
Challenges of Programming models for
The Supercomputer “Fugaku” and
Beyond

Mitsuhisa Sato
Team Leader of Programming Environment Research Team
Deputy Director, RIKEN Center for Computational Science (R-CCS)
Professor (Cooperative Graduate School Program), University of Tsukuba

Thanks to Tetsuya Odajima and Yuetsu Kodama, … and many project members
FLAGSHIP 2020 project, R-CCS

Charm++ workshop, Nov. 18, 2021

Outline of my talk

3

 Co-design of A64FX processor for “Fugaku” in FLAGSHIP 2020 project
 Design target and KPIs, and co-design
 Overview of A64FX processor

 A64FX was developed by Fujitsu and RIKEN, and the first processor equipped with Arm SVE.

 The Performance results of A64FX processor
 UK benchmark and LULESH, Open-source HPC software, SPEC® benchmark
 A64FX performance characteristics & performance tuning, Power consumption

 System software overview of “Fugaku”
 Challenges of programming models for Fugaku and beyond
 Concluding remarks

Charm++ workshop

KPIs on Fugaku development in FLAGSHIP 2020 project

3 KPIs (key performance indicator) were defined as the design target for
Fugaku development

 1. Extreme Power-Efficient System
 Maximum performance under Power consumption of 30 - 40MW (for system)

 2. Effective performance of target applications
 It is expected to exceed 100 times higher than the K computer’s performance in some

applications

18/Nov/2021 4Charm++ workshop

Target Application’s Performance
 Performance Targets

 100 times faster than K for some applications (tuning included)
 30 to 40 MW power consumption

Area Priority Issue Performance
Speedup over K Application Brief description

Health and
longevity

1. Innovative computing infrastructure for drug
discovery x125+ GENESIS MD for proteins

2. Personalized and preventive medicine using big
data x8+ Genomon Genome processing

(Genome alignment)

Disaster
prevention and
Environment

3. Integrated simulation systems induced by
earthquake and tsunami x45+ GAMERA Earthquake simulator (FEM in unstructured & structured grid)

4. Meteorological and global environmental
prediction using big data x120+ NICAM+

LETKF
Weather prediction system using Big data (structured grid stencil &

ensemble Kalman filter)

Energy issue

5. New technologies for energy creation, conversion
/ storage, and use x40+ NTChem Molecular electronic

(structure calculation)

6. Accelerated development of innovative clean
energy systems x35+ Adventure Computational Mechanics System for Large Scale Analysis and Design

(unstructured grid)

Industrial
competitivenes
s enhancement

7. Creation of new functional devices and high-
performance materials x30+ RSDFT Ab-initio program

(density functional theory)

8. Development of innovative design and production
processes x25+ FFB Large Eddy Simulation (unstructured grid)

Basic science 9. Elucidation of the fundamental laws and evolution
of the universe x25+ LQCD Lattice QCD simulation (structured grid Monte Carlo)

 Predicted Performance of 9 Target Applications As of 2019/05/14

https://postk-web.r-ccs.riken.jp/perf.html

5Charm++ workshop

https://postk-web.r-ccs.riken.jp/perf.html

KPIs on Fugaku development in FLAGSHIP 2020 project

3 KPIs (key performance indicator) were defined as the design target for
Fugaku development

 1. Extreme Power-Efficient System
 Maximum performance under Power consumption of 30 - 40MW (for system)

 2. Effective performance of target applications
 It is expected to exceed 100 times higher than the K computer’s performance in some

applications

 3. Ease-of-use system for wide-range of users

18/Nov/2021 6Charm++ workshop

Codesign of “Fugaku”

7

3 Design Targets:
 1. Extreme Power-Efficient System

 Maximum performance under Power consumption of 30 - 40MW (for system)
 2. Effective performance of target applications

 It is expected to exceed 100 times higher than the K computer’s performance
in some applications

 3. Ease-of-use system for wide-range of users

Codesign to meet these
3 design targets

Cool (Low-power)

technology is
important!!

Charm++ workshop

Supercomputer “Fugaku” and A64FX processor

 Ultra-scale “general-purpose” manycore system:
158,976 nodes (1 processor/node, total 7.6 M
cores, theoretical peek 537PFLOPS (DP))

 Arm-based manycore processor: Fujitsu A64FX
(Armv8.2-A SVE 512bit SIMD, #core 48 + 2/4,
3TF@2.0GHz, boost to 2.2GHz)
 12 cores in a cluster of cores called CMG,

connected to L2 and HBM memory chips
 Advanced Memory technology: HBM2 32 GiB,

1024 GB/s bandwidth, packaged in CPU chip
 Scalable Interconnect: ToFu-D interconnect

18/Nov/2021 9

CMG(Core-Memory-Group): NUMA node
12+1 core

HBM2: 8GiB

 Standard programing model is OpenMP-MPI hybrid
programming. running each MPI process on a NUMA
node (CMG).

 48 threads OpenMP is also supported.

Diagram of A64FX processor
Charm++ workshop

Die Photograph of A64FX processor

 TSMC 7nm FinFET
 400 mm^2
 HBM2 chips are mounted on Si-

interposer connected by TSMC CoWoS
technology

18/Nov/2021 10

 10

HBM2
Charm++ workshop

11

 A64FX: 52 cores (48 cores), 400 mm² die size (8.3 mm²/core), 7nm FinFET process
(TSMC)

 Xeon Skylake: 20 tiles (5x4), 18 cores, ~485 mm² die size (estimated) (26.9 mm²/core),
14 nm process (Intel)

 A64FX core is more than 3 times smaller per core.

Comparison of Die-size

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)

Xeon Skylake, High
Core Count:
4 x 5 tiles, 18 cores, 2
tiles used for memory
interface
485 mm² (22 x 22)

https://www.fujitsu.com/jp/solutions/business-technology/tc/
catalog/ff2019-post-k-computer-development.pdf

A64FX:
400 mm²
(20 x 20)

18/Nov/2021 Charm++ workshop

 Comparison with two nodes of TX2 (dual) and Skylake (dual)
 Good scalability by increasing the number of threads within CMG.
 The performance of one A64FX is comparable (better) to that of two nodes (4 sockets) of Skylake

Benchmark result of CloverLeaf

18/Nov/2021 13

0

50

100

150

200

250

300

350

1 4 8 12 1 4 8 12 1 4 8 12

1 2 4

El
ap

se
d

tim
e

[s
ec

]

threads / process
processes

A64FX TX2 SKL

0

5

10

15

20

25

30

35

1 4 8 12 1 4 8 12 1 4 8 12

1 2 4

Re
la

tiv
e

pe
rf

or
m

an
ce

threads / process
process

A64FX TX2 SKL

Execution time Relative performance
(to 1T/A64FX)

Taken form UK benchmarks:
A hydrodynamics mini-app to solve the
compressible Euler equations in 2D, using
an explicit, second-order method

Charm++ workshop

Performance and Power-efficiency of HPC OSS

14

 Several Open-source software were already ported and evaluated.
 Evaluation using one chip A64FX and dual chips of Xeon.
 The almost same performance to dual sockets of Xeon with half of power

consumption.

0 10 20 30 40 50 60 70 80 90 100 110

OpenFOAM

FrontISTR

ABINIT

SALMON

SPECFEM3D

WRF

MPAS

execution time average power

Performance and power
efficiency of open-source
applications
(results are shown in %,
relative to Intel Xeon
Platinum 8268
(Cascadelake, 2.90 GHz,
24 cores/socket) (dual
sockets))

Charm++ workshop

 A64FX performance is less than Thx2 and Intel one
 We found low vectorization (SIMD (SVE) instructions ratio is a few %)
 We need more code tuning for more vectorization using SIMD

LULESH

18/Nov/2021 15

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

1 4 8 12 1 3 6

1 8

FO
M

 [z
/s

]

threads / process
processes

A64FX TX2 SKL

Charm++ workshop

16

 Storage format is important:
 Sliced ELLPACK format shows significantly better

performance than CSR, but only when it is
vectorized manually using intrinsics.”

 CSR is not good even with manual vectorizing.
 Vectorizing with SVE is important to get

memory bandwidth.

How to improve the performance of sparse-matrix code

18/Nov/2021

B. Brank, S. Nassyr, F. Pouyan and D. Pleiter, "Porting
Applications to Arm-based Processors," EAHPC
Workshop, IEEE CLUSTER 2020 , Kobe, Japan, 2020,
pp. 559-566, doi: 10.1109/CLUSTER49012.2020.00079.

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12

GB
/s

thd

SVE NOSVE nosimd

Memory bandwidth with hardware prefetch

Charm++ workshop

SPEC CPU🄬🄬 2017 integer Speed

17

 The performance of A64fX is about ¼
performance of Xeon in single thread.
 Fugaku uses normal mode (2.0GHz) with Fujitsu

compiler tcsds-1.2.30a. For c and c++, clang mode
is used.

 Xeon is Cisco UCS B200 M5 (Platinum 8168(Skylake),
2.7GHz, 24core x 2 chip, turbo on) with icc 18.0.2.

 Reference machine is UltraSPARC-IV+(2.1GHz,
2cores x 4 chip)

 The reason for the low single thread
integer performance of A64FX is that
 the SIMD rate is low in SPEC CPU/int and
 the frequency and the O3 resource are

limited for the throughput-oriented
architecture of A64FX.

Lang Threads A64FX Xeon
600.perlbench_s C 1 1.20 6.20
602.gcc_s C 1 2.63 9.57
605.mcf_s C 1 3.42 11.2
620.omnetpp_s C++ 1 1.26 7.31
623.xalancbmk_s C++ 1 1.61 9.46
625.x264_s C 1 2.06 11.6
631.deepsjeng_s C++ 1 1.37 5.17
641.leela_s C++ 1 1.26 4.36
648.exchange2_s F90 1 1.42 13.2
657.xz_s C/OpenMP 48 8.52 23.5
SPECspeed®2017_int_base 1.98 9.07

COPTIMIZE = -Nclang -Ofast -mcpu=a64fx+sve -ffj-no-fp-relaxed -ffj-eval-
concurrent -fsave-optimization-record -fopenmp -Nlst=t -Koptmsg=2
CXXOPTIMIZE = -Nclang -Ofast -mcpu=a64fx+sve -ffj-no-fp-relaxed -ffj-
eval-concurrent -fsave-optimization-record -fopenmp -Nlst=t -Koptmsg=2
FOPTIMIZE = -Kfast,openmp -Nlst=t -Koptmsg=2

https://www.spec.org/cpu2017/results/res2018q2/cpu2017-20180529-06367.txt

Charm++ workshop

SPEC OMP® 2012

18

 The performance of A64FX using 48 thread
is about 65% performance of Xeon using 56
thread (28 cores).
 Fugaku uses normal mode (2.0GHz) with Fujitsu compiler

tcsds-1.2.30a. For c and c++, clang mode is used.

 Xeon is Cisco C240 M5 (Platinum 8280(Cascade Lake),
2.7GHz, 28core x 1chip, hyperthread on (56threads), turbo
on) with icc 19.0.1.

 Reference machine is Sun Fire X4140 (AMD Opteron 2384,
2.7GHz 4core x 2chips)

 For some programs (swim and mgrid),
A64FX brings extremely good performance
due to HBM2.

 For 350.md, performance improvement has
been confirmed by source code tuning, and
we hope that it will be applied by improving
the compiler.

Lang Threads A64FX Xeon
350.md F 48 2.63 62.6
351.bwaves F 48 15.5 11.2
352.nab C 48 3.00 12.9
357.bt331 F 48 5.82 16.0
358.botsalgn C 48 5.22 10.5
359.botsspar C 48 3.07 6.83
360.ilbdc F 48 7.69 8.25
362.fma3d F 48 4.28 11.3
363.swim F 48 53.1 8.38
367.imagick C 48 12.2 13.6
370.mgrid331 F 48 32.6 7.46
371.applu331 F 48 8.88 14.4
372.smithwa C 48 12.8 11.8
376.Kdtree C++ 48 3.22 9.24
SPECompG_base2012 7.77 12.0

https://www.spec.org/omp2012/results/res2019q2/omp2012-20190313-00172.txt

Charm++ workshop

19

 For core-to-core comparison in intspeed, integer performance is ¼ of Xeon
 For chip-to-chip comparison in SPEC OMP, 48 threads performance of one chip is

65% to one chip of recent high-end Xeon (Cascade Lake)
 NOTE: Performance of memory-intensive benchmarks is extremely good in A64FX

thanks to HBM.
 For some scientific workload, the almost same performance to dual sockets of

Xeon with half of power consumption (UK benchmark and HPC OSS)
 High SIMD rate is important to get performance
 Need to tune memory access pattern
 We found many benchmark programs are not well-vecterized.

 Power efficiency of A64FX is very good (double efficiency than Xeon?)

Summary of A64FX performance characteristics

18/Nov/2021 Charm++ workshop

Performance Tuning for A64FX processor

20

 HPC-oriented design
 Small core ⇒ Less O3 resources
 (Relatively) Long pipeline

 9 cycles for floating point operations
 Core has only L1 cache

 High-throughput, but long-latency
 Pipeline often stalls

for loops having complex body.

 Compiler optimization (Fujitsu compiler)
 SWP: software pipelining

- ～ 20% speedup in Livermore Kernels
 Automatic and Manual loop fissions

A64FX : https://github.com/fujitsu/A64FX
Skylake : https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)

A64FX Skylake
ReOrder Buffer 128 entries 224 entries
Reservation Station 60 (=10x2+20x2) entries 97 entries
Physical Vector Register 128 (=32 + 96) entries 168 entries
Load Buffer 40 entries 72 entries
Store Buffer 24 entries 56 entries

Performance improvement by SWP in
Livermore Kernels by Fujitsu compiler

Charm++ workshop

Power consumption of Fugaku systems

21

 Actual Power consumption of Fugaku is about 20MW
 Less than that we estimated at design time (30MW-40MW)

Charm++ workshop

Power profile of
Fugaku
(from July to Sep, 2021)

Utilization ratio was
around 70-80%

20 MW

25 MW
Power for Fugaku System

Power for entire Factility

Note: “Power for entire
Faciltiy” includes the
power for cooling systems

22

 Power & Performance of STREAM using Eco
mode
 The performance is almost the same as that in

normal mode (24 threads hits 80% of peak
memory bandwidth

 The power increases upto 24 threads.
 15%-25% reduction comparing to that in normal

mode.

A64FX power mode: Boost mode (2.2GHz) & Eco mode (1 SIMD pipeline)

18/Nov/2021

 Power & Performance of DGEMM (in
Fujitsu Lib) using Boost mode
 Reach to 95% out of peak performance
 The performance is 10% better than that

in normal mode.
 The power increases by 13.7%
 The power-efficiency decreases by 3.3 %

0

256

512

768

1024

0

50

100

150

200

4 8 12 16 20 24 28 32 36 40 44 48

to
ta

l t
hr

ou
gh

pu
t (

GB
/s

)

Po
w

er
 (W

)

of threads

Stream

normal-PW eco-PW

normal-TP eco-TP 0

800

1600

2400

3200

0

50

100

150

200

4 8 16 32 48

GF
LO

PS

Po
w

er
 (W

)

of threads

DGEMM
normal-PW boost-PW normal-GF boost-GF

Charm++ workshop

Fugaku System Software Stack

Red Hat Enterprise Linux 8 Libraries

Batch Job and Management
System

Open Source
Management Tool

Spack

Hierarchical File System

Tuning and Debugging Tools
Fujitsu: Profiler, Debugger, GUI

Math Libraries
Fujitsu: BLAS, LAPACK, ScaLAPACK, SSL II
RIKEN: EigenEXA, KMATH_FFT3D, Batched BLAS,,,,

High-level Prog. Lang.
XMP

Domain Spec. Lang.
FDPS

Red Hat Enterprise Linux Kernel+ optional light-weight kernel (McKernel)

File I/O
DTF

Communication
Fujitsu MPI
RIKEN MPI

Low Level Communication
uTofu, LLC

File I/O for Hierarchical Storage
Lustre/LLIO

Process/Thread
PIP

Virtualization & Container
KVM, Singularity

Compiler and Script Languages
Fortran, C/C++, OpenMP, Java, python, …
(Multiple Compilers supported: Fujitsu, Arm, GNU,
LLVM/CLANG, PGI, …)

24

Fugaku AI (DL4Fugaku)
RIKEN: Chainer, PyTorch, TensorFlow, DNNL…

18/Nov/2021

Cloud Software Stack
OpenStack, Kubernetis, NEWT...

Live Data Analytics
Apache Flink, Kibana, ….

ObjectStore
S3 Compatible

~ 3000 Apps
supported by Spack

Most applications may wor
k with simple recompile fro
m x86/RHEL environment.
LLNL Spack automates this.

Charm++ workshop

25

 Standard programming model is OpenMP (for NUMA node(CMG)) + MPI
 Both OpenMPI (by Fujitsu) and MPICH (by Riken) are supported.
 4 compilers (Fujitsu, gcc, LLVM/Arm, Cray), OpenMP 4.x is supported.
 uTofu low-level comm. APIs for Tofu-D interconnect.

Container and Virtual machine (KVM, Singularity, …)
DL4Fugaku: AI framework for A64FX and Fugaku, used in Chainer, PyTorch, TensorFlow
Many Open-source software are already ported using Spack

 System software and Programming tools, Math-Libs developed by RIKEN
 McKernel: Light-weight Kernel enabling jitter-less environment for large-scale parallel
program execution.

 XcalableMP directive-based PGAS Language
 FDPS: DLS for Framework for Developing Particle Simulators.
 EigenExa: Eigen-value math library for large-scale parallel systems.

System software and Programming models & languages
for “Fugaku”

18/Nov/2021 Charm++ workshop

XcalableMP(XMP) http://www.xcalablemp.org
 What’s XcalableMP (XMP for short)?
 A PGAS programming model and language for

distributed memory , proposed by XMP Spec WG
 XMP Spec WG is a special interest group to design

and draft the specification of XcalableMP language. It
is now organized under PC Cluster Consortium,
Japan. Mainly active in Japan, but open for everybody.

 Project status (as of June 2019)
 XMP Spec Version 1.4 is available at XMP site.

new features: mixed OpenMP and OpenACC ,
libraries for collective communications.

 Reference implementation by U. Tsukuba and
Riken AICS: Version 1.3.1 (C and Fortran90) is
available for PC clusters, Cray XT and K
computer. Source-to- Source compiler to code
with the runtime on top of MPI and GasNet.

 HPCC class 2 Winner 2013. 2014

26

int array[YMAX][XMAX];

#pragma xmp nodes p(4)
#pragma xmp template t(YMAX)
#pragma xmp distribute t(block) on p
#pragma xmp align array[i][*] to t(i)

main(){
int i, j, res;
res = 0;

#pragma xmp loop on t(i) reduction(+:res)
for(i = 0; i < 10; i++)
for(j = 0; j < 10; j++){

array[i][j] = func(i, j);
res += array[i][j];

}
}

add to the serial code : incremental parallelization

data distribution

work sharing and data synchronization

 Language Features
 Directive-based language extensions for Fortran and C for

PGAS model
 Global view programming with global-view distributed data

structures for data parallelism
 SPMD execution model as MPI
 pragmas for data distribution of global array.
 Work mapping constructs to map works and iteration with

affinity to data explicitly.
 Rich communication and sync directives such as “gmove” and

“shadow”.
 Many concepts are inherited from HPF

 Co-array feature of CAF is adopted as a part of the language
spec for local view programming (also defined in C).

Code example

The spec of XcalableMP 1.x is now converged.
We are now moving to XcalableMP 2.0 with global
task-based parallel programming and PGAS

Performance of XcalableMP on Fugaku

27

 XcalableMP was taken as a parallel
programming language project for improving
the productivity and performance of parallel
programing.

 XcalableMP is now available on Fugaku and the
performance is enhanced by the Fugaku
interconnect, Tofu-D.

8

16

32

64

128

256

512

8 32 128 512

Sp
ee

du
p

(M
PI

 o
n

8
=

8)

XMP nodes

XMP

MPI

1

2

4

8

16

32

64

128

256

512

1 4 16 64 256

Sp
ee

du
p

(X
M

P/
K

on
 1

 =
 1

)

XMP nodes

XMP/K
MPI/K
XMP/Fugaku
MPI/Fugaku

2

4

8

16

32

64

128

256

512

2 4 8 16 32 64

Sp
ee

du
p

(M
PI

/K
 o

n
2

=
2)

XMP nodes

XMP/K

MPI/K

XMP/Fugaku

MPI/Fugaku

NT-Chem (local view programming, Coarray)

QCD (Local view programming, Coarray)

Impact-3D (global view, stencil apps)
Fusion simulation code Charm++ workshop

FDPS: a framework for developing parallel particle
simulation codes

28

 Developed by Prof. Makino’s group,
R-CCS

 Basic idea: "abstract" code for
− domain decomposition
− particle exchange
− parallel O(N log N) interaction

calculation

 Implemented as a template class library in C++.
 A single program can run on a notebook, a cluster

of Intel servers, and the entire K computer,
without change (Well, interaction function needs
some optimization)

 Works also on GPGPUs

Basic concept of FDPS. The
user program gives the
definitions of particle and
interaction to FDPS, and calls ...

Gravitational N-body
(270k/process)
Weak scaling
performance pretty
good for up to all
nodes of K computer

Charm++ workshop

Challenges of programming models for Fugaku

30

Challenges on programming for Massive parallelism
 Task-based programming models for “Fugaku”

 to exploit parallelism of SIMD and manycore for A64FX, and enables overlapping comp.
and comm.

OpenMP 4.0 task + MPI (Multithread-aware MPI)
XcalableMP 2.0 is being designed for task-based programming on global address
space (PGAS) (in next slide)

 How to exploit SIMD
 SIMD is a key for performance on A64FX
 OpenMP SIMD directives
 Compiler optimization (Fujitsu compiler)

 SWP: software pipelining, loop fission, …
 OpenCL for SVE (Arm SIMD)

 Comm Optimization by Low-level layer, uTofu. Performance improvement by SWP in
Livermore Kernels by Fujitsu compiler

Charm++ workshop

Research agenda for XcalableMP 2.0

31

 Task-based programming on global address space (PGAS) using the description of
data distribution.

 XMP-API: “compiler-free” approach based on XMP concept including C++ template
wrapping, as well as directive-based extension

 Using low-level one-sided communication layers such as UCX, designed for global
task parallel run-time in multi-threaded environment.

 Task migration (like Charm++)
 OpenMP 4.0 task-parallel programming (to be extended to XMP)

XcalableMP data distribution

XcalableMP global task-paralle

Node

Node Node

 Various kinds of Task offloading
 Offload within a node,

- Offload to GPU, FPGA using OpenCL
- Offload to SIMD (Integration with

kokkos, oneAPI DPC++)
 Offload outside nodes

- Offload to cluster of accelerators
- ESSPER project (Dr. Sano)

- For “modular” computing

Charm++ workshop

ESSPER: Elastic and Scalable System for high-PErformance Reconfigurable computing

 Experimental prototype to extend existing HPC systems -- supercomputer Fugaku -- with
FPGAs

 Fugaku and ESSPER, a cluster of FPGAs, are connected by 100G IB cables

ESSPER
Fugaku

FPGA

Program running on Fugaku

KernelKernel

Result

Offload

18/Nov/2021 Charm++ workshop 33

OpenMP task + Remote Procedure Call (RPC)

void cholesky(const int ts, const int nt, double* A[nt][nt]){
OmniRpcRequest rq1, rq2, rq3, rq4;

#pragma omp parallel private(rq1, rq2, rq3, rq4)
#pragma omp single

for (int k = 0; k < nt; k++) {
#pragma omp task depend(out:A[k][k])
{

portl(ts, ts, A[k][k]);
}

for (int i = k + 1; i < nt; i++) {
….
#pragma omp task depend(in:A[k][k]) depend(out:A[k][i])
{

rq3 = OmniRpcCallAsync("rpc_dgemm", ….., A[k][i]);
}

}

Define rpc_dgemm(IN int ts …. double A[ts][ld])
{

… invoke dgemm implemented on FPGA
}

• OmniRPC is a grid PRC library supporting
master-worker parallel programming

• A task in a thread offloads a pre-defined
kernel to remote node(s)

• Remote node can consist of CPUs, GPUs,
FPGAs, etc..

• OmniRPC is to be extended to manage
the requests que from tasks to avoid
blocking threads, and designed with
OpenMP task management

18/Nov/2021 Charm++ workshop 36

Programming models for beyond “Fugaku”

37

 Future systems beyond Fugaku will be heterogenous parallel system with
some accelerators

 Programming models for accelerator-based heterogenous parallel system
 Task-based offloading to accelerators (Fugaku has no accelerators.)
 Task migration with accelerators
 “MIMD-to-MIMD” offloading

 XcalableACC: integration of XcalableMP and OpenACC

 Programming models and support for “Modular” computing platforms
 Offloading with “RPC”
 Workflow programming between systems with different characteristics
 “smart” tasks (or, job) allocation and management including migrations and

load-balancing

Charm++ workshop

Concluding remarks

40

 We have confirmed that 3 KPIs were achieved:
 Power-efficiency ⇒ Actually, Fugaku is running around at 20MW with 70% utilization
 Effective Performance of applications. ⇒ Many apps are running more efficient than

expected.
 Ease-of-use ⇒ easy for porting OpenMP+MPI programs without any accelerator

programming.
 A64FX is a manycore processor designed for HPC workload.
 Performance tuning may be required to exploit A64FX arch and HBM ..

 Several international collaborations are going on:
 DOE-MEXT collaborations

 Arm Arch collaboration (SNL/NNSA, U. Bristol)
 Spack for Fugaku (LLNL, going-on)
 ECP software porting & evaluation (on-going)

 CEA@France, A*STAR@Singapore, BSC, …

Charm++ workshop

	スライド番号 1
	Supercomputer “Fugaku”
	Outline of my talk
	KPIs on Fugaku development in FLAGSHIP 2020 project
	Target Application’s Performance
	KPIs on Fugaku development in FLAGSHIP 2020 project
	Codesign of “Fugaku”
	Overview of “Fugaku”� and A64FX processor
	Supercomputer “Fugaku” and A64FX processor�
	Die Photograph of A64FX processor
	Comparison of Die-size
	Performance of A64FX processor
	Benchmark result of CloverLeaf
	Performance and Power-efficiency of HPC OSS
	LULESH
	How to improve the performance of sparse-matrix code
	SPEC CPU🄬 2017 integer Speed
	SPEC OMP® 2012
	Summary of A64FX performance characteristics
	Performance Tuning for A64FX processor
	Power consumption of Fugaku systems
	A64FX power mode: Boost mode (2.2GHz) & Eco mode (1 SIMD pipeline)
	System software overview of “Fugaku”
	Fugaku System Software Stack
	System software and Programming models & languages for “Fugaku”
	XcalableMP(XMP) http://www.xcalablemp.org
	Performance of XcalableMP on Fugaku
	FDPS: a framework for developing parallel particle simulation codes�
	Challenges of programming models for Fugaku and beyond
	Challenges of programming models for Fugaku
	Research agenda for XcalableMP 2.0
	ESSPER: Elastic and Scalable System for high-PErformance Reconfigurable computing
	ESSPER: Elastic and Scalable System for high-PErformance Reconfigurable computing
	ESSPER: Elastic and Scalable System for high-PErformance Reconfigurable computing
	ESSPER: Elastic and Scalable System for high-PErformance Reconfigurable computing
	OpenMP task + Remote Procedure Call (RPC)
	Programming models for beyond “Fugaku”�
	Concluding remarks
	Results from Fugaku
	Concluding remarks
	スライド番号 41
	スライド番号 42
	スライド番号 43
	Thank you for your attention�Q & A
	Concluding Remarks
	スライド番号 46

