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‘ Molecular Dynamics I

e Simulate the motions of collections of atoms

e Forces due to bonds and non-bonded (Coulomb and

Lennard-Jones) interactions
e Cutofl radius for non-bonded forces
e Sparse, but not very sparse, force matrix

e Configuration changes due to atom movement
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‘ Existing Methods I

e Computation cost is O(N/P) for cutoff simulations

e Replicated Data: non scalable

e Atom decomposition:

— Communication: O(V)

e Force decomposition

— Communication: O(N/+/P)

o “‘Irregular” force decomposition
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‘Spatial Decomposition I

e Fixed size boxes vs. one box per processor

e Scalability of spatial decomposition
— Computation: O(N/P)
— Communication: O(NN/P)
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‘Difﬁculties with Spatial Decomposition I

e Load imbalance, especially for non-periodic configurations

e Parallelism limited to the number of Boxes
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‘ Hybrid Decomposition I

e Combines advantages of spatial and force decomposition

e Retains spatial decomposition in boxes
e One force-object for each pair of neighboring boxes
e Load balancer may map each force object to any processor!

e Flexible tradeoff between communication overhead and load

imbalance
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Top level structure:

‘Speciﬁcs of Load Balancing Strategy I

Initial Balancer

Learn from previous timesteps: explot temporal locality of

performance characteristics
Measurement based mapping

Migratable and non-migratable objects

/

L. V. Kalé

Parallel Programming Laboratory, UIUC



Load Balancing in NAMD 8

4 N

‘Greedy Algorithm Variant I

e Use “Greedy” heuristic, modified to take communication into

account
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‘ Multi-Paradigm Parallel Programming'

e Irregular applications often need Multiparadigm parallel

programming
Advantages of multi-paradigm programming
e One can use appropriate language for each module, separately

e Reuse existing libraries, irrespective of the language

. /

L. V. Kalé Parallel Programming Laboratory, UIUC




Load Balancing in NAMD 10

‘ Multilingual Parallel Programming'

Challenges:

e Interoperating is difficult in face of concurrent languages (such
as multi-threaded and object-based languages)

e Languages impose a processor scheduling policy
e Implicit vs. Explicit transfer of control

e Solution: exposed common scheduler (across languages)
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‘ The Parallel Programming Framework'

e Converse: multilingual interoperability

e Languages: Charm++, Charm, PC++, tSM, tPVM, MPI,
threaded MPI, DP (HPF) Import (Simulation language),
Agents

e [.ibraries:

e Applications: NAMD
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/ ‘Using Converse. \
Multilingual Library/Application
) Modules

Language Runtime

Core Faciliities
Scheduler, Threads, Msg Managers
Load Balancers, Queues, ..

Machine Interface
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‘ Charm-+}+ Overview I

e Separation of sequential and parallel objects

o Message driven objects: dynamically load balanced
o Asynchronous method invocation: Message driven execution

e (Object groups: distributed object with a branch on every

processor
o (Object Arrays: remappable
e No globally shared memory, but globally shared object space.

More info: http://charm.cs.uiuc.edu
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When an object group is created, one object instance is created

on each processor.

You may invoke a method on any member of the group
Broadcast invocation: when processor number is omitted

Invoking a method in the local branch may be a synchronous

function call

‘ Object Groups I
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NAMD Multilingual Modules

Bonded Force Objects
Patch Patch
A B

Non-bonded Non-bonded Non-bonded
Pair C_:ompute Self Compute Self Compute
Objects Objects Objects

PROCESSOR 1

Non-bonded
Pair Compute
Objects
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‘ NAMD Information I

e NAMD is a production-quality program.
— NAMD 2 contains over 23,000 lines of code
— DPMTA is an additional 8,000 lines

— SM is used in modules containing 4,900 lines

e Supports features required by application scientists
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‘Simulations using NAMD I

A simulation of Apolipoprotein A-I is currently being done with
\ NAMD. The ApoA-I simulation contains over 90,000 atoms.
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Load Balancing I
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Figure 1: Load distribution for a 16 processor simulation, showing
the load before (left) and after (right) running the load balancer.
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‘ Performance I
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Figure 2: The speed-up for ApoA-I (92,224 atoms, 12A cutoff) on
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‘ Performance I

Simulation Processors
# of atoms 1 2 4 8 16 32 64 128 160
bR 1.138 0.578 0.315 0.158 0.086 0.048
(3,762) 1.0 1.97 3.61 7.20 13.2 23.7
ER-ERE 6.115 3.099 1.598 0.810 0.397 0.212 0.123 0.098
(36,573) (1.97) 3.89 7.54 14.9 30.3 56.8 97.9 123
ApoA-I 10.760 5.464 2.850 1.470 0.729 0.382 0.321
(92,224) (3.88) 7.64 14.7 28.4 57.3 109 130

N

parantheses are estimates.

Table 1: Execution time (seconds) per timestep and speedups for
several simulations on the CRAY T3E. All the simulations were run
using a 12A cutoff. Some simulations could not run on small num-

bers of processors due to lack of memory, so speed-up numbers in
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‘ Performance I

Processors
1 2 8 16 32 64 128 160 192
T3E 6.12 1.60 0.810 0.397 0.212 0.123 0.098
(1.97) 7.54 14.9 30.3 56.8 97.9 123
Origin2000 10.7 5.43 1.37 0.723 0.514 0.987
1.0 1.96 7.75 14.7 20.7 10.8
ASCI-RED 28.0 13.9 3.76 1.91 1.01 0.500 0.279 0.227 0.196
1.0 2.01 7.45 14.7 27.9 56.0 100 123 143
NOWs 24.1 12.4 3.69
HP735/125 1.0 1.94 6.54

N

Table 2: Execution time (seconds) per timestep and speedups for
ER-ERE (36,573 atoms, 12A cutoff) on several parallel machines.
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