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Abstract

One of the problems in applying parallel computing for a broad class of applications arises
from the dynamic nature of computations being parallelized. Even if the computation is care-
fully load-balanced at the beginning, the balance deteriorates over time, either due to adap-
tive refinements, or gradual change in the load of different components. Such imbalances can
have a dramatic effect on performance, especially when a large number of processors are used.
We present a methodology based on data-driven objects that can automatically handle such
application-induced load imbalances and rebalance the load as needed. The methodology relies
on automatic instrumentation to record load and communication patterns, and a flexible load-
balancing framework that facilitates development of different strategies that may be appropriate
for different classes of applications.

1 Introduction

A major factor slowing deployment of parallel programs is that efficient parallel programs are dif-
ficult to write. Parallel programming adds a second dimension to programming: not just when
will a particular operation be executed, but where, i.e. what processor will perform it. A vast
number of parallelizable applications do not have a regular structure for efficient parallelization.
Such applications require load balancing to perform efficiently in parallel. The load in these appli-
cations may also change over time, requiring rebalancing. The programmer is left with the choice
of either distributing computation in an ad-hoc manner, producing poorly-performing programs,
or spending more development time including load-balancing code in the application.

Work migration [5, 2, 7, 15, 4, 1] is a unified scheme for handling both application-induced
and externally-arising (such as that on timeshared clusters) load imbalance. The difficulty with
migrating work is that either work is repartitioned in an application-specific way, placing the burden
on the application programmer, or that automatic migration is supported, but with poor accuracy,
due to the lack of application-specific knowledge.

Object migration [6, 14| provides a way of performing accurate, fine-grained automatic load
balancing. Objects usually have small, well-defined regions of memory on which they operate,
reducing the cost of migration. Using the Charm++ object model, the run-time system can measure
the work represented by particular objects, rather than deriving execution time from application-
specific heuristics. Furthermore, the run-time system can record object-to-object communication
patterns, so the load balancer can asses the communication impact of migrating particular objects.

In this paper, we present a framework for adaptive load balancing based on measurement-based
object migration, and demonstrate its utility for application-induced load imbalance. Application
induced load imbalance may arise abruptly, as with adaptive mesh refinement, which can increase



the computational load of a partition assigned to a processor by many orders of magnitudes, or
continuously, as in molecular dynamics applications (e.g. NAMD [13, 11, 12]) where some atoms
move slowly to newer partitions, over a number of timesteps. To be successful in these and other
application-specific conditions, the load balancing framework must be versatile. Further, it is
necessary to have a programming model that permits this framework to do measurement-based
balancing (which is more accurate than prediction-based methods) via automatic instrumenta-
tion. These objectives are achieved by using the Charm-++ object model, which is described in
section 2. Section 3 describes our framework, which provides the mechanisms necessary for load
balancing, including object migration and instrumentation. Section 4 describes application char-
acteristic and corresponding distinct categories of load balancers that can be implemented in the
framework. This framework has been implemented and available for use on most parallel machines
and clusters. Performance results obtained using two benchmarks, a synthetic random compu-
tation/commmunication benchmark and a simple adaptive refinement program are described in
section 5.

2 The Charm++ Object Model

Charm++ [10] implements an object-based message-driven execution model [9], which is well suited
to object migration. Charm-++ programs are composed entirely of objects, which are instances of
CH+ classes in which certain entry methods are invoked by the receipt of messages directed at that
entry method. Sending a message to an entry method may be viewed as invoking a method on a
remote object. Charm-+4 assumes a distributed-memory model, although a particular application
may use shared memory when provided by the machine, with potential loss of portability. When a
method is invoked, it runs until completion. Then the next message is retrieved from a scheduler
queue and the indicated method of a particular object executed.

There are three types of objects in Charm++. Chares are single instances of objects. Chare
creation results in the creation of a seed message, which is enqueued in the message queue on some
arbitrary processor. The seed message may move among the processor message queues to provide
load balancing in some application. Eventually the seed message is dequeued, the chare is created
and its constructor called. Once the chare is created, it may send its chare ID to other objects, who
may then use that ID to invoke methods on that chare. The second type of Charm++ objects are
object groups (also called branch-office chares). Creation of an object group results in the creation
of one object instance on each processor, identified by a group ID. Individual objects in an object
group are accessed using the pair of group ID and processor number. Other objects may invoke
entry methods on any particular processor of an object group, or may broadcast method invocations
to every member of the group. Furthermore, any object may use the group ID to obtain a pointer
to the branch object on that processor, which may then be used to invoke non-entry methods of the
object, or access public data members of the object. The third type of objects, object arrays [16, 3],
are arbitrarily-sized sets of objects, where the size is defined when the array is created. Array
elements are accessed by remote method invocation, using their array ID and element index.

Several characteristics of the Charm++ object model make it particularly well-suited to object
migration. First, messages to chares and array elements refer to particular objects, not to proces-
sors. Therefore, the run-time system has the freedom to relocate those objects without informing
any object that may have an object ID. The run-time system forwards messages to objects as
necessary. Also, object methods are executed non-premptively. This dramatically simplifies object
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Figure 1: A typical object distribution on two processors in a Charm-++ program.

migration. Since migration can only occur between method invocations, no stack data needs to be
moved to re-create the state of the object. Object state is limited to the data members of the object,
resulting in more efficient migration. Because of the way object groups are accessed, they are more
difficult to migrate transparently. An analysis of how object groups are used in applications shows
that it is not necessary to migrate object group members. Object groups are employed for one of
two purposes. First, object groups may be used to break a problem into parts for parallelization.
In this case, replacing the object group with an object array of a desired size and dimension is
more convenient for application design as well as migration. The second use of object groups is
as a local coordination object for collective operations. For example, a reduction library would be
implemented as an object group. Client objects using the reduction library make a function call to
the local representative of the object group. If the client object migrates, it may easily obtain the
local reduction representative in its new location. For this use, it is important that there is exactly
one branch of the object group on each processor.

The way objects are triggered by messages allows the Charm-++ run-time to know which object
is executing, and for how long it executes. The run-time system can also record which objects send
messages, to which objects the messages are delivered, and the message size. This information can
be logged and used to guide object migration.

Fig. 1 shows various objects in a Charm-++4 program. Several chares have been created on the
two processors, and several chare seeds are awaiting creationg in the message queue. Two object
groups, L and M have been created, each with one object on each processor. Finally, two object
arrays, Q and R, have elements distributed across the processors.
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Figure 2: The components and interactions in the load balancing framework.

3 An Automatic Load Balance Framework

We have designed a framework for creating automatically load balanced Charm++ applications.
Furthermore, we have carefully designed the framework to allow other programming models, (such
as thread migration) to use load balancers written for the framework, permitting load balancing
for multilingual parallel programs [8].

Fig. 2 shows the main components of the load balancing framework. Note that this is a view of
the components on a single processor. Each processor will have a single load balancer object, but
most load balance algorithms will require the load balancer object on each processor to communicate
with its partners on other processors.

At the top level of the framework is the load balancer object itself. It responds to external
triggers by executing the load balancing algorithm. The Balance Now trigger may come from a
number of sources. The application may send the trigger when it has performed some action which
will result in a load change. An external timer routine may request periodic load balancing, to
account for changes in either the application or the background load on the machine. A user-
generated trigger may occur when the workstation owner requests the application to vacate his
workstation.

The load balancer gets information about the state of the processor from two sources. The Load
Database records information about all the objects on the processor. The information includes how
much processor time each object has consumed, and the destinations and sizes of messages those
objects have sent. The load balancer may choose to clear the accumulated load in the database,
or turn object measurement on and off, to eliminate the (minimal) time consumed by timer calls



during periods when timing is not required. When the load balancer requires objects to migrate,
the migration is passed to the load database, which passes the requests to the next level. The other
source of information for the load balancer is the Charm++/Converse runtime system. Converse
provides callbacks to provide processor idle time, as well as total wall-clock and CPU times spent
executing code on the processor. This information allows the load balancer to account for load
not reported to the load database, and to take corrective action when a particular processor is not
busy.

The load database interacts with objects through a number of object managers. For object
arrays, each array manager is an object manager. Other Charm++ objects (or other program
entities such as threads) will have their own object managers. Object managers are responsible
for reporting the arrival and departure of objects to the load database. They also report when
a particular object is being executed, so that the database may accumulate time for the method,
and when objects send messages to other objects. Object managers may register non-migratable
objects, so that communication with these objects may also be taken into account. When the load
database receives a request to migrate an object, it forwards the request to the object manager,
which coordinates the migration with the user object.

4 Load Balancing Strategies

Different applications exhibit diverse patterns of load imbalance. Load balancers must be specif-
ically tuned to work most effectively for the nature of the application. We divide these load
imbalance patterns into three categories.

Initial Imbalance: All except the most regular parallel computations require a non-trivial
initial balancing. What processor performs what particular part of the complete computation de-
pends on factors such processor architecture, computation to communication ratio, and problem
size. Initial load distribution is usually determined in an application specific manner, using some
heuristic assumptions about computation and communication costs to compute an initial work
distribution. Determining a good heuristic model is a time-consuming task, which may have to
be repeated for different problem sizes or parallel machines. Our alternative solution is to use the
same measurement-based methods used for dynamic load balancing. Objects are initially distrib-
uted using some unsophisticated heuristic method. After a short period of normal computation,
actual object times and communications patterns are used to determine an accurate load balancing
solution.

Slow Variation: Many problems exhibit slow variation in program load. One particular ex-
ample is molecular dynamics simulation. [12] Simulations typically run for hundreds of hours of real
time. During that time, the load distribution may change dramatically, as pieces of the molecule
move around the simulation space, changing the number of particles for which each processor is
responsible. Therefore, some load balancing is required for efficient execution. However, these
changes occur slowly. Typically the load remains nearly constant for hours at a time, so rebal-
ancing the load every few hours is sufficient to maintain parallel efficiency. Since load balancing
is done so infrequently, more time consuming balancer algorithms, possibly requiring considerable
communication and several minutes of computation, are preferred, since the extra cost is more than
offset by the increased efficiency that results.

Abrupt Variation: More often, irregular applications exhibit fast or abrupt variation in load.
Adaptive mesh refinement methods are typical examples of this. As the mesh changes, particular



regions in the simulation can become much more expensive. Then, as the perturbation moves on, the
mesh may become less dense, resulting in less load. Since the computation is still tightly coupled,
even one overloaded processor dramatically decreases the parallel efficiency of the program. In
such cases, only very frequent load balancing can maintain good load balance. Since load balancing
must occur often, there is not much time for communication. In these cases, local strategies which
only consider the loads on a few neighboring processors, requiring only limited communication, are
likely to result in the best overall efficiency.

In addition, applications may differ in their computation-to-communication ratio. More sophis-
ticated strategies are used when communication performance dominates execution time.

The load balancing framework described in section 3 supports a wide variety of possible load
balancing strategies. The load database provides all the mechanisms necessary for implementing
any load balancing strategy (the “Load Balancer” in Fig. 2). The database provides information
about all the objects on each processor to the representative of the load balancer on that processor.
Thus, it is up to the load balancer to decide whether this information needs to be collected in a
central place. A purely local strategy may utilize locally collected information to decide whether
this processor is overloaded (or underloaded), and consequently migrate some of the objects out to
a heuristically chosen remote processor, or request work from a remote processor. Another strategy
may send load information to immediate neighbors in some virtual topology, and utilize information
received from them to migrate its objects out to neighbors, when necessary.

We're currently identifying the space of possible load balancers and implementing them within
the framework. The strategies we have implemented so far include:

1. A simple greedy strategy that ignores communication costs;

2. Some experimental variations of greedy strategies that take the communication costs into
account

3. A “refinement” strategy that tries to retain objects on the current processors to the ex-
tent possible, A global reduction gets the load information to all processors, and then each
overloaded processor finds a different set of underloaded processors, and migrates some ofits
objects to them to bring their loads to the desired level.

4. A parallel branch and bound strategy that seeks an optimal solution, but can be set to run
for a specified duration or until a specified improvement is attained. This strategy tends to
supply a continuous stream of better solutions, and often reaches a close-to-optimal solution
relatively early in the search.

5 Results

In this section, we describe two of the benchmarks used to evaluate the load balancing framework,
and discuss the performance results obtained with the refinement load balancer.

The first program is a synthetic benchmark to emulate an iterative program with arbitrary work
distribution and communication patterns. The program creates a number of objects, each of which
sends messages to several other objects, waits for messages from other objects, and then performs
a computation of some randomly-determined length. Next, the objects all go to a barrier and then
repeat.
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Figure 3: Seconds per iteration for the synthetic benchmark, where computation is scaled propor-
tionally to the number of processors.

Fig. 3 shows the performance of the benchmark in which the problem is scaled so that each
processor initially has eight objects, each with randomly-determined work loads. Since the total
work increases in proportion to the number of processors, we expect the time (seconds per iteration)
to increase with the number of processors, due to extra communication and load imbalance. After
load balancing, the figure shows that the time per iteration is nearly constant, indicating that we
have found a good load balance without significantly increasing communication overhead.

The speedup for a fixed problem size is shown in Fig. 4. Due to the synchronization in the
benchmark, each iteration takes as long as the slowest processor to complete. As a result, the
unbalanced speedup is limited. Since load balancing guarantees that no processor will be grossly
overloaded, additional processors continue to be used effectively.

The second benchmark is intended to mimic the adaptive refinement technique in a simplified
matter. Adaptive refinement is used in a variety of applications, including finite element and
fluid flow studies. A portion of the simulation space, which has become either geometrically more
complex or numerically more error prone, is discretized at a finer level of granularity in the middle
of a parallel computation. The impact of such refinement on performance can be dramatic. The
processors that hold the region being refined see their share of work increase considerably. Due to
inherent data dependencies, the rest of the processors must wait for these processors to finish their
work in each iteration, and the average processor utilization drops dramatically.

Our benchmark simulates heat conduction on a two-dimensional plate. Initially, the plate is
discretized as a 1024 x 1024 array. In our parallel implementation, this array is decomposed into a
16 x 16 array of cells, each holding a 64 x 64 swath of the original array (a 66 x 66 array including
space for the boundary ghost elements). The program performs the simulation using a simple
Gauss-Jacobi iteration: the new value for each element is a simple function of the four neighboring
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Figure 4: The speed-up of the synthetic benchmark for a fixed amount of work.

values. As a boundary condition, certain places on the plate are held at a higher temperature.
Each cell is capable of refining itself on command (in a real application, any arbitrary region may
be refined).

To experiment with this benchmark, we utilized an interactive application monitoring tool called
Conspector. With Conspector, one can start a parallel application via the Web and monitor its
performance. Moreover, one can interact with a running parallel application by injecting messages
into it, and receiving data from it. Using Conspector, we injected messages to refine specific cells
interactively, watched the performance impact on the utilization monitors, and then injected a
rebalance message into the system. The results of this experiment are shown in Fig. 5.

As can be seen, after refinement the utilization drops to 75 percent from the initial value of
close to one hundred percent. When the load balance is initiated, the system monitors and times
individual objects for a few iterations, collecting data in the load database. After load balancing,
the computation resumes, with the object array manager ensuring that messages are delivered to
the array elements at their new destinations. The average processor utilization can be seen to
return to over 95 percent.

The buttons for interactive refinement and interactive load balancing are used only for the
purpose of demonstrating the utility of the framework. In real applications, refinements are trig-
gered by changing conditions within the application, while the load monitoring (and the consequent
triggering of the load balancing step) is conducted by the load balancer itself.

6 Summary

The object-based load balancing framework we have presented allows programmers to write appli-
cations without worrying about load balance, and permits the same load balancing algorithm to be
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Figure 5: The Conspector interface to the Jacobi application.

used with a variety of applications. By providing a fixed framework based on object measurement,
load balancers can treat many specifics of particular applications in a general manner, encouraging
the creation of reusable load balancer libraries. We have taken advantage of the framework to
create several applications and load balancers, and we present performance results for two of these
applications.
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