Automating Runtime Optimizations for
Load Balancing in Irregular Problems

Sanjeev Krishnan and Laxmikant V. Kale
Department of Computer Science,
University of Illinois, Urbana-Champaign.
Email : {sanjeev kale}@cs.uiuc.edu
Phone : (217) 244-0094

Abstract

In order to reduce the effort required for attaining good performance for
parallel programs, it is necessary to use automated performance opti-
mizing techniques. In this paper we describe run-time optimizations for
load balancing, and techniques to automate them without programmer
intervention using post-mortem analysis of parallel program execution.
These techniques are very useful for applications having irregular, non-
uniform or dynamic load patterns. We classify the characteristics of
parallel programs with respect to object placement (which determines
load balance), then describe techniques to discover these characteristics
by post-mortem analysis, and present heuristics to choose appropriate
load balancing schemes based on these characteristics. Our ideas have
been developed in the framework of the Paradise post-mortem analy-
sis tool for the parallel object-oriented language Charm++. We also
present results for optimizing simple parallel programs running on the
Thinking Machines CM-5.

1 Introduction

Parallel program development cost has been recognized as one of the bottlenecks preventing
more widespread use of parallel computers. The increased cost of parallel software is due
to several new issues which have to be tackled before parallel programs can attain the peak
performance that parallel computers provide. The goals of high performance and better
programmability are difficult to achieve simultaneously. The challenge is to attain good
performance at low programming cost.

Parallel programming skills are also not widespread among application programmers, and
moreover, the programmer may not know enough about the characteristics of the application
and implementation without investing considerable effort. E.g. the choice of a load balancing
scheme for an application requires knowledge of the application’s load characteristics. Thus it
is difficult to anticipate and respond to all potential performance problems during the design
of the first prototype of a parallel program. The first prototype is hence likely to have several
serious performance flaws such as load imbalance, leading to active research for identifying



performance problems and solving them using optimization techniques. These steps lead to a
significant portion of the programming cost in the parallel program development cycle. Since
most parallel programmers are not skilled in identifying and solving performance problems,
expert parallel programming knowledge must be embodied in tools which are available to the
parallel programmer.

In particular, using expert knowledge either in the compiler or the run-time system to
automating program optimizations can significantly help to reduce the parallel software de-
velopment effort. When most performance problems are solved in this manner, there will
be fewer iterations of the development cycle. Even in cases where completely automatic
techniques are not possible, it is beneficial to automate the optimization steps to the extent
possible. This paper is concerned with precise post-mortem analysis which can be used for
automating run-time optimizations for load balancing, especially for irregular, non-uniform
or dynamic problems.

2 The Optimization Framework

This work is part of a larger project to develop a framework for automatic runtime optimiza-
tions [1, 2].

The need for runtime optimizations arises because compiler transformations alone are not
sufficient to optimize all parallel programs. In particular, compiler optimizations cannot take
into account unpredictable run-time execution environments and unknown application char-
acteristics. Static compiler analysis is also restricted by the difficulties of precise dependence
and type analysis in the presence of pointers, and by separate compilation of program mod-
ules. Finally, for library based systems such as PVM and MPI, runtime optimization is the
only means to get better performance.

2.1 Paradise: Automating Runtime Optimizations

Run-time optimizations such as for load balancing need information about characteristics of
the parallel program in order to enable optimization mechanisms and guide strategies for
selecting them. Since compilers cannot statically deduce the required information in many
cases, programmers often manually analyze the execution of a program in order to discover
program characteristics and optimizations (Figure 1a). Automatic post-mortem analysis may
thus reduce the effort required for performance optimization.

Most parallel programs needing optimizations such as for load balancing fall into one of
two categories: the first consists of those for which good optimization strategies can be de-
rived from well known heuristics; for such programs an automated expert system for guiding
optimization can potentially achieve good results. The second category consists of programs
which need new algorithms and techniques for optimizing them; for such programs the in-
tervention of a human programmer is obviously needed. However, experience with parallel
applications has shown that many of them have well-recognized performance problems for
which optimizations can be found using a few good heuristics.

This paper presents current results from an ongoing project to develop a framework for au-
tomating run-time optimizations (Figure 1b). The framework involves the expert post-mortem
analyzer PARADISE (PARallel programming ADvISEr) which analyses traces of program ex-
ecution, finds program characteristics and suggests optimization hints. Paradise works in close
cooperation with a run-time system which uses the hints to parameterize optimizations and



Optimizations Expert
Programmer
) Parallel
—— = Language Compiler
Application g Program P Executable | COmputer | Regjits

(a) Conventional program development cycle

Run-time | Optimization Hints

Libraries

Language Compiler Parallel Paradise

— ]
Application Program Executable | COmputer | Traces

(b) Program development with run-time optimizations driven by
the intelligent post-mortem analysis tool Paradise

Figure 1: Parallel program development cycles (reproduced from [2]).

select between alternate optimization strategies. Paradise builds a representation of the pro-
gram’s execution from traces, determines characteristics of the program, uses heuristics to find
optimizations that will solve the performance problems, and generates concise hints which are
communicated to runtime libraries by a “hints file”.

2.2 Previous work

Automatic post-mortem analysis has been used in performance analysis tools for parallel
programs, to give the user insights into performance problems such as load imbalance using
expert analysis [3, 4, 5, 6]. Our framework aims to go a step further in the direction of
automation: Paradise not only finds performance problems, but also solutions in terms of
optimizations for the problem areas, and in co-operation with the run-time libraries, incor-
porates the optimizations in the program without programmer intervention. Some compilers
for data-parallel languages such as HPF [7] use profile information to accurately find the cost
of various computation and communication operations. In [8], profile information is used to
manually calculate weights to be used in weighted graph decomposition, for irregular data-
parallel applications. To the best of our knowledge, our framework is one of the first efforts
towards using post-mortem analysis for automating selection of load balancing strategies,
and incorporating them into the program without programmer intervention. Also, our opti-
mizations apply to dynamic, non data-parallel and irregular applications as well as regular
ones.

Another unique aspect of our work is that it is in the context of a parallel object-oriented
language which allows the run-time system the flexibility to choose strategies for placement
(mapping) of computations. Thus there are significantly greater opportunities and challenges
for automatic load balancing strategies. In contrast, message-passing layers such as PVM
or MPI require the programmer to explicitly specify the placement of computations, and
also do not provide facilities for dynamic creation of tasks, thus restricting the extent of
automatic load balancing. Again, data-parallel languages such as HPF present a much simpler



regular computational model for which optimizations are easier to perform, as compared to
a parallel object-oriented model which involves dynamic creation of tasks and asynchronous
communication.

3 Program model

For completeness, we include a brief description of the programming model and its post-
mortem representation, taken from [2].

This work is based on the parallel object-oriented language Charm++, [9, 10] which is an
extension of C++4. The basic unit of work in Charm++ is a chare, which is a medium-grained
concurrent C++ object. Chares are dynamically created; there may be thousands of chares
per processor. A chare type is a C++ class containing data and functions which may be
triggered by the arrival of messages. Functions inside chares are atomic (they may not be
pre-empted).

Chares communicate by sending messages to functions (invoking methods) in other chares
asynchronously. An essential feature of the Charm++ parallel programming model is asyn-
chronous message driven execution, which helps latency tolerance by overlapping communica-
tion and computation. All calls to the run-time are non-blocking, and there are no “receive”
calls. Remote accesses are performed in a split-phase manner. Each processor has multiple
chares, and a pool of messages targeted to methods in the chares. The scheduler picks mes-
sages from the pool one by one, and “processes” them by invoking their target methods in
the proper chare objects.

Charm++ also provides multidimensional parallel arrays of objects which are distributed
over processors using a user-specified mapping function. Array elements may communicate
with each other in a point-to-point manner or using multicast communication primitives.

Post-mortem representation:

The execution of a Charm++ program is represented as an event graph, which is essentially a
dynamic task graph constructed using traces collected at run-time. Issues in collecting trace
data, reducing perturbation, and constructing the basic event graph are discussed in [6] and
are beyond the scope of this paper. A simple version of the event graph was originally used for
the Projections [11] performance visualization and analysis tool. The event graph constructed
by Paradise consists of vertices representing entry-function executions, edges representing
messages between entry functions and edges for dependences between methods (these depen-
dences must be specified in the language or generated by the compiler). Also, all vertices
belonging to the same object instance are grouped together.

4 Parallel program characteristics affecting object placement

A load balancing strategy determines the placement of objects onto processors. In order
to select a suitable object placement strategy which balances load, Paradise attempts to
systematically discover the characteristics of the parallel program from the event graph. We
first describe four important characteristics which affect object placement, and discuss how
they are inferred from the event graph.



4.1 Object grainsizes

The grainsize of a method is the amount of work done (load) in the method execution, and
is computed as the difference in time from the start to the completion of the method (since
all methods in Charm++ are atomic and all operations are non-blocking). The grainsize of
an object instance is the sum of the grainsizes of all method executions for that object. The
grainsize of an object type is the average over all objects of that type. The average grainsize
of a program is computed by taking into account all parallel objects on all processors. If
the average grainsize of a program is too small (e.g. comparable to the message latency on
the machine it was run on), it indicates that the program might suffer from large overheads,
for which corrective optimizations may be needed. If the average grainsize is too large, it
indicates less parallelism leading to significant idle times on processors.

A useful characteristic of a program is the amount of variation in object loads. A large
variation in loads requires more complex dynamic load balancing strategies. If all grainsizes
are nearly the same, simpler strategies may suffice, or more accurate optimizations may be
possible.

4.2 Palterns of object creation

Object creation patterns tell us which processors create objects, and at what times in the
program execution they are created. The patterns of object creation determine the times and
locations where object mapping decisions have to be made, and thus determine the strategy
for collection and distribution of load information which is needed for making the object
mapping decisions at run-time. E.g. For a data-parallel program where arrays of objects
are created at the beginning, no load information needs to be collected; on the other hand,
for state-space search where the search tree is expanded in the course of the program, load
information must be continuously updated so that new objects can be sent to underloaded
processors.

The locations of object creation may be centralized (one processor creates all the objects)
or distributed (many processors create objects). This characteristic can be easily inferred
by counting the number of objects created on each processor. In general, distributed object
creation requires more complex load balancing strategies. The times of object creation may
be continuous (objects are created continuously) or bursty (objects are created in bursts, with
intervening periods when no objects are created; a special case of this is when objects are
created just once, at the beginning of the computation).

4.8 Data locality

The behavior of a program with respect to data locality tells us the extent of access to
non-local data. It is desirable to increase data locality in a program so that the amount of
data accessed from remote processors decreases. Data locality can be increased by taking
into account interactions between objects while making object mapping decisions: closely
interacting objects should be mapped to the same processor. In order to deduce patterns
of inter-object interactions, we construct an object-interaction graph in which the nodes are
objects and edges represent communication between objects. The weight of an edge represents
the amount of communication (e.g. number of messages) between the pair of objects it
connects.

If there is very little inter-object communication or if there is “all-to-all” communication, it



is not worthwhile trying to increase locality. However, if the communication is tree-structured
(each object communicates only with its creator or child objects) or graph-structured (e.g.
neighbor communication) it is worthwhile trying to increase locality by mapping closely in-
teracting objects to the same processor.

5 Optimizing dynamic object placement

There are two main aims of an object placement strategy: to balance load across proces-
sors; and to maintain locality by moving objects only when necessary and keeping heavily
interacting objects on the same processor.

The control points for dynamic object placement are from the time of seed! creation
through the time the seed is dispatched by the run-time for creating the new object.

There are three components of a load balancing scheme. The load collection component
determines how load information from different processors is collected. The initial mapping
component determines the processor to which a newly created seed is sent. Finally the re-
balancing component is responsible for redistributing seeds and objects after they have been
initially assigned to a processor.

5.1 Schemes for dynamic object placement

Several schemes may be used for dynamic object placement, with different levels of sophis-
tication, overheads and for different types of load balancing problems. Some of the schemes
commonly used are:

e Randomized: when a new object is created, it is placed on a random processor, in the
hope that the randomization will eventually even out the number of objects per proces-
sor. Each processor creating objects generates a different random number sequence to
prevent all processors from placing load on the same destination processor.

e Round-robin: processors are ordered in a round-robin sequence and a new object is
placed on the next processor in the sequence. (Each processor maintains its own round-
robin sequence of destination processors). This is a simple, low-overhead scheme, which
works well if all objects have approximately the same grain-size. The drawbacks are
that it will not work well if there are a few large-grained objects (there are not enough
objects to go around the sequence) or if objects have variable grainsizes, or if there is a
need to maintain locality.

e Neighbor averaging: each processor exchanges load information with its neighboring
processors, and if the difference in loads is greater than a threshold, the overloaded
processor sends work to the underloaded processor. Otherwise processors keep newly
created seeds with themselves. Thus neighbor averaging works by smoothing out differ-
ences in load. Load gradually diffuses from highly loaded neighborhoods to underloaded
neighborhoods. The advantage of this scheme is that it maintains locality because new
objects are kept local as much as possible. However, there is some overhead associated
with collection of load.

1A seed is the initialization message for a new object.



o Centralized manager: one processor is designated as the manager, and the rest of the
processors are workers. Workers send new seeds to the manager, which distributes them
equally among the workers.

e Distributed manager: this is a more scalable version of the previous scheme. The
processor set is divided into clusters, each of which has is own manager which balances
load within a cluster. Periodically, managers also balance load between themselves. This
scheme can quickly adapt to unpredictable changes in processor loads, hence is useful
when object grainsizes are variable. However, locality is not maintained because objects
may be sent to arbitrary processors. There is also some overhead for sending seeds to
the manager, hence this strategy will work well only if the grainsize of objects is large
enough to amortize messaging overhead for seeds.

The Charm run-time system already provides some load balancing schemes such as random-
ized, neighbor averaging, and distributed manager. We have also designed a new parameter-
ized load balancing scheme for tree-structured computations which exploits information about
the tree-structure to optimize load balance [2]. All these schemes are automatically enabled
at runtime based on the hints suggested by Paradise in the hints file.

5.2  Information required for dynamac object placement

In addition to the application-specific characteristics described in Section 4, the following
input-specific information is useful for dynamic object placement:

e Processor load information: Since load patterns can vary widely across applications,
no single scheme for collecting processor loads may be good for all applications. For
example, load information may be sent out by lightly loaded processors which need to
receive work, or by heavily loaded processors which need to give away work, or in a
periodic manner, or in particular stages of an application, etc.

e Load per object; also, load for the entire sub-tree of objects which are created by an
object. If each processor can estimate the sum of future loads due to all its objects
(assuming all newly created objects are kept local), it is easier for a scheme to balance
loads accurately. This load information can be specified by the programmer as object-
local variables or as parameters while creating an object.

e Information about interactions between objects: this is necessary for maintaining local-
ity. This information can be specified by the programmer in the form of object-affinity
hints.

5.8 Heuristics for automating dynamac object placement

For programs which create objects dynamically throughout the execution of a program, Par-
adise chooses a load balancing scheme depending on the program’s characteristics. The hint
generated contains the chosen scheme and any necessary parameters. At execution time, this
hint is read in by the load balancing module in the Charm runtime system and is used to
activate the chosen scheme. Currently Paradise chooses one of three schemes: round-robin,
neighbor averaging, and distributed manager. The heuristics used by Paradise to automati-
cally choose a scheme are:



if ( object creation is centralized )
if ( all objects have the same grainsize )
Choose the round-robin scheme.

else
Choose the distributed-manager scheme (the processor
creating all objects is the manager).
endif
else
if ( there is significant inter-object communication )
Choose the neighbor-averaging scheme (it maintains locality
by only moving objects when necessary to balance load).
else if ( the average grainsize is sufficiently large )
Choose the distributed-manager scheme (grainsize is large
enough, so there are not too many objects; overhead of sending
seeds to the manager will not be significant).
else if ( all objects have the same grainsize )
Choose the round-robin scheme.
else
Choose the neighbor-averaging scheme (large number of objects
with varying grainsize: none of the other two will work).
endif
endif

These rules embody some of the expertise we have accumulated while optimizing several
applications requiring dynamic load balancing schemes [12, 13]. Note that this expertise can be
brought to bear on this problem only because the post-mortem analysis based on the enhanced
event graph is able to identify the relevant characteristics of the parallel computation.

5.4 Ezample programs

In order to test Paradise’s ability to correctly choose a dynamic object placement strategy for
programs which dynamically create work, we used the following test programs.

Variable grainsize objects:

This is an artificial program which creates a number of objects of varying grain-sizes, in
the form of an irregular, large-branchfactor tree. Paradise was able to deduce the following
characteristics with respect to placement:

1. the program has dynamic object creation
2. there are no phases
3. the communication overhead is not significant

4. the average grain-size of objects is sufficiently large.

Hence it suggested the distributed-manager strategy (Section 5.1). This hint was written into
the hints file and read in by the load balancing libraries at runtime, thus enabling the chosen
strategy. Table 1 presents results from running the program on 16 processors of the CM-5,
with 137 objects being created.

Heavily communicating objects:
This is an artificial program which creates a number of objects of the same grain-size, but



Strategy | Roundrobin (default) | Dist-Manager (automatic)
Time 2624 2290

Table 1: Time (in milliseconds) with the default and automatically chosen load balancing
strategies for the variable-grainsize program.

which communicate heavily with each other. The structure of the program is an irregular
tree, with large messages being sent from children to parents in the tree. Paradise was able
to deduce the following characteristics with respect to placement:

1. the program has dynamic object creation
2. there are no phases
3. the program has an irregular tree structure

4. the communication overhead is significant

Hence it suggested the neighbor-averaging strategy, which keeps objects local to the processor
which created them as far as possible, thus reducing the number of messages that need to go
across processors. Table 2 presents results from running the program on 16 processors of the
CM-5, with about 5200 objects being created.

Strategy | Roundrobin (default) | Neighbor-Avg (automatic)
Time 7685 6326

Table 2: Time (in milliseconds) with the default and automatically chosen load balancing
strategies for the heavily-communicating objects program.

6 Optimizing static object placement for irregular programs

Many applications, especially array-based applications in science and engineering, do not
create objects dynamically: all objects are created at the beginning of the program. In such
a case it is possible to place objects at the beginning of execution using a static placement
strategy. As for dynamic placement, the two considerations for a static placement strategy
are to balance load and maintain communication locality. The control point for allowing
the run-time to determine static object placement can be provided by a function call to a
partitioning or placement library, at the beginning of the program.

Work on compiler techniques for automatic data partitioning in array-based Fortran and
HPF programs has achieved considerable success; block and cyclic mappings of regular arrays
can be generated by compilers. However, there are many other types of irregular/dynamic
applications for which static placement cannot be done by only compile-time analysis. Even
for array-based scientific programs, block/cyclic mappings are not sufficient for many applica-
tions. Finally, since the number of processors and the size of the array and other parameters
can vary from run to run of a parallel program, we need run-time decisions about the processor
on which a particular object should be placed.



When the amount of work done in the element objects of a parallel object array varies
significantly, these load variations must be taken into account while assigning objects to
processors, in order to balance load across processors. Often variations in load arise due to
input-dependent load patterns. E.g. In a particle simulation, the simulation space is divided
into regions and each region is assigned to an object. The load of an object is proportional
to the number of particles in its region. When the input particle distribution is non-uniform,
there may be a large variation in the number of particles (hence load) per object.

Paradise detects a variation in load by comparing the grainsizes of the array element
objects and checking to see if they vary significantly. If there is significant variation in load,
the program is classified as an irregular program. For such programs, an input-dependent
runtime object placement scheme must be used. Currently the scheme used for partitioning a
parallel object array is Orthogonal Recursive Bisection (ORB).

ORB is a well known low-overhead scheme which recursively bisects a multidimensional
space into two partitions by planes orthogonal to the coordinate axes, such that the load
in each partition is approximately equal. The bisection process stops when the number of
partitions is equal to the number of processors. Since the partition assigned to each processor
is a rectangular (convex) subspace of the original multidimensional space, the communication
(which is proportional to the boundary of the region) volume is also reduced. Thus at the
end of ORB each processor gets a set of objects corresponding to a rectangular subarray of
the original parallel object array, such that all processors have equal loads.

Thus for irregular programs Paradise generates a hint to the runtime libraries to use ORB
for partitioning the parallel object array. Additionally, the runtime system needs information
about when the partitioning must be applied. Since ORB partitioning requires information
about the load of each object, it can only be applied after the object array has been initial-
ized. An appropriate point at which ORB can be applied is the first synchronization point
in the program. Accordingly, Paradise finds the phase number corresponding to the first
synchronization point, and includes this phase number in the optimization hint.

Another important issue is the problem of conveying load information for each object to
the ORB library. This is solved using inheritance. All parallel array objects are required to
inherit from the “loadarray” class which contains a “load” variable. Each object is required
to set this variable in its constructor (e.g. the load may simply be the number of particles
in the object’s region)?. When the ORB algorithm is initiated, each processor can find the
load of all objects it contains by reading the “load” variable in each object. All load values
are collected on processor 0, which then applies the ORB algorithm (thus the actual ORB
algorithm itself is just a sequential algorithm), and broadcasts the resulting mapping to all
processors.

Thus Paradise enables object placement for input-dependent irregular programs without
programmer intervention. Section 6.1 gives results for an example irregular program.

6.1 FEzample irregular object-array based program

We demonstrate automatic static object placement for irregular programs using an idealized
particle simulation application. This type of program occurs in several scientific applications,
including molecular dynamics and gas flow simulations. The program uses a two dimensional
parallel object array to represent a computational space in which particles are distributed in

% Alternatively, in iterative programs it may be possible for the runtime system to automatically store the
load of an object in its “load” variable during one iteration, and use the load information for optimizing
mapping in subsequent iterations.



a non-uniform manner. Thus each object (which represents a region of the space) contains
a variable input-dependent number of particles. The computation consists of each object
exchanging particles with neighboring objects, and thereafter performing some computation.
This continues for several iterations.

‘ Strategy ‘ Default ‘ Automatic ‘
Non-Uniform 7.93 2.51
Uniform 2.21 2.04

Table 3: Time in seconds for particle simulation program for the default (cyclic-cyclic) place-
ment and automatically optimized (using runtime ORB) versions for a uniform and a non-
uniform distribution of particles.

From the event graph for this program, Paradise was able to find that the grainsizes of
objects varied significantly, and hence the program was classified as an irregular one. The
phase number corresponding to the first synchronization point in the program was found,
and a hint to perform Orthogonal Recursive Bisection (ORB) at that phase was generated
by Paradise. The program is required to be modified by the programmer to set the load
variable of the system base class “loadarray” in the constructor of each object. During the
next run of the program, the runtime system automatically initiated the ORB library at
the phase specified by Paradise. The ORB library accessed the load for each object and
generated a partition of the parallel object array. This partition was encoded as a new
mapping function. The ORB was followed by a remap operation using the new mapping
function, after which the rest of the program was allowed to continue. Table 3 presents
results for running the program on 16 processors of the CM-5. The simulation involved 1000
particles, distributed over a two dimensional parallel object array of size 16x16. The default
mapping of the parallel object array was cyclic-cyclic. Results are presented for a uniform and
a non-uniform input distribution. From the results it is clear that the ORB optimization which
was automatically enabled by Paradise significantly improves performance for the nonuniform
distribution, without introducing overhead for the uniform case.

7 Summary

In this paper we have described techniques for automating load balancing especially for irreg-
ular or dynamic applications. The specific contributions of this work are:

e Use of post-mortem analysis to infer program characteristics relevant for load balancing
e Development of heuristics for choosing load balancing schemes

e Evaluation of techniques on simple programs

Our results have shown that load balancing schemes can be automatically selected and
incorporated into the application program, thus decreasing the effort required from application
programmers for developing parallel programs with good performance. In future work, we
intend to evaluate the optimizations using real applications, as well as broaden the set of
optimizations and techniques in the automatic optimization framework.



References

[1]

[12]

[13]

Sanjeev Krishnan. Automating Runtime Optimizations for Parallel Object-Oriented Pro-
gramming. PhD thesis, Department of Computer Science, University of Illinois, Urbana-
Champaign, June 1996.

Sanjeev Krishnan and L. V. Kale. Automating Runtime Optimizations Using Post-
Mortem Analysis. In Proceedings of the 10th ACM International Conference on Super-
computing, Philadelphia, May 1996.

W. Williams, T. Hoel, and D. Pase. The MPP Apprentice Performance Tool: Delivering
the Performance of the Cray T3D. In K. M. Decker and R. M. Rehmann, editors, Pro-
gramming Environments for Massively Parallel Distributed Systems. Birkaeuser Verlag,
Basel, Switzerland, 1994.

B. Robert Helm and Allen Malony. Automating Performance Diagnosis : A Theory and
Architecture. In Proceedings of the International Workshop on Computer Performance
Measurement and Analysis, Beppu, Japan, August 1995.

Barton P. Miller et al. The Paradyn Parallel Performance Measurement Tools. IEFE
Computer, 28(11), November 1995.

Amitabh B. Sinha. Performance Analysis of Object Based and Message Driven Programs.
PhD thesis, Department of Computer Science, University of Illinois, Urbana-Champaign,
January 1995.

C.H. Koelbel, D.B. Loveman, R.S. Schreiber, G.L. Steele Jr., and M.E. Zosel. The High
Performance Fortran Handbook. MIT Press, 1994.

K. Tomko and E. Davidson. Profile Driven Weighted Decomposition. In Proceedings of
the 10th ACM International Conference on Supercomputing, Philadelphia, May 1996.

L.V. Kale and Sanjeev Krishnan. Charm++ : A portable concurrent object oriented
system based on C++. In Proceedings of the Conference on Object Oriented Programming
Systems, Languages and Applications, September 1993.

L. V. Kale and Sanjeev Krishnan. Charm++ : Parallel Programming with Message-
Driven Objects. in Parallel Programming using C++, MIT Press, 1996. To be published.

L.V. Kale and Amitabh Sinha. Projections : A scalable performance tool. In Parallel
Systems Fair, International Parallel Processing Sympo sium, April 1993.

A. B. Sinha and L.V. Kale. A load balancing strategy for prioritized execution of tasks.
In Proceedings of the International Parallel Processing Symposium, April 1993.

L. V. Kale, Ben Richards, and Terry Allen. Efficient parallel graph coloring with priori-
tization. Lecture Notes in Computer Science, 1996. To be published.



