiving messages and executing entry 

methods until termination
• New kernels launched using CUDA dynamic parallelism to 

perform user’s data parallel tasks
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Message Queue
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• Implemented as MPSC ring buffer with wrap-around to utilize fixed NVSHMEM allocation
• Also working on SPSC-based implementation (O(N2) memory usage in exchange for less remote atomic operations)

• Producers (remote PEs)
• Try to acquire space in the consumer’s message queue using NVSHMEM atomics

• Once acquired, transfer message using NVSHMEM one-sided put

• Consumer (local PE, scheduler)
• Consumes messages starting from the lowest address

Consumer
(Scheduler)

Producers
(Remote PEs)

Fixed NVSHMEM allocation
(with wrap-around)

[ Multi-Producer Single-Consumer (MPSC) Ring Buffer ]



Jacobi2D Proxy App
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__global__ void jacobi_kernel(double* temp, double* new_temp,
int block_width, int block_height) {

int i = blockDim.x * blockIdx.x + threadIdx.x + 1;
int j = blockDim.y * blockIdx.y + threadIdx.y + 1;
if (i < block_height + 1 && j < block_width + 1) {
new_temp[IDX(i,j)] = (temp[IDX(i,j)] + temp[IDX(i,j-1)]
+ temp[IDX(i,j+1)] + temp[IDX(i-1,j)] + temp[IDX(i+1,j)]) * 0.2;

}
}

// Block is a chare object
struct Block : charming::chare {
__device__ Block() {}
__device__ void send_boundaries();
__device__ void recv_ghost(void* arg);
__device__ void update();

};

__device__ void Block::send_boundaries() {
block_proxy->invoke(left_neighbor, 1, left_boundary, ghost_size);
...

}

__device__ void Block::recv_ghost(void* arg) {
int dir = *(int*)arg;
double* ghost = (double*)((int*)arg + 1);
switch (dir) { ... } // Unpack if necessary
if (++recv_count == neighbor_count) update();

}

__device__ void Block::update() {
jacobi_kernel<<<grid_dim, block_dim>>>(...);
cudaDeviceSynchronize();

if (++iter == n_iters) charming::exit();
else send_boundaries();

}



Jacobi2D Preliminary Performance
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• Comparison against non-blocking CUDA-aware MPI based implementation

• Up to 64 nodes (256 NVIDIA V100 GPUs) on LLNL Lassen

• Much room for performance improvement

[ Weak Scaling ]
Base: 16K x 16K doubles

[ Strong Scaling ]
16K x 16K doubles



• Prototype working on NVIDIA GPUs
• C++ templates to support user-defined chare types

• NVSHMEM for device-initiated GPU communication

• CUDA dynamic parallelism to launch new kernels

• Future work
• Analyze and improve performance (communication, scheduler, launching of user kernels)

• Explore computation-communication overlap with overdecomposition

Current Status & Future Work
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• GPU features in Charm++
• Asynchronous execution & completion notification using CUDA streams & HAPI

• GPU-aware communication: GPU Messaging API, Channel API

• CharminG: GPU-resident runtime system

Summary
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Thank You!
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