A Tale of Two Cultures

Alex Aiken
Stanford/SLAC

A Tale of Two Software Cultures

Big Data/ML

Hadoop/MapReduce
Spark
TensorFlow
PyTorch

Is There Any Relationship?

Some Overlap ...

Some Difference in Size ...

Will These Communities Converge?

• The stage is set: The underlying hardware is (almost) the same

More shortly ...

Are There Barriers to Convergence?

Priorities

HPC

- Performance
- Productivity
- Correctness

Big Data

- Productivity
- Performance
- Correctness

Creates Significant Differences In ...

- Platform performance & programmer productivity
 - Obviously!

Scale of computations

Economic model

Is There Overlap Today?

Who Would Switch from Big Data to HPC?

Who Would Switch from HPC to Big Data?

• If performance improved by switching, everyone

- If performance were comparable or not overly harmed, some
- If performance is 10X worse, none
 - And some would not switch even if performance is only 2X worse

A Comparison: Minimum Task Granularity

Task Bench: A Parameterized Benchmark for Evaluating Parallel Runtime Performance, Slaughter et al, SC'20

A Comparison: Minimum Task Granularity

Task Bench: A Parameterized Benchmark for Evaluating Parallel Runtime Performance, Slaughter et al, SC'20

A Comparison: Minimum Task Granularity

(d) Nearest pattern, 5 deps/task, 4 independent graphs.

Task Bench: A Parameterized Benchmark for Evaluating Parallel Runtime Performance, Slaughter et al, SC'20

A Brief Digression: Hardware

The hardware platform drives the software abstractions

- The current, slow-motion revolution: accelerators
 - GPUs today
 - Other specialized hardware tomorrow

A Key Point

- In new supercomputers, > 95% of performance is in the accelerators
 - Titan, Summit, PerlMutter, Frontier, Aurora ...
- The tradeoff
 - Greatly complicates programming
 - But switching to GPUs can greatly increase performance

This is the ground on which any convergence will happen

An Observation

- The HPC community values performance
 - Unless it is too hard
 - Many HPC systems perform far below their potential today
- The Big Data community values productivity
 - Until the code takes forever to run
 - Organizations spend inordinate amounts of time tweaking for performance

The Technical Issue

- The main limiter in current and future systems is data movement
 - By far the most expensive part of any computation
 - And accelerators add multiple levels of memory hierarchy
- Few programming abstractions in programming models for
 - Locality
 - Partitioning of data
 - Mapping of compute/data into a machine

The Evidence

- S3D
 - Production chemistry combustion code
 - 7X off its potential
- Large graph analytics
 - CPU-based state of the art ~10X off potential

Switching to GPUs + good data partitioning & placement

- Machine Learning
 - 10X off potential

Improved data partitioning

Where Does Productivity Come From?

Libraries

How many widely used parallel libraries for HPC are there?

- How many widely used libraries are there for Python?
 - Not just "big data"

Numpy In One Slide

A popular Python package for (mostly) dense array computing

Common building block in other Python packages

Many drop-in replacements for one GPU


```
import numpy as np
def cg solve(A, b, tol=1e-10):
    x = np.zeros(A.shape[1])
    r = b - A.dot(x)
    p = r
    rsold = r.dot(r)
   for i in xrange(b.shape[0]):
        Ap = A.dot(p)
        alpha = rsold / (p.dot(Ap))
        x = x + alpha * p
        r = r - alpha * Ap
        rsnew = r.dot(r)
        if np.sqrt(rsnew) < tol:</pre>
        beta = rsnew / rsold
        p = r + beta * p
        rsold = rsnew
    return x
```

Legate Numpy Accelerated and Distributed

Legate NumPy is a NumPy replacement for transparent (weak) scaling

Requires a one line code change

Same code runs on everything

Legate NumPy: Accelerated and distributed array computing, Bauer & Garland SC'19

```
import legate.numpy as np
def cg solve(A, b, tol=1e-10):
   x = np.zeros(A.shape[1])
   r = b - A.dot(x)
   rsold = r.dot(r)
   for i in xrange(b.shape[0]):
        Ap = A.dot(p)
        alpha = rsold / (p.dot(Ap))
        x = x + alpha * p
        r = r - alpha * Ap
        rsnew = r.dot(r)
       if np.sqrt(rsnew) < tol:</pre>
       beta = rsnew / rsold
        p = r + beta * p
        rsold = rsnew
     return x
```


A Simple Example: A Jacobi Solver

```
import legate.numpy as np

A = np.random.rand(N,N)
b = np.random.rand(N)

x = np.zeros(A.shape[1])
d = np.diag(A)
R = A - np.diag(d)
for i in xrange(b.shape[0]):
    x = (b - np.dot(R,x)) / d
```


Legate NumPy Architecture

Legate NumPy provides Legate NumPy translates fast task implementations API calls into task launches **INVIDIA. C/C++ CUDA** Legate NumPy provides a **Application** custom implementation of the Legion mapping interface np.argmin Legion Program order np.sort Legate Data-Driven Numpy np.add Task-Based Mapper Runtime np.dot np.mul np.norm

Legate NumPy architecture

Managing Data

Each N-D array maps to a field of a Legion logical region

Legion's collection data type

Different logical regions for different shapes

Dynamically allocated on demand and recycled when GC'd by Python

Performance Comparison

Compare NumPy implementations:

Standard NumPy (single node)
IntelPy with MKL (single node)

Legate CPU-only

Legate CPU+GPU

Dask (CPU-only): Auto and Tuned

All plots are log-log Experiments on a cluster of DGX-1V nodes Weak scaling throughput on sockets

Popular Python library for parallel and distributed computing dask.array similar to NumPy, except for specifying "chunk" sizes

Jacobi Solver

```
import numpy as np

A = np.random.rand(N,N)
b = np.random.rand(N)

x = np.zeros(A.shape[1])
d = np.diag(A)
R = A - np.diag(d)
for i in xrange(b.shape[0]):
    x = (b - np.dot(R,x)) / d
```


Black Scholes

No (application) communication

Expect perfect weak scaling

Dask starts out faster... Why? Operator Fusion

... but has to trade off parallelism for task granularity to scale

Preconditioned CG Solver

```
def preconditioned solve(A, M, b):
    x = np.zeros(A.shape[1])
    r = b - A.dot(x)
    z = M.dot(r)
    p = z
    rzold = r.dot(z)
    for i in xrange(b.shape[0]):
        Ap = A.dot(p)
        alpha = rzold / (p.dot(Ap))
        x = x + alpha * p
        r = r - alpha * Ap
        rznew = r.dot(r)
        if np.sqrt(rznew) < 1e-10
```


One Approach To Libraries

- Implement important Big Data libraries using HPC techniques
 - Can we get more performance for the same productivity?
- Examples
 - Legate
 - FlexFlow, replacement for TensorFlow & PyTorch

Beyond data and model parallelism for deep neural networks, Jia et al. SysML `18

Important Features

- Expressive data partitioning
- Ability to tune the mapping
 - Tasks to processors
 - Data to memories
- Runtime decision making
 - Needed to handle dynamic nature of Python
- Legion is extreme in all three dimensions
 - Sufficient, but maybe not necessary?

Another Approach

- Demonstrate the ability to build general libraries for HPC applications
 - That compete with the best-of-class HPC implementations
 - But are more productive to write and/or use
- What are the important/novel problems in building HPC libraries?

DISTAL: DIStributed Tensor Algebra

Goals:

Compile tensor algebra kernels into efficient distributed implementations Decouple computation, performance optimizations, and data distribution


```
1 Param gx, gy, n;
2 Machine m(Grid(gx, gy));
                                                                                                        Expression
  Distribution tiles(m, {0, 1});
                                                                                                      A_{ij} = B_{ik} * C_{kj}
                                                                                                                                                                  Supercomputer
 5 Format f({dense, dense}, tiles);
                                                                                                  a = B_{ijk} * C_{ijk}
A_{il} = B_{ijk} * C_{jl} * D_{kl}
A_{ijl} = B_{ijk} * C_{kl}
A_{ij} = B_{ijk} * c_{kl}
  Tensor<double> a({n, n}, f), b({n, n}, f), c({n, n}, f);
  IndexVar i, j, k;
   a(i, j) = b(i, k) * c(k, j);
                                                                                                                                             DISTAL
                                                                                                     Data Distribution
11 IndexVar in, jn, il, jl, ko, ki;
                                                                                                        Partition A into tiles
12 a.schedule()
                                                                                                     Replicate B onto all nodes
   .divide(i, in, il, m.x).divide(j, jn, jl, m.y).divide(k, ko, ki, m.x)
                                                                                                   Place C onto only some nodes
   .reorder({in, jn, il, jl})
   .distribute({in, jn}, DistributedGPU)
                                                                                               Computation Distribution
   .reorder({ko, il, il, ki})
                                                                                                         Owner Computes
   .communicate(a, jn).communicate({b, c}, ko)
                                                                                                                                                                             CPU
                                                                                                         Distribute i,j loops
   .substitute({il, jl, ki}, CuBLAS::GeMM)
                                                                                                      Communicate in chunks
                                                                                                                                                                         GPU
```

21 a.compile();

Modeling Machines

- View machines as hyper-rectangular grids of processors
 - where each processor has a local memory
- Expose any locality in the physical machine
- Structure the machine like the target computations

Distributing Data

- State abstractly how a tensor is distributed onto a machine as part of the tensor's *format*
- Describes how dimensions of a tensor $\mathcal T$ map onto a machine $\mathcal M$

Dimensions of ${\mathcal T}$ are partitioned and mapped onto dimensions of ${\mathcal M}$ that share the same name

$${\mathcal T}_{ij}{\mapsto_i}\,{\mathcal M}$$

 ${\mathcal T}$

$${\mathcal T}_{ij} \mapsto_{ij^*} {\mathcal M}$$

 \mathcal{T}

Scheduling (Summary)

• Iteration spaces: hyper-rectangular grids representing points in nested loops

$$\forall_i \ A_i = \sum_j B_j$$

- Execution space: processors in M x time dimension
- Scheduling commands related to distribution change mapping of iteration space points to the execution space
- Apply scheduling commands to the computation
 - Similar to Halide schedules, with extensions for distributed computing
 - New commands: distribute, communicate, rotate

Algorithm	Comm. Pattern	Target Machine	Data Dis- tribution	Schedule
Cannon's [7] (1969)		$\mathcal{M}(gx,gy)$	$A_{ij} \mapsto_{ij} \mathcal{M}$ $B_{ij} \mapsto_{ij} \mathcal{M}$ $C_{ij} \mapsto_{ij} \mathcal{M}$	<pre>.distribute({i, j}, {in, jn}, {il, jl}, Grid(gx, gy)) .divide(k, ko, ki, gx) .reorder({ko, il, jl, ki}) .rotate(ko, {in, jn}, kos) .communicate(A, jn) .communicate({B, C}, kos)</pre>
PUMMA [10] (1994)		$\mathcal{M}(gx,gy)$	$A_{ij} \mapsto_{ij} \mathcal{M}$ $B_{ij} \mapsto_{ij} \mathcal{M}$ $C_{ij} \mapsto_{ij} \mathcal{M}$	<pre>.distribute({i, j}, {in, jn}, {il, jl}, Grid(gx, gy)) .divide(k, ko, ki, gx) .reorder({ko, il, jl, ki}) .rotate(ko, {in}, kos) .communicate(A, jn) .communicate({B, C}, kos)</pre>
SUMMA [25] (1995)		$\mathcal{M}(gx,gy)$	$A_{ij} \mapsto_{ij} \mathcal{M}$ $B_{ij} \mapsto_{ij} \mathcal{M}$ $C_{ij} \mapsto_{ij} \mathcal{M}$	<pre>.distribute({i, j}, {in, jn}, {il, jl}, Grid(gx, gy)) .split(k, ko, ki, chunkSize) .reorder({ko, il, jl, ki}) .communicate(A, jn) .communicate({B, C}, ko)</pre>
Johnson's [1] (1995)		$\mathcal{M}(\sqrt[3]{p},\sqrt[3]{p},\sqrt[3]{p})$	$A_{ij} \mapsto_{ij0} \mathcal{M}$ $B_{ik} \mapsto_{i0k} \mathcal{M}$ $C_{kj} \mapsto_{0jk} \mathcal{M}$.distribute({i, j, k}, {in, jn, kn}, {il, jl, kl}, Grid($\sqrt[3]{p}$, $\sqrt[3]{p}$, $\sqrt[3]{p}$)) .communicate({A, B, C}, kn)
Solomonik's [22] (2011)		$\mathcal{M}(\sqrt{\frac{p}{c}}, \sqrt{\frac{p}{c}}, c)$	$A_{ij} \mapsto_{ij0} \mathcal{M}$ $B_{ij} \mapsto_{ij0} \mathcal{M}$ $C_{ij} \mapsto_{ij0} \mathcal{M}$.distribute({i, j, k}, {in, jn, kn},
COSMA [17] (2019)		induced by schedule	induced by schedule	<pre>// gx, gy, gz, numSteps computed by COSMA schedulerdistribute({i, j, k}, {in, jn, kn}</pre>

Experiments

- Run on Lassen
 - 4 GPUs/node, 40 CPUs/node, IB interconnect)
- All systems configured to use the same BLAS / CuBLAS

All experiments are weak-scaling (memory / node stays constant)

GEMM (CPU)

GEMM (GPU)

Higher Order Tensor Operations (CPU)

$$A_{ijl} = B_{ijk} \cdot C_{kl}$$

Nodes (CPU Cores)

Nodes (CPU Cores)

Higher Order Tensor Operations (GPU)

Lessons From DISTAL

 Expressive partitioning of data, computation and control of the mapping into the machine are all critical

- Enables writing libraries that are polymorphic in the data distribution
 - The data distribution can be different depending on the needs of the context
 - Avoids stopping-the-world and doing large copies at library boundaries
 - A form of polymorphism unique to distributed parallel programming

Summary

- The HPC and Big Data worlds have agreed on the hardware platform
 - Parallel, accelerated, distributed (PAD) machines
 - A convergence of these two worlds is likely

- Can we have both productivity and performance?
 - There is some preliminary evidence the answer is "'yes"
 - Through libraries built on HPC programming models
 - But libraries required a degree of flexibility beyond non-library code
 - Still much to be learned about how to write reusable parallel libraries