
Vector Load Balancing in
Charm++

Ronak Buch
Parallel Programming Laboratory, University of Illinois at Urbana-Champaign

October 18, 2021
19th Annual Workshop on Charm++ and Its Applications

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 1/26

1/26



Dynamic Load Balancing

• Adaptively arrange work on PEs to maximize
performance

• Execution time often determined by maximum load
on a PE

• Enabled by migratable objects, load measurement
• Necessary for scaling all but very regular, static

applications

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 2/26
2/26



What is Load?
• Load is a proxy value used to represent performance

◦ Metric measuring utilization of a resource over a period

• Real goal is to minimize execution time, not balance
load

• Traditionally, balancing for equal CPU time per PE by
itself has been sufficient for high performance

• However, can we do better by considering a richer
set of metrics?

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 3/26
3/26



Vector Load Balancing

• Rather than being a single scalar value, load is now a
vector of multiple values

• Composed of things like:
◦ Various resource measurements, e.g.

CPU/GPU/network/memory/IO
◦ Timings of separate phases of an iteration
◦ Application specific parameters, e.g. number of particles

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 4/26

4/26



Measuring Vector Loads

• Features and APIs to add vector load measurement
have been added to Charm++
◦ Application can add call to indicate phase boundaries, RTS

will automatically measure per-phase load
◦ Runtime flags to automatically add communication load

(msgs, bytes sent)
◦ Can specify load vector explicitly
◦ GPU load, memory use, etc. in the works

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 5/26

5/26



Vector Balancing

• Extra dimensionality makes vector load balancing
computationally difficult

• Objects can no longer be totally ordered
• Want to minimize the “maximum” over all

dimensions simultaneously
◦ Single variable optimization is now multivariable

• New LB strategies are needed

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 6/26

6/26



Vector Strategies

• A simple strategy finds the object with maximum
load across all dimensions and places it on PE with
minimum load in that dimension
◦ Only works well when object has load in only one dimension,

e.g. (0, 0, 0, l, 0)
• For more realistic cases, have to consider vector

holistically

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 7/26

7/26



Holistic Vector Strategies

• Place objects based on largest load in vector as
before, then refine partitions to improve balance
(used by METIS)

• Find object with maximum norm and place on PE
with minimum norm after placement
◦ Works well, but computationally expensive
◦ PE “weight” varies with object, i.e. ∥(2, 0)∥2 < ∥(0, 3)∥2, but

when adding object with (3, 0), ∥(5, 0)∥2 > ∥(3, 3)∥2

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 8/26
8/26



NormLB - Exhaustive
• Initial implementation orders objects by norm and

then does exhaustive search across all PEs for
placement
◦ Quality is exactly as desired
◦ Performance is very poor (Θ(p · o))

Method Makespan Strategy Time (s)
Greedy 1965.83 0.32
Norm 1674.86 22.72

Table: Greedy vs Norm (1e4 PEs, 1e6 objs)

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 9/26
9/26



NormLB - k-d
• To improve performance, we use a k-d tree to guide

PE selection
◦ Arbitrary dimension space partitioning tree
◦ Allows PE search to be bounded as candidates are found

• k-d works well for searching in static point set, but
here, tree updated after every assignment
◦ Costly update operations
◦ Pattern of updates often results in unbalanced tree

• Can be worse than the naïve exhaustive version!

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 10/26
10/26



Random Relaxed k-d
• Random Relaxed k-d trees help solve these

problems; two key differences from standard k-d:
Relaxed Instead of cycling through discriminants,

1, 2, . . . , k, 1, . . ., each node stores arbitrary
discriminant j ∈ {1, 2, . . . , k}

Random Discriminant is uniformly randomly chosen
and each insertion has some probability of
becoming the root, or root of subtree, . . .

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 11/26

11/26



Random Relaxed k-d

Figure: k-d Figure: rk-d

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 12/26
12/26



NormLB - rk-d
• These low-cost arbitrary updates and stochastic

balancing improve LB (all provide same results)

Method Strategy Time (s)
1e4 PEs, 1e5 objs 1e4 PEs, 1e6 objs

Exhaustive 2.18 21.54
Standard k-d 0.93 27.55
Relaxed k-d 0.57 7.96

Table: Performance of Norm-Based Strategies

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 13/26
13/26



Vector LB Performance - AMPI

AMPI - No Load Balancing

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 14/26

14/26



Vector LB Performance - AMPI

AMPI - Regular Load Balancing

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 15/26

15/26



Vector LB Performance - AMPI

AMPI - Vector Load Balancing

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 16/26

16/26



Vector LB Performance - AMPI

LB Off

Phase Unaware
(1.44x speedup)

Phase Aware
(1.67x speedup)

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 17/26

17/26



Vector LB Performance
Timeline of phase-based application:

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 18/26
18/26



Vector LB Performance

No LB
Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 19/26

19/26



Vector LB Performance

Scalar LB
Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 20/26

20/26



Vector LB Performance

Vector LB
Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 21/26

21/26



Locality in LB
• Vector loads give performance insight with increased

nuance and detail
• However, performance may also vary based on the

location of objects
◦ The distance between communicating objects changes

latency, load on links, routers
◦ Balanced via graph partitioners, geometric strategies

• Currently captured via RTS communication graph or
application provided positions
◦ For vector: first application positions, then comm graph

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 22/26
22/26



LB Position API
• Geometric strategies use ad hoc data passing

◦ e.g. ChaNGa uses LBRegisterObjUserData to pass in void*
◦ Each application needs its own custom LB strategies

• Adding standardized LB position API to Charm++
◦ setObjPosition(const vector<LBRealType>& pos)
◦ Allows positions of arbitrary dimension
◦ Load balancers can opt-in for positions at registration time

• Allows for generic, application agnostic strategies
• Fully implemented, no results yet, currently testing

with ChaNGa and other applications, slated in 7.1
Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 23/26

23/26



Vector Geometric Strategies
• Currently using orthogonal recursive bisection with

position API
• In scalar world, find split coordinate that minimizes

differences in load between both halves
• In vector world, things are more complicated

◦ Each dimension may have a different split coordinate
◦ Select by taking average, minimizing square difference, etc.
◦ Rather than splitting at a single coordinate, allow objects in

some neighborhood to go to either half
◦ Still topic of active experimentation

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 24/26
24/26



Future Vector LB Work
• Dimensionality reduction to simplify problem
• Performance can still be an issue

◦ Have bounded versions of Norm LBs to tradeoff quality and
performance

◦ Further optimizations of search space are possible
◦ Can use relaxation and approximation to tune

• Add support for constraint based objective functions
rather than always minimizing everything

• Support for GPU, cache, memory, I/O load, comm
graph

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 25/26
25/26



Conclusions

• Complex, modern applications need sophisticated
performance measurement

• Combining different metrics into a vector has been
shown to improve the quality of LB

• New techniques must maintain communication
locality to be useful for certain class of applications

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 26/26
26/26


