Scalable GW software for excited electrons using OpenAtom

Kavitha Chandrasekar, Eric Mikida, Eric Bohm and Laxmikant Kale

University of Illinois at Urbana-Champaign

Kayahan Saritas, Minjung Kim and Sohrab Ismail-Beigi Yale University

Glenn Martyna

Pimpernel Science, Software and Information Technology

Electronic structure calculations

Time independent Schrodinger equation for a many-body system

$$i\hbar \frac{\partial}{\partial t} |\Psi(t)\rangle = \hat{H} |\Psi(t)\rangle$$

Many R_i & r_j

Density functional theory (DFT) simplifies this to one-body problem

$$\left[-\frac{\nabla^2}{2} + V_{ion}(r) + V_H(r) + V_{xc}(r)\right]\psi_j(r) = \epsilon_j\psi_j(r)$$

$$V_{xc}(r) = rac{\delta E_{xc}}{\delta n(r)}$$

Solve for wavefunctions $\psi_j(r)$ and energies ϵ_j

Comparison of the methods

DFT problem with excitations

DFT problem with excitations

DFT:
$$\left[-\frac{\nabla^2}{2} + V_{ion}(r) + V_H(r) + V_{xc}(r)\right]\psi_j(r) = \epsilon_j\psi_j(r)$$

ground state

$$E_{gap} = \frac{\partial E}{\partial N} \bigg|_{N+\delta} - \frac{\partial E}{\partial N} \bigg|_{N-\delta} = \epsilon_{N+1} - \epsilon_N$$

Why band gap/excitations in a material is important?

- Metallic, semiconducting or insulating?
- Light-matter interactions in general
- A lot of engineering implications: PV, lasers, luminescence ...

Material	DFT	GW	Expt.		
Diamond	3.9	5.6*	5.48		
Si	0.5	1.3*	1.17		
LiCl	6.0	9.1*	9.4		
SrTiO ₃	2.0	3.4-3.8	3.25		

Band gaps (eV)

Challenges

- Memory intensive
- Much larger number of conduction bands: Huge number of FFTs
- Large and dense matrix multiplications
- Unfavorable scaling $O(N^4)$

Goal

- Efficient and highly scalable GW software
- $O(N^3)$ scaling method

What is expensive in GW?

O(N³) algorithm (CTSP) for P

CTSP: Complex time shredded propagator

$$P_{r,r'} = -2 \sum_{v}^{N_{occ}} \sum_{c}^{N_{unocc}} \frac{\psi_{r,v}^{*} \psi_{r,c} \psi_{r',v}^{*} \psi_{r',v}}{E_{c} - E_{v}} \quad N_{r}^{2} N_{unocc} N_{occ} \sim \mathbb{N}^{4} \qquad X_{r,r'} = \sum_{i}^{N_{a}} \sum_{j}^{N_{b}} \frac{A_{r,r'} B_{r,r'}}{w + a_{i} - b_{j}}$$
(1) Laplace transform:
$$\frac{1}{E_{c} - E_{v}} = \int_{0}^{\infty} e^{-(E_{c} - E_{v})\tau} d\tau = \int_{0}^{\infty} e^{-E_{c}\tau} e^{E_{v}\tau} d\tau = \int_{0}^{\infty} f(\tau) e^{-\tau} d\tau$$

(2) Gauss-Laguerre quadrature: $\int_{0}^{\infty} f(\tau)e^{-\tau} d\tau \approx \sum_{k}^{N_{q}} \omega_{k} f(\tau_{k}) \qquad N_{r}^{2}N_{q} (N_{unocc} + N_{occ}) \sim N^{3}$ $N^{4} \longrightarrow N^{3}$

O(N³) algorithm (CTSP) for P

Steps for typical GW calculations

O(N³) method for self-energy

$$\Sigma^{\pm} (\omega)_{r,r'}^{dyn} = \sum_{p,n} \frac{B_{r,r'}^{p} \psi_{rn} \psi_{r'n}^{*}}{\omega - E_n \pm \omega_p} \quad B_{r,r'}^{p}: \text{ residues} \\ \omega_p: \text{ energies of the poles of } W(r)_{r,r'}$$

$$X_{r,r'} = \sum_{i}^{N_a} \sum_{j}^{N_b} \frac{A_{r,r'}B_{r,r'}}{w + a_i - b_j}$$

- $\omega \epsilon_n \pm \omega_p = 0$ is possible: Gauss-Laguerre quadrature not applicable
- New quadrature is needed and was developed: Hermite-Gauss-Laguerre quadrature

$$\frac{1}{\omega - E_n \pm \omega_p} = Im \int_0^\infty d\tau e^{-\tau - \tau^2/2} e^{i(\omega - E_n \pm \omega_p)\tau}$$

Results: Energy gap

- Si crystal (16 atoms)
- Number of bands: 399
- *N_{wv}*=1, *N_{wc}*=4

- MgO crystal (16 atoms)
- Number of bands: 433
- *N_{wv}*=1, *N_{wc}*=4

* Kim et al., (2020), Phys. Rev. B., 101, pp. 035139

Performance against other codes

- Si crystal (16 atoms)
- Number of bands: 399
- *N_{pw}*=15, *N_{nw}*=30

http://charm.cs.illinois.edu/OpenAtom/

OpenAtom GW Parallel Scaling

OpenAtom Team

GW-BSE Parallelization

Phase		Serial	Parallel
1	Compute P in Rspace (N ⁴ and N ³ methods)	Complete	Complete
2	FFT P to GSpace	Complete	Complete
3	Invert epsilon	Complete	Complete
4	Plasmon pole	Complete	Future Work
5	COHSEX Self-energy	Complete	Complete
6	Dynamic Self-energy	Complete	Future Work

GW Phase-I P Matrix Computation (N⁴ and N³ method)

Duplicate occupied and unoccupied states on each node

- Outer loops are windows of occupied and unoccupied states
- Most expensive computation ρ and ρ' matrices

```
for I = 1:Nvw

for m = 1:Ncw

for j = 1:Nquad<sup>Im</sup>

calculate \rho^{kqlmj}

calculate \rho'^{kqlmj}

P[r,r'] += \rho^{kqlmj}[r,r'] x \rho'^{kqlmj}[r,r']
```

Computation ρ matrix (Using occupied states)

- State vectors are represented with ψ
 - Number of occupied states = L, each state has N elements
 - $_{\circ}$ All occupied states can be represented as a matrix $\psi_{V}[1:L][1:N])$

```
\begin{split} \rho^{kqlmj} & \rightarrow \text{Add elements of outer product of } \Psi_{V}[1:L] \\ \text{for } l=1:L \\ \text{for } r=1:N \\ \text{for } r'=1:N \\ \rho^{kqlmj} [r,r'] += \Psi_{V}[I]^{T}[r] \times \Psi_{V}[I][r'] \end{split}
```

 $\rho^{kqlmj} \rightarrow \text{Same as } \textbf{ZGEMM} \text{ of all } \psi_{V} \text{ and all } \psi_{V}^{T}$ $\textbf{ZGEMM} (\psi_{V}^{T}[1:N][1:L], \psi_{V}[1:L][1:N]) \text{ (i.e matrix multiply)}$ $for r=1:N \text{ for } r'=1:N \text{ for } r'=1:L \rho^{kqlmj} [r,r'] += \psi_{V}^{T}[r][l] \times \psi_{V}[l][r']$

Computation ρ' matrix (Using unoccupied states)

- Number of unoccupied states = M, each state has N elements
- All unoccupied states can be represented as a matrix $\psi_{c}[1:M][1:N]$)

```
\begin{split} \rho^{kqlmj} & \rightarrow \text{Add elements of outer product of } \Psi_{\text{C}}[1:\text{M}] \\ \text{for m=1:M} \\ \text{for r=1:N} \\ \text{for r'=1:N} \\ \rho'^{kqlmj} [r,r'] += \Psi_{\text{C}} [\text{m}]^{\text{T}}[r] \times \Psi_{\text{C}}[\text{m}][r'] \end{split}
```

 ρ^{kqlmj} -> Same as **ZGEMM** of all ψ_{C} and all ψ_{C}^{T} ZGEMM ($\psi_{C}^{T}[1:N][1:M]$, $\psi_{C}[1:M][1:N]$) (i.e matrix multiply) for r=1:N for r'=1:N for m=1:M

 ρ'^{kqlmj} [r,r'] += ψ_{C}^{T} [r][m] x ψ_{C} [m][r']

Computation of P-matrix (tiled) (N³)

Performance of N³ method

- N³ method is an order faster than N⁴ method for Si108 atoms dataset
 - $_{\circ}~$ 20k X 20k output matrix size
- Scales well on Intel KNL and SkyLake nodes
- Future scaling results for larger datasets

Node collette con the contract of the second second

Questions?