
SpECTRE: Toward simulations of binary black hole mergers
using Charm++

François Hébert @ Caltech
for the Simulating eXtreme Spacetimes (SXS) Collaboration

Charm++ Workshop, Oct 20 2020

1 / 26



Outline

1. Role of binary merger simulations
2. Current methods and challenges
3. SpECTRE: towards improved algorithms and scalability
4. Preliminary binary BH results
5. Load-balancing with Charm++

2 / 26



Gravitational waves

LIGO/Caltech/MIT

LIGO/Virgo detect gravitational waves
from merging binary BHs (and NSs)

Simulation waveforms enable
B detection of weak signals
B characterization

Future detectors will need significantly
more accurate waveforms

3 / 26



Modeling relativistic matter

Recent observations
B merging binary NSs
B accretion around supermassive BH

Simulations provide models for
B matter dynamics
B heavy-element creation
B electromagnetic spectra

Simulations are expensive and struggle to
reach desired accuracy

Event Horizon Telescope Collaboration
4 / 26



A binary BH simulation

N. Fischer/SXS/AEI

5 / 26



A binary NS simulation shortly after merger

NASA
6 / 26



Equations to solve

Many coupled PDEs
B hyperbolic equations:

∂tU+ ∂iF
i(U) +Bi · ∂iU = S(U)

Complicating features
B Einstein’s equations:

— choice of coordinates
— singularity inside BH

B GRMHD:
— turbulence & shocks
— neutrinos, nuclear reactions, ...

7 / 26



Solving the PDEs — current methods

Finite volume/difference methods
B represent solution with values at points
B overlapping cartesian grids
B shock-capturing schemes
B polynomial convergence
B “ghost zone” data from neighbors

Most binary BH, all matter simulations

Ghost zones

8 / 26



Solving the PDEs — current methods

Spectral methods
B represent solution with basis functions
B geometrically-adapted grids
B smooth solutions only
B exponential convergence
B boundary data from neighbors

State of the art for binary BH simulations

Fluxes

9 / 26



Parallelism – current methods

MPI + some threading
B finite volume/difference codes scale to ∼ 10, 000 cores
B Spectral Einstein Code (SpEC)

— ∼ 1 spectral element per core
— ∼ 100, 000 FV cells per core
— scales to ∼ 50 cores

Simulations take time
B binary BH ∼ week
B binary NS ∼ month

10 / 26



SpECTRE

SpECTRE: a next-generation code for relativistic astrophysics
B discontinuous Galerkin
B task-based parallelism
B github.com/sxs-collaboration/spectre

This talk
B methods for binary BHs
B preliminary binary BH results
B load balancing with Charm++

Not in this talk – improving hydrodynamics algorithms

11 / 26



Discontinuous Galerkin

B generalized spectral method
— exponential convergence for smooth solutions
— fall back to shock-capturing schemes where needed

B geometric flexibility
B nearest-neighbor boundary communication
B AMR and local timestepping

12 / 26



Code test: single BH

G. Lovelace

13 / 26



Code test: code scaling

Scaling on BlueWaters (NSCA, UIUC)
B green = strong scaling, fixed

problem size
B blue = weak scaling, proportional

problem size

(*) measurements made with a
hydrodynamics evolution; predate an
infrastructure rewrite in SpECTRE

14 / 26



Towards a binary BH evolution

B initial data
— initial guess + solve elliptic constraint equations
— in development
— for now, use SpEC initial data

B PDE solver (discontinuous Galerkin + time stepper)
B strategy to keep the singularities off the grid

15 / 26



Keeping the singularities off the grid

Excision
B cut out BH interior
B move excised regions with BH orbit

Control system
B measures BH positions and shapes
B updates time-dependent mappings to

keep excised regions inside the BH

Time derivatives gain moving-mesh terms

16 / 26



Towards a binary BH evolution

B initial data
— initial guess + solve elliptic constraint equations
— in development
— for now, use SpEC initial data

B PDE solver (discontinuous Galerkin + time stepper)
B strategy to keep the singularities off the grid

— in development
— for now, use moving-mesh data from SpEC

17 / 26



Binary black hole evolution

Movie shows equatorial cut
B colored by lapse: spacetime

curvature component
associated with flow of time

B manually excised regions
B BHs follow excision regions for

many orbits

18 / 26



SpECTRE use of Charm++

SpECTRE components
B DG elements = array chares
B data processing (IO, interpolations) = group and nodegroup chares
B measuring a BH position and shape = singleton chare
B computing gravitational waves = singleton chare

Evolution remains roughly in sync
B PDE structure imposes causality
B efficiency requires load balance

19 / 26



Load balancing in SpECTRE

Initial questions
B given a bad distribution of chares to nodes, can the LB improve it?
B given a good distribution (e.g., space-filling curve), will the LB preserve it?

Future work: balancing load and communications

20 / 26



Load balancing implementation

Initial implementation:
B add global synchronizations every N timesteps
B call AtSync()
B resume timestepping from ResumeFromSync()

B update registration in pup::er calls
— array de-registers with group when packing
— re-registers when unpacking

21 / 26



Load balancing results

A small test evolution
B 1024 array chares on 2 nodes
B ∼ 25 chares per proc

Best LB is within 20% of optimal

1 1/2 1/4 1/8
Inter-node communications / total communications

0

50

100

150

200

250

300

350

W
al

lcl
oc

k 
tim

e 
[s

]

Dummy
Comm
GreedyComm
GraphBFT
RecBipart
RecBipart + Dummy

22 / 26



Load balancing results

Slowdown with larger problem size
B increase problem size and procs

Ongoing investigation
B normal scaling with graph size?
B is this Charm++ issue #2060?
B SpECTRE performance

0 50 100 150 200 250 300 350 400
LB count

0.0

0.1

0.2

0.3

0.4

0.5

Ti
m

e 
pe

r t
im

es
te

p 
[s

ec
on

ds
]

"Cost" vs "Time"
2 nodes - RecBipart
4 nodes - RecBipart
8 nodes - RecBipart
8 nodes - RecBipart + Dummy

23 / 26



Checkpoint-restart results

Initial implementation:
B call CkStartCheckpoint() from

global synchronization point

Works on same number of nodes
B future work: generalize

0 1 2 3 4 5 6 7
0

1

Er
ro

r

1e 9
full run
from checkpoint

0 1 2 3 4 5 6 7
Time

2.5

0.0

2.5

Ch
an

ge
 a

fte
r r

es
ta

rt 1e 25

24 / 26



Wishlist after initial experiments

LB clarifications
B when to use which LB?
B how does each LB make its decisions? scale with graph complexity?

Checkpoint-restart clarifications
B what is order of initialization on restart?
B can group chare dependencies from program startup be enforced on restart?

Feature wishlist
B LB based on space-filling curve?
B checkpoint vs migration-aware pup::er will help optimize packing

— avoid checkpointing caches to disk
— tailor registration updates

25 / 26



Summary

B Future observations motivate improved simulations of binary mergers
B SpECTRE: improving algorithms and scalability
B Binary BH simulations
B Load balancing and checkpointing

26 / 26


