
Improving the Performance of Charm++ Applications
on GPU Systems

Jaemin Choi

Charm++ Workshop 2021
Oct 19, 2021

• Chares can offload computational kernels to the GPU (e.g., CUDA)

• Need to maximize asynchrony to prevent chares from not yielding to other chares
• CUDA streams

• Charm++ Hybrid API (HAPI) for asynchronous completion notification

Charm++ on GPU Systems

2

Chares

C

PE Message queue

A

B A

https://charm.readthedocs.io/en/latest/charm++/manual.html#using-gpu-support-through-hapi

Computation-Communication Overlap

• Minimize synchronization for overlap

• Prioritize communication using CUDA stream priorities or coordination with CUDA events

• More details can be found in this ESPM2’20 paper

Automatic Computation-Communication Overlap

4

https://doi.org/10.1109/ESPM251964.2020.00006

• MiniMD: proxy app for molecular dynamics
• Charm++ (decomposition, communication) and Kokkos (GPU kernels, host-device transfers)

• Beats CUDA-aware MPI even without GPU-aware communication due to overlap

• Limitation: overlap with overdecomposition does not improve performance at end of strong scaling

• https://github.com/minitu/miniMD/tree/charm/kokkos

Automatic Computation-Communication Overlap

5

https://github.com/minitu/miniMD/tree/charm/kokkos

GPU-aware Communication

• Productivity: users can provide GPU buffers directly to the communication APIs

• Performance: direct transfers between GPUs (bypass host memory)

• Underlying technology: CUDA IPC, GPUDirect

• E.g., CUDA-aware MPI

GPU-Aware Communication

7

CPU

GPU

N
IC

CPU

GPU

N
IC

[Host-staged]

CPU

GPU

N
IC

CPU

GPU

N
IC

[Direct]

• Also, Adaptive MPI and Charm4py

• How can we support all of our parallel programming models?

• How do we retain message-driven execution?

• Our approach: build on GPU support in UCX
• Caveat: UCX tagged API caters to MPI send/recv semantics

GPU-Aware Communication in Charm++

8

Unified Communication X

• Sender’s data is packed together with metadata

(e.g., information about target chare & method)

• Message asynchronously sent to receiver

• Sits in receiver’s message queue until it is picked

up by scheduler

Messaging API in Charm++

9

void Sender::foo() {
// Send host buffer to a peer chare
chare_proxy[peer].bar(1024, my_buf);

}

void Receiver::bar(int count, double* buf) {
// Scheduler calls this method after picking
// up message from its message queue
for (i = 0; i < count; i++) {

f(buf[i]);
}

}

Metadata Host buffer

Sender Chare

Receiver Chare

PE Message queue

GPU Messaging API

10

• Documentation

• Builds on Zero Copy API to preserve

message-driven execution

• Still need metadata on host memory

• CkDeviceBuffer
• Contains information about GPU src/dst buffers

• Sent to receiver together with other metadata

• Receiver posts separate receives for GPU

data once host-side message arrives

void Sender::foo() {
// Send GPU buffer to a peer chare
chare_proxy[peer].bar(1024, CkDeviceBuffer(my_buf));

}

// Post entry method: First called by the runtime
// Before receiving incoming GPU buffer
void Receiver::bar(int& count, double*& buf) {
// Specify destination GPU buffer
buf = recv_buf;

}

// Regular entry method: Called by the runtime
// once the GPU buffer has arrived
void Receiver::bar(int count, double* buf) {
// Has access to received GPU buffer
some_kernel<<<...>>>(count, buf);

}

Send host-side message

Sender Chare

Receiver Chare

Send GPU buffer

Host-side message arrival

1 2

GPU buffer arrival

Post receive for GPU buffer3

https://charm.readthedocs.io/en/latest/charm++/manual.html#direct-gpu-messaging

Channel API

11

• Channels can be created between a pair of

chares (not constrained to GPU data)

• Exchange only data with explicit sends &

receives (similar to MPI)

• Does not transfer control flow

• Reduces overhead from receive for GPU data

being delayed

• Will be part of release 7.1
• https://github.com/UIUC-PPL/charm/pull/3484

void Sender::foo() {
// Send GPU buffer to a peer chare
channel.send(data, size, &future);
CkWaitFuture(future);

}

void Receiver::bar() {
// Receive GPU buffer
channel.recv(data, size, &future);
CkWaitFuture(future);

}

Sender Chare

Receiver Chare

* Can also use Charm++ callbacks instead of futures

https://github.com/UIUC-PPL/charm/pull/3484

• Substantial improvements in latency & bandwidth

• TODO: Combine computation-communication overlap & GPU-aware communication

• More details in AsHES’21 paper

GPU-aware Communication Performance

12

Intra-node Latency and Bandwidth on OLCF Summit

https://doi.ieeecomputersociety.org/10.1109/IPDPSW52791.2021.00079

CharminG: A GPU-resident Runtime System

• Computation is moving to GPU

• Program flow & communication are still driven by CPU
• Overheads from interactions (e.g., synchronization) & data transfers between CPU and GPU

• How do we utilize the upcoming direct GPU-NIC connections (e.g., OLCF Frontier) more efficiently?

• Can we improve performance by moving the entire execution to the GPU?

• Related work: Juggler [M. E. Belviranli, PPoPP ‘18]
• Per-SM task scheduler

• Task dependencies are resolved on the fly and entirely on the GPU

• Limited to a single node

• Not modularized, runtime system is embedded within the application

Motivation

14

https://dl.acm.org/doi/abs/10.1145/3178487.3178492

• Develop fully GPU-resident runtime system

• Using Charm++ principles
• Overdecomposition

• Asynchronous message-driven execution

• Migratability

• Enable adaptive runtime features without interactions with host CPU

• Implemented working prototype

CharminG: Charm++ in GPUs

15

System Design

16

GPU
(PE 0)

Scheduler

Chares

NVSHMEM
Message Queue

GPU
(PE 1)

Scheduler

Chares

Message Queue

GPU

Chares

Global memory
& atomics

NVSHMEM

GPU-wide
Msg. Queue

SM (PE 1)

Scheduler

Msg. Queue

SM (PE 0)

Scheduler

Msg. Queue

GPU

Chares

GPU-wide
Msg. Queue

2 SMs (PE 2)

Scheduler

Msg. Queue

Scheduler

Msg. Queue

... ...[Current Prototype]

[Future]

Scheduler

17

• Persistent kernel, single thread per GPU

• PE 0 (thread 0 on GPU 0) executes user’s main function
• Creates chare objects and initiates program flow

(invoke entry methods)

• All PEs keep receiving messages and executing entry

methods until termination
• New kernels launched using CUDA dynamic parallelism to

perform user’s data parallel tasks

GPU
(PE 0)

Scheduler

Chares

NVSHMEM
Message Queue

GPU
(PE 1)

Scheduler

Chares

Message Queue

Message Queue

18

• Implemented as MPSC ring buffer with wrap-around to utilize fixed NVSHMEM allocation
• Also working on SPSC-based implementation (O(N2) memory usage in exchange for less remote atomic operations)

• Producers (remote PEs)
• Try to acquire space in the consumer’s message queue using NVSHMEM atomics

• Once acquired, transfer message using NVSHMEM one-sided put

• Consumer (local PE, scheduler)
• Consumes messages starting from the lowest address

Consumer
(Scheduler)

Producers
(Remote PEs)

Fixed NVSHMEM allocation
(with wrap-around)

[Multi-Producer Single-Consumer (MPSC) Ring Buffer]

Jacobi2D Proxy App

19

__global__ void jacobi_kernel(double* temp, double* new_temp,
int block_width, int block_height) {

int i = blockDim.x * blockIdx.x + threadIdx.x + 1;
int j = blockDim.y * blockIdx.y + threadIdx.y + 1;
if (i < block_height + 1 && j < block_width + 1) {
new_temp[IDX(i,j)] = (temp[IDX(i,j)] + temp[IDX(i,j-1)]
+ temp[IDX(i,j+1)] + temp[IDX(i-1,j)] + temp[IDX(i+1,j)]) * 0.2;

}
}

// Block is a chare object
struct Block : charming::chare {
__device__ Block() {}
__device__ void send_boundaries();
__device__ void recv_ghost(void* arg);
__device__ void update();

};

__device__ void Block::send_boundaries() {
block_proxy->invoke(left_neighbor, 1, left_boundary, ghost_size);
...

}

__device__ void Block::recv_ghost(void* arg) {
int dir = *(int*)arg;
double* ghost = (double*)((int*)arg + 1);
switch (dir) { ... } // Unpack if necessary
if (++recv_count == neighbor_count) update();

}

__device__ void Block::update() {
jacobi_kernel<<<grid_dim, block_dim>>>(...);
cudaDeviceSynchronize();

if (++iter == n_iters) charming::exit();
else send_boundaries();

}

Jacobi2D Preliminary Performance

20

• Comparison against non-blocking CUDA-aware MPI based implementation

• Up to 64 nodes (256 NVIDIA V100 GPUs) on LLNL Lassen

• Much room for performance improvement

[Weak Scaling]
Base: 16K x 16K doubles

[Strong Scaling]
16K x 16K doubles

• Prototype working on NVIDIA GPUs
• C++ templates to support user-defined chare types

• NVSHMEM for device-initiated GPU communication

• CUDA dynamic parallelism to launch new kernels

• Future work
• Analyze and improve performance (communication, scheduler, launching of user kernels)

• Explore computation-communication overlap with overdecomposition

Current Status & Future Work

21

• GPU features in Charm++
• Asynchronous execution & completion notification using CUDA streams & HAPI

• GPU-aware communication: GPU Messaging API, Channel API

• CharminG: GPU-resident runtime system

Summary

22

Thank You!

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

