4 N

Efficient Parallel Graph Coloring with Prioritization

Laxmikant V. Kale, Ben H. Richards and Terry D. Allen
Department of Computer Science
University of Illinois
Urbana, IL 61801
kale@cs.uiuc.edu

http://charm.cs.uiuc.edu

Graph Coloring 1

-

‘ Objectives I \

To color a graph with C colors, such that no two adjacent nodes

have the same colors.

Relevance

e Proven to be NP complete, but there are some good heuristics.

e Good search problem - techniques developed here can be
applied to other search problems.

Alms

.

e To get the best sequential as well as parallel performance

— Not just speedups

e Find a coloring, or determine if there are no C colorings.

e Develop techniques applicable to other search problems as Well/

L.V. Kale Parallel Programming Laboratory, UIUC

Graph Coloring 2

/ ‘ Search progression I \

Read Graph and build initial state

On each processor:
if (unevaluated states exist)
choose a state to evaluate.
if (uncolored nodes exist)
choose an uncolored node to expand on.
for each color available to that node:
assign the color, and create a new
state.
else
report success.

else

\\\‘ report failure 4///

L.V. Kale Parallel Programming Laboratory, UIUC

Graph Coloring

-

‘ Heuristics I

“It is difficult to get good speedups using good heuristics”

— they make the search more irregular.

.

e Variable ordering
e Value ordering
e Precoloring

e Node removal

/

L.V. Kale

Parallel Programming Laboratory, UIUC

Graph Coloring

-

Variable ordering

Choosing the uncolored node in a state to assign colors to.

- choose the one with smallest number of colors available to it.

~

- handle the most difficult cases first (decreasing the amount of

searching to be done later)

Value ordering
Prioritize the coloring schemes

- Search subtrees more likely to contain a solution first.
- Less constraining choices.

- Using bitvector priorities

.

/

L.V. Kale Parallel Programming Laboratory, UIUC

Graph Coloring

Prioritization

Color for A | Neighbors | Heuristic | Rank Bit-Vector
Affected Value Priority
‘ cl | BandC 3 2 10
c2 | C 4 1 01
‘ c3 | Neither. 5 0 00
c4 | BandC 3 3 11

. Kale

Parallel Programming Laboratory, UIUC

Graph Coloring 6

‘ Redundancy in color assignments'

For each color assignment, switching the colors of all nodes colored

C1, and C2 produces an equivalent but different coloring. With C
colors, the redundancy is C!.

Precoloring

Fix the colors for some of the nodes without loss of generality
- Bring redundancy down from C! to (C-2)! or even (C-3)!

- Failed searches have fewer states to search.

. /

L.V. Kale Parallel Programming Laboratory, UIUC

Graph Coloring 7

4 N

‘ Node Removal.

Remove the nodes in the graph which can be colored no matter
what colors are assigned to neighbours (more colors available to it
than uncolored neighbours)

- Reduces number of states

- Done recursively - removing a node may allow some of its

neighbours to also be removed.

. /

L.V. Kale Parallel Programming Laboratory, UIUC

Graph Coloring 9

4 N

Node removal example: 3-coloring.

L.V. Kale Parallel Programming Laboratory, UIUC

Graph Coloring

10

-

‘ Refinements I

e Impossibility testing
e Forced moves
e Split Graphs
Impossibility testing
Do not create states which have nodes with zero available colors.

Forced moves

it and go directly to the states it will create.

.

If the state to be created has a node with one available color, skip

/

L.V. Kale Parallel Programming Laboratory, UIUC

Graph Coloring 12

-

.

Split graphs

- Work on coloring the different parts of an unconnected
subgraph in parallel.

- All of the subparts must be colorable for a solution to be
reported.

Main Chare
I:I Main Search

- Subgraph Searches Timeline:

1 Split Parent
O Subgraph Solution found.

A Search begins from the main chare.

B Split detected, form split parent.

C,D.E Subgraph Solved

F Final subgraph solution received

send success to main.

J

C . .
D G Success arives at main.

/

L.V. Kale Parallel Programming Laboratory, UIUC

Graph Coloring 13

‘ Parallel Reﬁnements.

Kill Chasing

- With split graphs, failure of one branch, can be used to stop
the work on the other.

- Used to stop the computations once a solution is found.
Grainsize Control
- Ensure a minimum average grainsize per chare.

- Process states in sequence using a stack, until enough work has
been done to merit the creation of child chares.

. /

L.V. Kale Parallel Programming Laboratory, UIUC

Graph Coloring 14

4 N

‘ Performance Results I

e Definite performance gains due to addition of heuristics
— Value ordering helps with colorable graphs

— Variable ordering, Precoloring and Node removal helps with

all graphs

. /

L.V. Kale Parallel Programming Laboratory, UIUC

Graph Coloring 15

‘ Performance results.

File Nodes | Edges | Colors | Solution
Example 4 300 1626 5 Yes
Example 7 450 2451 5 Yes
Example 8 600 2338 3 No
Example 9 301 4274 5 No

Table 1: Input file summary.

. /

L.V. Kale Parallel Programming Laboratory, UIUC

Graph Coloring

16

-

.

Processors | Chares Execution Time

Time (sec) | per Chare (ms)

1 1 1440 1440177
2 1463 602 823
1 2138 311 582
8 2834 199 562

Table 2: Parallel speed-ups on a successful search on Multimax.

/

L.V. Kale

Parallel Programming Laboratory, UIUC

Graph Coloring

17

-

.

GS setting 540 570 580 585
Processors Execution Time (ms)

16 100907 94093 99954 193217

32 52187 46182 62686 145633

64 28182 26500 47837 129824

128 15648 16147 30022 96426
Statistic Statistic Value (across processors)

mean GS 30 59 436 2980

std. dev 11 82 991 6599

min-max GS 9-93 | 14-2411 | 17-8342 | 17-39689

Chares 50552 24075 2997 434

Table 3: Example 8 results on nCUBE/2.

/

L.V. Kale

Parallel Programming Laboratory, UIUC

Graph Coloring 18

‘ Stack based grainsize control'

e Somehow, we must avoid large grains, while keeping the

average grainsize at a reasonable value.
e Estimating work under a node is hard.

e Idea: let a process procreate only when it has worked
“Enough”.

e Each chare (process) maintains a stack, and fires k children

each time it crosses a threshold of work completed.
e Children development are fired from the bottom of the stack.

e This, or similar, method has been used by Halstead et al.

. /

L.V. Kale Parallel Programming Laboratory, UIUC

Graph Coloring 19

/ ‘ Utilization Plot ' \

With normal grainsize control:

- /

L.V. Kale Parallel Programming Laboratory, UIUC

Graph Coloring 20

/ ‘ Utilization Plot I

With new grainsize control:

- /

L.V. Kale Parallel Programming Laboratory, UIUC

Graph Coloring

Normalized Speedup (16 procs)

14

12

10

More performance data

T T T T T T
Example 7 <—

Example 8 -+- |

Example 9 -8--

20 40 60 80 100 120
Number of Processors

140

L.V. Kale

21

Parallel Programming Laboratory, UIUC

Graph Coloring

Execution Time (seconds)

160

140

120

100

80

60

40

20

Processors

V.

Execution Time on nCUBE/2

T T T
Example 7 <—

Example 8 -+-
Example 9 -B5--

50

150 200 250
Processors

300

L.V. Kale

22

Parallel Programming Laboratory, UIUC

