Towards automatic performance analysis
of

parallel programs

Amitabh B. Sinha

Outline of talk

e Introduction

— automatic performance analysis

e Automatic performance analysis of Charm programs

— knowledge of program through language constructs
and libraries

— performance analysis techniques
— integrated tool for automatic analysis

— case study in parallel molecular dynamics

e Automatic performance analysis of parallel queries

— basic operations and parallelization

Introduction

e Performance feedback is necessary

e Current work in performance feedback
— visual feedback about processor utilization, etc.
— often require manual instrumentation

— user has lots of data to examine to detect problems

e Need automatic performance analysis

— e.g., given a program in which processes have
imbalanced load, the performance analysis system
should detect and report this to the user

Introduction: automatic analysis

e Automatic analysis is feasible

— Small set of commonly occurring problems

e How does one typically do performance analysis?
— analysis « techniques < program behavior

— e.g., load imbalance < balance analysis < processor
loads

e How is automatic analysis feasible?

— acquire information about program behavior

— acquisition must be automatic

— use information to apply standard techniques

— application must be automatic

Introduction: automatic analysis

e What program behavioral characteristics are needed?
— sub-tasks (placement and granularity)

— communication (messages, locks, and disk i/o)

e How is information about program behavior acquired?
— knowledge of the specific application
— knowledge provided by the language through

* compiler support (language constructs,
annotations, and static analysis)
% system libraries (barrier)

Charm

e Charm is portable across a wide variety of MIMD
machines including IBM SP-2, NCUBE-II, CM-5,
Paragon, Sequent, and clusters of workstations.

e Knowledge of program acquired through

— language features
* chares and branch office chares
* information sharing abstractions
— libraries

*x dynamic load balancing
*x queuing strategies

x quiescence detection

Charm: language constructs

e Charm is object-based:

chare <CHARE1> {
<data-area of chare>

entry <EP1>: (message <typel> *m)
C-code block

private | public <name>()
C-code block

e Message-driven execution model:
— message contains address of entry method

— execution of message automatically scheduled by
system

— the execution of each entry method is atomic

Charm: language constructs

e Sub-tasks (placement and granularity)

SendMs
OBJECT 1 OBJECT3 OBJECT 1
CreateChare///// NN T LT T T
) ep1 \ ep1 I / ep2 A
! \\ / \ // \
! ! AN] | I
\ / N \ / \ /
A .. P / 3 / \ .) /
CreateChare ' : SendMsg SendMsg
, Ve > N .) . . X
/ \ / |
/ \ / \
| | | |
\ / \ /
\ / \ /
\ N ep1 . v S N ep2 . v
OBJECT2 OBJECT2
____________ = Message being sent, either A buffered message being picked

to another processor or to
self to be enqueued
in the creation/response queue

up from the creation/response queue
by the run-time system for
execution.

Charm: language constructs

e Charm provides multiple modes of information sharing
— each mode is an adt with known operators
— interface to user is uniform across all machines

— implementation can be and is machine specific

e Following modes are currently supported:

— Read Only / Write Once

x initialized once, and only read thereafter

— Accumulator

*x operator 1s commutative associative, e.g., counter

— Monotonic
x updates are idempotent and monotonic, e.g., cost
of best solution in branché&bound

— Distributed table

* each entry in table is a (key, data) pair
x operators are Find, Insert, and Delete

Charm: system libraries

e Dynamic load balancing

user can choose a load balancing strategy at
compile-time, e.g., random, ACWN, hierarchical,
etc.

when a chare is created, it is placed under the
control of the load balancing strategy

chares are moved freely around to balance load, and
are created on least loaded processor

once a chare is created it is anchored to that

processor; there is no migration

knowledge made available about the program

x placement of tasks
x computational demands of tasks

Charm: system libraries

e (Queueing strategies

— decides the order in which arriving messages are
scheduled

— prioritized queueing strategies

— knowledge made available about the program

« order of scheduling of messages

e (Quiescence detection

— detects a system state when there are

% NO more messages being processed, and

* N0 messages walting in queues

— provides a mechanism for global synchronization

— knowledge made available about the program

% synchronization in the program

Projections: automatic analysis

e Automatic analysis is an iterative process
— link program using “-execmode projections” option
— execute program to produce traces automatically
— use Projections to analyze traces

— get analysis and change program, repeat

e Event graph
— V ={v | vis a user event }

— For any v € V,
* V.. time of creation
% Vg: time system began executing it

* v¢: time system finished executing it

— F = {(g;,y) | x,y € V and x created y (:C — y) }
— (V, E) defines the event graph

Automatic performance analysis: algorithm

Expert(V, E) {
DetermineLogicalSeparationPoints(V, E);

for each logical phase {
utilization = ComputeEventCounts();
if (utilization < 0.75) {
Systemldiosyncrasy();
PhaseByPhaseAnalysis();

}
EvaluateLDB();

SharedVariableAnalysis();

Automatic analysis: logical separation points

e What is the time interval for the analysis?
— entire period of execution
— equal intervals of time
— user-specified

— automatic

e How do you automatically decide meaningful intervals?
— events that separate naturally repeating intervals

— set of events whose performance does not affect

performance of events after it

Automatic analysis: logical separation points

e What are logical separation points?

— nothing else happens concurrently
(=30(((t, < 27) Aty = 2) A (2 — 1))

— no cross-over events (created before and processed
after it)

(<30)((te < 27) A [t > 2) A (2 — 1))

e What are logically independent phases?

Automatic analysis: severity

e Motivation for severity analysis
— all problems not equally severe

— report problems in order of their effect on

performance

Severity: The severity of a performance problem is

the amount of reduction in the program’s execution

time if the problem is fixed.

Automatic analysis: severity

e Let the solution of a problem eliminate (1, %5)
o Is severity = to — 17

e Actually, severity = t5 — t1 — overlap(ti,ts)?

These tasks on processor 0 provide
maximum overlap with time interval

L=y

overlap(ti,ts) =
maaz{zvevptl,@ (min(ta,vy) — max(ti,vs)) | p € P},
where VI = {v | (v € V) A (vs <t2) A (v > 1)}

ComputeEventCounts

number of instances of execution of

the entry method e on processor p

number of instances of execution of the

entry method e on all processors

(i.e., >, N?)

average granularity for the entry
method e on processor p

average granularity for the entry method

e on all processors

total time spent executing entry method

e across all processors
(i.e., N.G¢)

Utility analysis

o Is it useful to create a task (cost/utility)?

— What is the cost of creating a task?

cost of creating a task =
the cost of creating message +
cost of sending message across +
cost of scheduling message

— What is the utility of task?
utility of task = granularity of entry method

e Severity of granularity problem for entry method «

— acceptable granularity is A,

— new number of events of entry method x are Z_x

— new overhead sz—x

Ty
P

— severity =

Balance analysis

e Are user work, overheads, etc., balanced?
— user work
— overheads

— user-+overheads

e Severity of imbalance in number of events of entry

method zx

— each processor gets equal work, i.e., %

— processor having maximum work does
Py _ Na
max(NE) — = less work

— severity = (max(NP) — 52)G,

e Severity of imbalance in granularity of entry method «

— processor having maximum granularity does

max(GP) — G, less work

— severity = (max(GE) — G,)NP

X

Pipelining analysis

e When should you split a message into smaller ones?
— when it arrives at an idle processor

— large code block executes after it arrives

Processor 0 | |

(a)
Entry point B

is split into

four smaller
events, which
provide a pipeline
effect.

TransmissionTime(A’)

ga+ k*mb 1 \6 [\ qb.'-gb/k
1 [}
[

Processor 0 I | | A | | | | |

=

(b)

o severity = (((ga +m) + (o + Bsp) + (96 + a5))
~((ga + kmp) + (a + Z2) + (2 4 ¢;)))

= (g + Bs)(1 — 5) — (k — L)my)

— solve differential equation for best k = /(25t)

my

— need to account for overlap

Shared variable analysis

e make a read-only/write-once variable which is accessed
infrequently into an entry in a distributed table.

e make an entry in a distributed table, which is accessed
very frequently by many different processors, into a

write-once variable

e co-locate insertion and access for entries of a

distributed table if they are accessed only once

e cache repeatedly accessed entries of a distributed table

Case study: EGO

e Parallel molecular dynamics program
— Coulomb forces between every pair of atoms

— Bonded forces between atoms participating in a
bond

— Computationally intensive: O(n?) interactions for
Coulomb forces
e How can computation of O(n?) interactions be
reduced?
— Newton’s third law

— distance classes

Case study: EGO

e Program flow
— Distribute atoms equally across all processors

— First, each processor computes interactions for
atoms on itself

— Next, each processor sends out a message:
x coordinates of atoms it owns

x forces on atoms it owns

— Each processor computes interactions for atoms on

itself with atoms in message

Case study: EGO

: sk R R Rk

4 (E.69%) Processors wait at the following entry points

: for a large message to arrive:

: DynamickMextComputation

(6,052} Proceszors wait becausze a meszage iz zent at the

5 very end of the following entry-points:

: DynamickMextConputation

(0,008 The following entry points constitute a poszible bottleneck:
: IynamickCol lectEnergyFromChi ldren

Howewer, the number of processors is not large enough to decide this,

o NextComputation is the source of problem.
— it computes Coulomb forces
— forces must be added to message
— since forces are not available till its completion, the
entire message is held up until the end
e Solution?

— coordinates do not change: send them out
immediately

— send a separate packet containing forces at the end

Case study: EGO

e Result: execution time reduced from 660s to 600s (9%

improvement)

e New analysis

E SRS SRR SRR SRR R R
| ekkskkksk SUMMARY ANALYSIS *#*mm*m*mm*

E 01,915y Processors wait at the FDIIDNIHQ entrH points
5 for a large message to arrive:
DIynamiciMextComputation DynamiciMextForce

(0,332 Procezsors wait because a meszsage is sent at the
: very end of the following entry-points:
: DynamiclMextComputation DynamiciMextForce
4 (0,008} The following entry points constitute a poszible bottleneck:
: DynamickCol lectEnerguF romChi ldren
However, the number of processors iz not large enough to decide this,

Conclusion

e Automatic performance analysis is feasible

— preliminary version

e Automatic information about program behavior
— through language constructs and system libraries for
Charm
e What’s needed for more advanced analysis?
— more information

— more techniques

