CHARM-++ :
A Portable Concurrent Object Oriented
System Based on C++

L. V. Kale

Sanjeev Krishnan

Department of Computer Science

University of Illinois, Urbana-Champaign

‘ Parallel Computing I

1. Computationally demanding applications exist :
e grand challenge problems

e commercial applications
2. Parallel computing can make these problems tractable

3. Large scale commercial parallel computers are
available — CM-5, Paragon, nCUBE /2, Cray T3D,
KSR-1, SP-1.

- /

‘ A Hurdle I

1. Programming parallel machines is difficult

2. Scheduling, load balancing, synchronization,

communication latency
3. Portability

4. A new dimension to the complexity of programs

‘ Object Orientation I

A way of organizing and thinking about programming

1. Abstraction and encapsulation
2. Modularity and clean interfaces
3. Inheritance hierarchies

4. Software Reuse and libraries

5. Polymorphism

- /

4 N

‘ Can Object Orientation help I
‘Parallel Programming ?I

1. Fundamental concepts overlap :

Processes and Objects
e State and persistence

e Interaction by messages
2. Abstraction controls complexity

3. Modularity helps reuse for different data distributions

Combine the benefits of two powerful technologies

- /

‘ The CHARM Parallel Programming I

‘ philosophy I

1. Portablity

2. Latency tolerance
e Simple message passing wastes resources

e Message driven execution overlaps computation

and communication

3. Support dynamic creation of work :
dynamic load balancing

4. Provide specific abstractions for sharing information

5. Support irregular as well as regular, data-parallel
computations

CHARM : A C based parallel programming language

- /

5

-

‘ CHARM++ : A high level VieWI

Sequential objects

Chares
(concurrent objects)

Objects

Branched chares
(a form of replicated objects)

Shared objects

Communication objects

~

4 N

‘ Sequential objects are different from I
‘ parallel ob jects'

1. Programmers need to know how much an action costs

(simple local call v/s expensive remote call)

2. Asynchronous, split-phase remote calls : different

from function calls

3. Better algorithm design : parallel objects coordinate

sequential objects
4. Reuse code for existing sequential classes

5. Better performance by explicit grainsize control

- /

‘ CHARM++4 Language I
‘ Communication Objects I

message MessageName {

. data members

/ ‘ CHARM++4 Language I \

‘ Concurrent Objects : chares.

chare class ChareName {

. data and function members
entry:

void EntryPointl(MessageTypel *Pointer)

{
. C++ code block

void EntryPoint2(MessageType2 *Pointer)

. C++ code block

_ /

/ ‘ CHARM++4 Language I \

‘ Replicated Objects'

branched chare class ChareName {

. data and function members

entry:
void EntryPointName (MessageType *Pointer)
{
. C++ code block
}
Y

1. One branch on every processor

2. Public members can be accessed on the local

processor by

\\\fmxﬂlBranch(ChareHandle)—>Function() 4///

10

‘ CHARM++4 Language : System calls'

1. Creating objects :

e new_chare(ChareName, EntryPoint, Message)
e new_branched chare(ChareName, EP, Message)

e new_message(MessageType) ;

2. Sending messages :
e to chares : ChareHandle=>EntryPoint (Message)

e to branched chares :
ChareHandle [PE]=>EntryPoint (Message)
ChareHandle[ALL]=>EntryPoint (Message)

3. Other calls for termination, I/O, timing.

- /

11

‘ Shared Objects : Data Sharing I

1. Messages are too low level and generic

2. Communication overheads can be optimized if the
pattern of data sharing is known

3. Need abstract template types for sharing information

in specific modes

12

4 N

‘ Shared Objects : Abstract Types I

1. Read Only : initialize at beginning, read efficiently

2. Write Once : initialize anytime, read efficiently

3. Accumulator : efficient update, read once (e.g. global

sum)

4. Monotonic : many reads and updates, need

monotonicity

5. Distributed Tables :
each entry has a key and data field
asynchronous Insert, Delete and Find operations

- /

13

‘ Modularity I

1. Separate compilation, libraries

2. Function pointers cannot be passed across address

spaces

e function reference indices

3. Modules must exchange data in a fully distributed

manner
4. Modules must not assume data distribution

e branched chares, distributed tables

- /

14

‘ Load balancing'

1. Necessary to support irregular, dynamic creation of
work

2. User selectable at compile time from many strategies

e Random

e Adaptive Contracting Within Neighborhood
e Central Manager

e Token based

- /

15

1.

3.

_

‘ Other Features '

Many user selectable scheduling strategies

2. Prioritized Execution

e Integer priority
e Bit vector (unbounded) priority

Conditional Message Packing

e Complex data structures having pointers must be
packed before sending them across processors

e System does packing only if message crosses
address space

16

‘An Example : Primes'

17

//;;tern int seqPrimes(int low, int high); *\\\
const int LENGTH = 10000;
message MsgAccCount { int data; };
message RangeMsg {
int Low, High;
¥
class AccCount : public Accumulator {
MsgAccCount *msg;
public:
AccCount (MsgAccCount *initmsg)
{ msg = (MsgAccCount *)new message(MsgAccCount)
msg->data = initmsg->data;
}
void Accumulate (int x)
{ msg->data += x;
}
void Combine (MsgAccCount x*y)
{ msg->data += y->data;

}
}s

\\éFcCount *total; 4///

18

‘ Primes Example page 2'

20

//:;are class main { *\\\

entry:

main()

{ int Limit;
CPrintf ("Enter upper limit of range : ");
CScanf ("%d", &Limit);
AccInitMsg *acc_msg = new message(AccInitMsg)|;
acc_msg->data = 0;
total = new AccCount(acc_msg);
RangeMsg *msg = new _message(RangelMsg) ;
msg->Low = 1; msg->High = Limit;
new_chare (PrimesChare, Goal, msg);

}

Quiescence()

{ main handle #*myid = MyChareHandle();
total->CollectAccValue(PrintResult, myid);

}

PrintResult (MsgAccCount * result)

{ CPrintf("The total is:%d.",result->data);
CharmExit(); }

\& /

21

‘ Primes Example page 3'

23

//:;are class PrimesChare {
entry:
Goal (RangelMsg * msgl)
{ int L = msgl->Low;
int H = msgl->High;
if ((H-L+1) > LENGTH)
{ int Mid = L + (H-L+1)/2;

msg2->Low = Mid; msg2->High = H;
msgl->High = Mid-1;
new_chare (PrimesChare, Goal, msgl);
new_chare (PrimesChare, Goal, msg2);
}
else {
int count = seqPrimes(L,H);
delete message (msgl) ;
total->Accumulate (count) ;

}

ChareExit () ;

RangeMsg *msg2 = new_message(RangelMsg);

24

4 N
Implementation I

1. Translator + Charm runtime system

2. Charm runtime ported to CM5, Paragon, nCUBE/2,
networks of workstations, iPSC/860, Sequent,

Multimax, uniprocessor
e Others in future

e See references for details

3. Translator produces C++4 code and runtime interface

code

4. Remote function call requires encoding function

names into ids which can be sent across processors
5. Complicated by separate compilation requirement

6. Solved using mapping generated at run time

- /

26

Current Status I

1. First version completed in February

2. Second version now complete
o full C+4+ parser
® €error recovery

e some syntax changes

3. Currently running on CM5, nCUBE /2, networks of
workstations

_

27

‘ Performance : Sequent Symmetry I

28

8 12

Processors

8 12

Processors

8 12

Processors

Jacobi
6

TSP
6

Primes
6

29

‘ Performance : nCUBE/2 I

30

256

256

256

Jacobi

1 64 128 256

Processors
| TSP

S)

1 64 128 256

Processors
I Primes

64 128 256
Processors

31

‘ Projections slide'

32

‘ Related WorkI

Actors (Agha)

CST (Dally)

Concurrent Aggregates, Concert (Chien)
ABCL (Yonezawa)

pC++ (Gannon)

CC++ (Chandy and Kesselman)
Mentat (Grimshaw)

ESP-C++ (from MCC)

Amber (Chase et al)

Many others

33

-

. Information sharing abstractions

. Dynamic load balancing

~

‘ Distinguishing features of Charm—l——l—'

. Message driven execution

Support for irregular AND data-parallel applications

. Clean separation : sequential and parallel objects

. Runs on many commercial parallel machines

Does not require threads package

34

‘ Future WorkI

1. Further optimize runtime system
2. Integrate Charm and Charm++ programs

3. Combine with Dagger (a visual language for
specifying dependences between messages and

computations)
4. Libraries

5. Applications

_

35

