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Gravitational waves

LIGO/Caltech/MIT

LIGO/Virgo detect gravitational waves
from merging binary BHs (and NSs)

Simulation waveforms enable
B detection of weak signals
B characterization

Future detectors will need significantly
more accurate waveforms
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Modeling relativistic matter

Recent observations
B merging binary NSs
B accretion around supermassive BH

Simulations provide models for
B matter dynamics
B heavy-element creation
B electromagnetic spectra

Simulations are expensive and struggle to
reach desired accuracy

Event Horizon Telescope Collaboration
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A binary BH simulation

N. Fischer/SXS/AEI
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A binary NS simulation shortly after merger

NASA
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Equations to solve

Many coupled PDEs
B hyperbolic equations:

∂tU+ ∂iF
i(U) +Bi · ∂iU = S(U)

Complicating features
B Einstein’s equations:

— choice of coordinates
— singularity inside BH

B GRMHD:
— turbulence & shocks
— neutrinos, nuclear reactions, ...
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Solving the PDEs — current methods

Finite volume/difference methods
B represent solution with values at points
B overlapping cartesian grids
B shock-capturing schemes
B polynomial convergence
B “ghost zone” data from neighbors

Most binary BH, all matter simulations

Ghost zones
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Solving the PDEs — current methods

Spectral methods
B represent solution with basis functions
B geometrically-adapted grids
B smooth solutions only
B exponential convergence
B boundary data from neighbors

State of the art for binary BH simulations

Fluxes
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Parallelism – current methods

MPI + some threading
B finite volume/difference codes scale to ∼ 10, 000 cores
B Spectral Einstein Code (SpEC)

— ∼ 1 spectral element per core
— ∼ 100, 000 FV cells per core
— scales to ∼ 50 cores

Simulations take time
B binary BH ∼ week
B binary NS ∼ month
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SpECTRE

SpECTRE: a next-generation code for relativistic astrophysics
B discontinuous Galerkin
B task-based parallelism
B github.com/sxs-collaboration/spectre

This talk
B methods for binary BHs
B preliminary binary BH results
B load balancing with Charm++

Not in this talk – improving hydrodynamics algorithms
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Discontinuous Galerkin

B generalized spectral method
— exponential convergence for smooth solutions
— fall back to shock-capturing schemes where needed

B geometric flexibility
B nearest-neighbor boundary communication
B AMR and local timestepping
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Code test: single BH

G. Lovelace
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Code test: code scaling

Scaling on BlueWaters (NSCA, UIUC)
B green = strong scaling, fixed

problem size
B blue = weak scaling, proportional

problem size

(*) measurements made with a
hydrodynamics evolution; predate an
infrastructure rewrite in SpECTRE
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Towards a binary BH evolution

B initial data
— initial guess + solve elliptic constraint equations
— in development
— for now, use SpEC initial data

B PDE solver (discontinuous Galerkin + time stepper)
B strategy to keep the singularities off the grid
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Keeping the singularities off the grid

Excision
B cut out BH interior
B move excised regions with BH orbit

Control system
B measures BH positions and shapes
B updates time-dependent mappings to

keep excised regions inside the BH

Time derivatives gain moving-mesh terms
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Towards a binary BH evolution

B initial data
— initial guess + solve elliptic constraint equations
— in development
— for now, use SpEC initial data

B PDE solver (discontinuous Galerkin + time stepper)
B strategy to keep the singularities off the grid

— in development
— for now, use moving-mesh data from SpEC
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Binary black hole evolution

Movie shows equatorial cut
B colored by lapse: spacetime

curvature component
associated with flow of time

B manually excised regions
B BHs follow excision regions for

many orbits
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SpECTRE use of Charm++

SpECTRE components
B DG elements = array chares
B data processing (IO, interpolations) = group and nodegroup chares
B measuring a BH position and shape = singleton chare
B computing gravitational waves = singleton chare

Evolution remains roughly in sync
B PDE structure imposes causality
B efficiency requires load balance
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Load balancing in SpECTRE

Initial questions
B given a bad distribution of chares to nodes, can the LB improve it?
B given a good distribution (e.g., space-filling curve), will the LB preserve it?

Future work: balancing load and communications
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Load balancing implementation

Initial implementation:
B add global synchronizations every N timesteps
B call AtSync()
B resume timestepping from ResumeFromSync()

B update registration in pup::er calls
— array de-registers with group when packing
— re-registers when unpacking
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Load balancing results

A small test evolution
B 1024 array chares on 2 nodes
B ∼ 25 chares per proc

Best LB is within 20% of optimal
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Load balancing results

Slowdown with larger problem size
B increase problem size and procs

Ongoing investigation
B normal scaling with graph size?
B is this Charm++ issue #2060?
B SpECTRE performance
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Checkpoint-restart results

Initial implementation:
B call CkStartCheckpoint() from

global synchronization point

Works on same number of nodes
B future work: generalize
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Wishlist after initial experiments

LB clarifications
B when to use which LB?
B how does each LB make its decisions? scale with graph complexity?

Checkpoint-restart clarifications
B what is order of initialization on restart?
B can group chare dependencies from program startup be enforced on restart?

Feature wishlist
B LB based on space-filling curve?
B checkpoint vs migration-aware pup::er will help optimize packing

— avoid checkpointing caches to disk
— tailor registration updates
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Summary

B Future observations motivate improved simulations of binary mergers
B SpECTRE: improving algorithms and scalability
B Binary BH simulations
B Load balancing and checkpointing
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