
Jaemin Choi

PhD Candidate in Computer Science
University of Illinois Urbana-Champaign

Oct 21, 2020

Achieving Computation-Communication Overlap
with Overdecomposition on GPU Systems

To appear at ESPM2 workshop at SC’20



Overview

• Increasing gap between single-node computational power and
inter-node communication performance on modern supercomputers

• Can be tackled from at least 2 directions
1. Improve communication performance itself with software optimizations and better 

utilization of hardware support (e.g. GPUDirect, SHARP, hardware tag-matching)

2. Reduce impact of communication on overall performance
(e.g. computation-communication overlap)

• Focus on computation-communication overlap

2



3

Overdecomposition

4 CPU cores

Per-process decomposition
(MPI)

Overdecomposition
(Charm++)



4

Asynchronous Message-Driven Execution

Chares

C

PE Message queue

A

B A



5

GPU Execution in Charm++

C

PE Message queue

B

GPU

Charm++ Runtime

1. Asynchronously 
offload work to GPU

DC

2-1. Scheduler progresses 
communication and executes 
next chare
2-2. GPU work completes, 
runtime enqueues new message

D

3. Work that depends on 
the completed GPU work 
can continue (e.g. another 
entry method of the 
original chare)



Achieving Computation-Communication Overlap

1. Support asynchronous progress in the runtime

• Avoid synchronization CUDA APIs (e.g. cudaStreamSynchronize)

• Charm++ scheduler blocked from performing other chares’ work

• Cannot make forward progress on communication (without comm. threads)

• Directly using CUDA async APIs to determine completion is infeasible

• Scheduler-driven execution in Charm++

• CUDA-generated thread disassociated from the Charm++ runtime

• hapiAddCallback(cudaStream_t stream, CkCallback* callback)

• Allows user to schedule a Charm++ callback to be invoked when GPU operations complete in the 
specified CUDA stream

• Two compile-time configurable mechanisms based on CUDA Callback and
CUDA Events (default)

• https://charm.readthedocs.io/en/latest/charm++/manual.html#gpu-support

6

https://charm.readthedocs.io/en/latest/charm++/manual.html#gpu-support


Achieving Computation-Communication Overlap

2. Prioritize communication-related GPU operations in the application

• Single CUDA stream per chare: delays in communication-related operations
(host-device data transfers, packing/unpacking kernels) due to computational
kernels offloaded from other chares to the same GPU

• Need separate streams for compute and communication (with higher priority for communication)

• More complex design may be necessary, as for MiniMD (described in paper)

7



Achieving Computation-Communication Overlap

8



• OLCF Summit
• 6 NVIDIA Tesla V100s per node

• LLNL Lassen
• 4 NVIDIA Tesla V100s per node

• PAMILRTS, SMP version of Charm++

• 1 process with 1 PE/core per GPU
• e.g. 6 PEs and 6 GPUs per compute node on Summit

Evaluation Platforms

9



• Iterative proxy apps

• Jacobi3D
• Jacobi iteration performed on 3D grid, overdecomposed into chares

• Near-neighbor exchange of halo data (up to 6 neighbors)

• MiniMD
• Proxy app for LAMMPS molecular dynamics code

• Converted MPI-Kokkos to Charm++-Kokkos

• CUDA-aware MPI converted to explicit host-device transfers and host messages

• Kokkos responsible for computational kernels and intra-process data movement

• Neighbor exchange of atoms, Lennard-Jones force calculation

Benchmarks

10



Performance Results – Jacobi3D

11



Performance Results – Jacobi3D

12



Performance Results – MiniMD

13



• Up to 50% and 47% improvement in overall performance with
Jacobi3D and MiniMD, respectively

• With careful design of the application to prioritize communication and 
support for asynchronous progress of GPU work in the runtime system, 
computation-communication overlap can significantly improve 
performance (esp. in weak scaling)

• Future work: improve communication performance with GPU messaging

Conclusion

14



• Direct data transfer between GPUs using GPUDirect & CUDA IPC, bypassing host memory

• Currently supports intra-node messages, support for inter-node coming soon

• Regular API
• For point-to-point messages between chares

• Currently undergoing performance optimizations

• Included in 6.11-beta as experimental feature

• Similar to Zerocopy Post Entry Method API, sender sends metadata & receiver performs a get

• Documentation: https://charm.readthedocs.io/en/latest/charm++/manual.html#direct-gpu-messaging

• Persistent API
• For persistent P2P messages between chares (reuse of GPU buffers)

• Useful for iterative applications

• Will also be part of 6.11 (merged for 2nd beta)

GPU Messaging in Charm++ 6.11

15

https://charm.readthedocs.io/en/latest/charm++/manual.html#direct-gpu-messaging


GPU Messaging Performance

16

Inter-process Intra-process

• Charm-H: Host-staged / Charm-D: Regular GPU messaging / Charm-P: Persistent GPU messaging

• OSU latency benchmark (CUDA-aware MPI and Charm++ versions) on OLCF Summit



Thank you! Questions?


