Vector Load Balancing in
Charm++

Ronak Buch

Parallel Programming Laboratory, University of Illinois at Urbana-Champaign

October 18,2021
19th Annual Workshop on Charm++ and Its Applications

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Dynamic Load Balancing

» Adaptively arrange work on PEs to maximize
performance

 Execution time often determined by maximum load
onaPE

e Enabled by migratable objects, load measurement

» Necessary for scaling all but very regular, static
applications

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

What is Load?

e Load is a proxy value used to represent performance
o Metric measuring utilization of a resource over a period

 Real goal is to minimize execution time, not balance
load

« Traditionally, balancing for equal CPU time per PE by
itself has been sufficient for high performance

» However, can we do better by considering a richer
set of metrics?

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Vector Load Balancing

 Rather than being a single scalar value, load is now a
vector of multiple values

e Composed of things like:
o Various resource measurements, e.g.
CPU/GPU/network/memory/1O
o Timings of separate phases of an iteration
o Application specific parameters, e.g. number of particles

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Measuring Vector Loads

e Features and APIs to add vector load measurement
have been added to Charm++

o Application can add call to indicate phase boundaries, RTS
will automatically measure per-phase load

o Runtime flags to automatically add communication load
(msgs, bytes sent)

o Can specify load vector explicitly

o GPU load, memory use, etc. in the works

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Vector Balancing

 Extra dimensionality makes vector load balancing
computationally difficult

e Objects can no longer be totally ordered

e Want to minimize the “maximum” over all
dimensions simultaneously
o Single variable optimization is now multivariable

e New LB strategies are needed

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Vector Strategies

» Asimple strategy finds the object with maximum
load across all dimensions and places it on PE with
minimum load in that dimension

o Only works well when object has load in only one dimension,
eg. (0,0,0,,0)
e For more realistic cases, have to consider vector
holistically

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Holistic Vector Strategies

* Place objects based on largest load in vector as
before, then refine partitions to improve balance
(used by METIS)

 Find object with maximum norm and place on PE

with minimum norm after placement

o Works well, but computationally expensive
o PE “weight” varies with object, i.e. ||(2,0)]||, < ||(0,3)]|,, but
when adding object with (3, 0), ||(5,0) ||, > [|(3,3)]l5

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

NormLB - Exhaustive

e Initial implementation orders objects by norm and
then does exhaustive search across all PEs for
placement
o Quality is exactly as desired
o Performance is very poor (O(p - 0))

Method | Makespan | Strategy Time (s)
Greedy | 1965.83 0.32
Norm 1674.86 22.72

Table: Greedy vs Norm (1e4 PEs, 1e6 objs)

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

NormLB - k-d

» To improve performance, we use a k-d tree to guide
PE selection
o Arbitrary dimension space partitioning tree
o Allows PE search to be bounded as candidates are found
 k-d works well for searching in static point set, but
here, tree updated after every assignment

o Costly update operations
o Pattern of updates often results in unbalanced tree

e Can be worse than the naive exhaustive version!

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Random Relaxed k-d

e Random Relaxed k-d trees help solve these
problems; two key differences from standard k-d:

Relaxed Instead of cycling through discriminants,
1,2,...,k,1,..., each node stores arbitrary
discriminant j € {1,2,... k}

Random Discriminant is uniformly randomly chosen
and each insertion has some probability of
becoming the root, or root of subtree, . ..

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Random Relaxed k-d

T3

L2
L
o5
L6

T9

Z10

T1

L7

T8

Figure: k-d

Ronak Buch rabuch2@illinois.edu

Zg

10

Figure: rk-d

Vector Load Balancing in Charm++

NormLB - rk-d

o These low-cost arbitrary updates and stochastic
balancing improve LB (all provide same results)

Method Strategy Time (s)
le4 PEs, 1e5 objs | 1e4 PEs, 1e6 objs
Exhaustive 2.18 21.54
Standard £-d 093 27.55
Relaxed k-d 0.57 796

Table: Performance of Norm-Based Strategies

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

13/26

Vector LB Performance - AMPI

o

PEO
(57, 57)

PE 1
(57,57)
PE 2

(57, 57)

PE 3
(57, 57)

Ronak Buch rabuch2@illinois.edu

Time In Microseconds
100,000,000 200,000,000 300,000,000

AMPI - No Load Balancing

Vector Load Balancing in Charm++

Vector LB Performance - AMPI

Time In Microseconds
100,000,000 200,000,000 300,000,000

o

PEO
(73, 57)

PE 1
(73, 57)
PE 2

(73, 57)

PE 3
(73, 57)

AMPI - Regular Load Balancing

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Vector LB Performance - AMPI

Time In Microseconds
100,000,000 200,000,000 300,000,000

o

PEO
(77, 57)

PE 1
(77, 57)
PE 2
(77, 57)

PE 3
(77, 57)

AMPI - Vector Load Balancing

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Vector LB Performance - AMPI

LB Off

PEO
(57,57)
PE1
67,570
PE2
(57,57)
PE3
(57,57)

Phase Unaware -

(1.44x speedup) .

Phase Aware

(1.67x speedup) -

Ronak Buch rabuch2@illinois.edu

PEL
(73,57)

PE3
73,57

E0
(77,57)

PEL
(77,57)

PE3
7,

(77,57)

8

4
z
2

__c __
g
S k:
3
3 3
8 8
s s
3
a
Sa
83
X
=8
g3
S
g g
S S
3 3
18 18
S S
3 3

8
8
8

ii

8
4
z

8

To
2
S
3
3
8
s
3
a
Sa
83
XS
=8
g3
S
g
S
3
18
8 - H_

g

31

i

Vector Load Balancing in Charm++

Vector LB Performance

Timeline of phase-based application:

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Vector LB Performance

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Vector LB Performance

Scalar LB

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Vector LB Performance

Vector LB
Vector Load Balancing in

Ronak Buch rabuch2@illinois.edu

Locality in LB

 Vector loads give performance insight with increased

nuance and detail

e However, performance may also vary based on the
location of objects
o The distance between communicating objects changes

latency, load on links, routers

o Balanced via graph partitioners, geometric strategies

e Currently captured via RTS communication graph or
application provided positions
o For vector: first application positions, then comm graph

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

LB Position API

Geometric strategies use ad hoc data passing

o e.g. ChaNGa uses LBRegisterObjUserData to passin voidx
o Each application needs its own custom LB strategies
Adding standardized LB position APl to Charm++

o setObjPosition(const vector<LBRealType>& pos)
o Allows positions of arbitrary dimension
o Load balancers can opt-in for positions at registration time

Allows for generic, application agnostic strategies
Fully implemented, no results yet, currently testing
with ChaNGa and other applications, slated in 7.1

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Vector Geometric Strategies

 Currently using orthogonal recursive bisection with
position API

e In scalar world, find split coordinate that minimizes

differences in load between both halves
e In vector world, things are more complicated
o Each dimension may have a different split coordinate
o Select by taking average, minimizing square difference, etc.
o Rather than splitting at a single coordinate, allow objects in
some neighborhood to go to either half
o Still topic of active experimentation

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Future Vector LB Work

e Dimensionality reduction to simplify problem
e Performance can still be an issue
o Have bounded versions of Norm LBs to tradeoff quality and
performance
o Further optimizations of search space are possible
o Can use relaxation and approximation to tune

e Add support for constraint based objective functions
rather than always minimizing everything

 Support for GPU, cache, memory, I/0 load, commm

graph

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++ 4

Conclusions

e Complex, modern applications need sophisticated
performance measurement

e Combining different metrics into a vector has been
shown to improve the quality of LB

» New techniques must maintain communication
locality to be useful for certain class of applications

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

