1. Introduction, Motivation 1

4 N

‘ Software for Parallel computing I

Parallel computers : massively parallel, SMPs, workstation clusters.

Main goal : high performance

Parallel software development is difficult.

. /

University of Illinois Sanjeev Krishnan

1. Introduction, Motivation 2

‘ Parallel Software : Issues.

e Decomposition

— too large grainsize : less parallelism
— too small grainsize : large overhead

e Mapping

— load balance
— communication locality

e Scheduling
— critical path

e Machine-specific implementation

. /

University of Illinois Sanjeev Krishnan

1. Introduction, Motivation 3

‘ Problems : Performance and Programmability I

Only experts can get good performance

e How to get better performance from parallel programs 7
Complex issues make parallel programming difficult
e How to make parallel software development easier ?

How to eat the cake and have it too 7!

. /

University of Illinois Sanjeev Krishnan

1. Introduction, Motivation 4

4 N
" Approach I

e use object-orientation

— encapsulate complex details, make code reuse easier

— objects naturally represent independent parallel

computations
— programmer only specifies decomposition into objects

— system tries to automate everything else
e develop automated “expert” optimization tools

— should embody the experience of good parallel programmers

. /

University of Illinois Sanjeev Krishnan

1. Introduction, Motivation

-

Application

Optimizations (

Programmer

%
Application

Language

-

%
Program

]

‘ Automated optimization tools I

Typical parallel software development cycle :

J

h Expert
——=| Compiler
Program

Compiler

Executable

e Need automated expert optimization tools

Run-time
Libraries

Parallel
Computer

Results

e Parallel programming skills not widespread

Parallel

Executable

Computer

Optimization Hints

)

H
Traces

PARADISE

Program development with run-time optimizations driven by
the Paradise post-mortem analysis tool

~

/

University of Illinois

Sanjeev Krishnan

2. Contributions 8

/ ‘ Relation to previous work I \

Performance analysis tools

e most existing tools visualize performance data

e a few tools (Projections, Poirot, Paradyn, MPP-Apprentice)
diagnose performance problems

e our framework solves performance problems by automatic

selection and incorporation of optimizations.

Compiler / runtime optimizations

e compiler optimizations alone are inadequate in many cases,

need to be complemented by runtime optimizations

e existing runtime systems do not incorporate
\ application-specific information / post-mortem analysis /

University of Illinois Sanjeev Krishnan

2. Contributions 8

4 N

e most automatic optimization research is for loop-based /

data-parallel models.

Scope / breadth

e parallel object-oriented model allows dynamic creation of work,
asynchronicity, irregularity, as opposed to data-parallel/SPMD
models.

e Charm++ model places greater responsibility on runtime, thus

more challenges and opportunities for automatic optimization.

e our framework automates optimizations for static and dynamic

placement, scheduling, grainsize control and communication.

. /

University of Illinois Sanjeev Krishnan

3. Charm++ 9

/ ‘ Charm-+}+ : Overview I \

A parallel object-oriented language based on C++. Derives most of

its features from the Charm parallel programming language.

Essential features :

e Parallel objects called chares
e Remote object creation, dynamic load balancing

e Asynchronous method invocations using global “object
handles”

e Message-driven (actor-like) execution

e Parallel object arrays

e Prioritized scheduling

/

University of Illinois Sanjeev Krishnan

4. Runtime Optimizations 15

/ ‘ Why runtime optimization I \

Compiler optimizations alone are inadequate

e Unpredictable parallel execution environment
e Unpredictable computational needs of applications
e Difficult to analyse C++-based parallel o-o languages

e Separate compilation reduces global /interprocedural

information

e Many parallel programming environments are library based

Compiler optimizations must be complemented by runtime

\optimiza,tions. /

University of Illinois Sanjeev Krishnan

4. Runtime Optimizations 16

-

-

~

‘ Why post-mortem analysis I

Program-specific information needed to parameterize and guide
optimizations.

Compilers cannot provide all the information required.

Runtime analysis cannot detect global/spatial problem

structure or make predictive decisions easily.

Post-mortem analysis is anyway an integral part of manual

development cycle.

/

University of Illinois Sanjeev Krishnan

4. Runtime Optimizations 17

/‘ Paradise : Automatic post-mortem analysis I\
Run-time Optimization Hints
Libraries \‘ lH

—— =| Language ——=| Compiler Parallel —— = PARADISE

Application Program Executable | Computer | Traces

Program development with run-time optimizations driven by
the Paradise post-mortem analysis tool

1. Compile program
2. Run program (generates traces of execution)
3. Run post-mortem analyzer tool (generates hints file)

4. Run program again : runtime libraries use hints to optimize

execution

. /

University of Illinois Sanjeev Krishnan

4. Runtime Optimizations 18

/ ‘ Program representation I \

Parallel program represented by event graph (dynamic task graph)

e original version designed for Projections tool.
e vertices = method invocations, edges = messages.
e add intra object dependence edges

e group method invocations by object instance

Method ——= Message

\ c time- - -= g /

University of Illinois Sanjeev Krishnan

4. Runtime Optimizations

19

-

‘ Non-determinism '

Non-determinism affects analysis of program characteristics.

Causes :

e Inputs / Number of processors
e Adaptive placement

e Adaptive scheduling

e Adaptive granularity control

e Speculative execution

Solution : find application-level characteristics.

-

/

University of Illinois

Sanjeev Krishnan

4. Runtime Optimizations 20

4 N

‘ Handling non-determinism I

e assume only size of computations change (most applications)

Inputs :

e generate only application-specific hints

e collect input-specific information at run-time

Adaptive scheduling, placement do not affect event graph.

. /

University of Illinois Sanjeev Krishnan

4. Automatic Optimization Techniques 21

‘ Analyzing Optimizations I

e identify / create control points where runtime libraries can

affect program execution

e identify / design alternate optimization mechanisms to be
applied at the control points

e develop strategies/heuristics to select between mechanisms

e identify program characteristics required to parameterize
mechanisms / guide strategies

e develop techniques to automatically extract characteristics
from event graph

e develop techniques to generate concise hints

Dynamic and static object placement, scheduling, granularity

control, communication reduction.

. /

University of Illinois Sanjeev Krishnan

4. Automatic Optimization Techniques 22

‘ Optimizing Dynamic Object Placement I

Aims : Balance processor loads, and keep heavily interacting

objects together

Control points : from seed creation through seed dispatch (object

creation)

Schemes : Randomized, round-robin, neighbor averaging,

centralized manager, hierarchical manager, etc.

Runtime information required : processor loads, load per object,

interactions between objects

How to choose between the schemes ?

. /

University of Illinois Sanjeev Krishnan

4. Automatic Optimization Techniques 23

/ ‘ Heuristics for Dynamic Object Placement I \

if (object creation is centralized)

if (all objects have the same grainsize)
Choose round-robin

else
Choose hierarchical-manager

else

if (there is significant inter-object communication)
Choose neighbor-averaging

else if (average grainsize is sufficiently large)
Choose hierarchical-manager

else if (all objects have the same grainsize)
Choose round-robin

else

\\\‘ Choose neighbor-averaging 4///

University of Illinois Sanjeev Krishnan

4. Automatic Optimization Techniques 25

‘ Results for dynamic object placement I

Program Default Automatic
Variable-Grainsize 2624 | 2290 (dist-mgr)
Heavy Communication 7685 | 6326 (nbr-avg)
Fibonacci (regular tree) 69 29 (tree)

Table 1: Time (in milliseconds) for different programs using dynamic
object placement. (Tracing is off for all results, default mapping is

round-robin).

. /

University of Illinois Sanjeev Krishnan

4. Automatic Optimization Techniques 26

‘ Optimizing static object placement I

Applies to multi-dimensional parallel object arrays

e No dynamic object creation

e Determine placement before computation begins

Aims : balance loads, reduce inter-processor communication

Use communication patterns, phase structure, grainsize patterns to

determine best mapping of objects to processors.

. /

University of Illinois Sanjeev Krishnan

4. Automatic Optimization Techniques

27

-

‘ Regular structure without phases I

communication patterns (e.g. nearest neighbor)
No phases : all objects active in all phases

Heuristic : Use block structured patterns

Xsize _ Xcomm
Y size Ycomm

dimensions. E.g.

-

Regular : all array element objects have similar grainsizes, regular

Find aspect ratio of block using amount of communication along

/

University of Illinois

Sanjeev Krishnan

4. Automatic Optimization Techniques 28

/ ‘ Regular programs with phases I \

Phases : all objects are not active in some phases.

L 1

%%%%S

. . L 1

Balance load within phases. — —

Generate load balance constraints between every pair of objects in

every phase : the two objects should preferably not be assigned to
the same processor.

Aim : satisfy as many constraints as possible.

For each mapping pattern (e.g. block-cyclic, multi-partition):
and for each set of constants in mapping expression: e.g.
Map(i,j) = LMOD b+b* (:MOD d)

e generate an assignment of objects to processors

e count the number of constraints satisfied

\ e choose the best pattern, constants /

University of Illinois Sanjeev Krishnan

4. Automatic Optimization Techniques 29

‘ Irregular programs without phases I

Significant variation in object grainsize or input-dependent load

patterns.
E.g. irregular block-structured scientific applications.

Use run-time partitioning library : e.g. Orthogonal Recursive

Bisection

Array-element objects must inherit from “load-array” class, and set

load variable in constructor.

Partitioning starts at first synchronization point. Synchronous

remapping of parallel object array follows partitioning.

. /

University of Illinois Sanjeev Krishnan

4. Automatic Optimization Techniques

30

-

‘ Results for static object placement I

Program Default Automatic
Jacobi 29.55 | 24.54 (block-block)
GaussElim (has phases) 34.90 34.90 (cyclic)
Irregular 7.94 2.51 (O.R.B.)

-

placement. (Default mapping is cyclic).

Table 2: Time (in seconds) for different programs using static object

~

/

University of Illinois

Sanjeev Krishnan

4. Automatic Optimization Techniques 31

‘ Scheduling Optimizations I

Aim : Select order of execution of methods (messages) to minimize

completion time.
Mechanism : prioritization
e assign a priority to every message
e scheduler maintains a priority queue of messages

e method corresponding to highest priority message is invoked

Paradise finds the program’s critical path, and prioritizes messages
along it.

. /

University of Illinois Sanjeev Krishnan

4. Automatic Optimization Techniques 32

/ ‘ Heuristics for Optimizing Scheduling I \

Determine if the program has a critical path.

e longest-path heuristic

e perform depth-first traversal of the event graph.

Find which message types lie on critical path.
e assign higher priority if a type occurs more often on critical
path

e assign lower priority if more often on non-critical paths

Find which objects are on critical paths (e.g. array element objects)

e assign higher priority if the object occurs earlier on critical path

e use linear pattern expression to relate object-coordinate to

\ priority (Priority = a * object-id + b) /

University of Illinois Sanjeev Krishnan

4. Automatic Optimization Techniques

33

-

-

‘ Results for optimizing scheduling I

Program

Default

Automatic Priorities

GaussElim

43.58

34.90

automatic prioritization.

Table 3: Time (in seconds) for Gauss Elimination with and without

/

University of Illinois

Sanjeev Krishnan

4. Automatic Optimization Techniques 37

‘ Automating pipelining I

Paradise finds a method on the critical path which executed after a

long delay.

Degree of pipelining (formula from [Sinha95]): k = 4/ ﬂ—l:g

Before After

PEO

PEI

s) g s) kg/k

New control point needed for affecting pipeline degree.
Programmer obtains pipeline degree by calling
“GetPipelineDegree()”

. /

University of Illinois Sanjeev Krishnan

4. Automatic Optimization Techniques 38

‘ Automating message combining I

Determine number of messages to combine, and sending/receiving

ProcCessors.

Runtime uses this number as a hint, buffers messages, combines

them at sender, and unpacks them at receiver.

E.g. special case : at synchronization points

e reduce messages from N to P

e find phases corresponding to synchronization points (pattern :
phasenum%a + b = 0) and enable combining for those phases.

. /

University of Illinois Sanjeev Krishnan

4. Automatic Optimization Techniques

39

/ ‘ Results for optimizing communication I \

Program

Before

After (Automatic)

Jacobi

50.57

24.54

automatic message-combining.

Table 5: Time (in seconds) for Jacobi program before and after

Program

Manual (best) | Automatic

Poly-Overlay

15.09 15.37

Table 6: Time (in seconds) for Polygon-Overlay program with man-
ual (optimal) and automatically pipelined versions.

/

University of Illinois

Sanjeev Krishnan

6. Conclusion 42

/ ‘ Conclusion ' \

Runtime optimizations improve parallel program performance, and

they can be automated.
Future :

Parallel object-oriented programming (especially C+-+-based) is

now mailn-stream.

Paradise, runtime optimization framework useful for simple parallel

programs, but still more development needed:

e more optimization techniques

e better heuristics

e integration with compiler techniques

. /

University of Illinois Sanjeev Krishnan

