Agents
An Undistorted Representation of Problem Structure

J. Yelon and L. V. Kale
Parallel Programming Laboratory
Department of Computer Science

University of Illinois, Urbana




J. Yelon and L. V. Kale 1

4 N

‘ The Problem '

Existing languages contain a flaw: They conceal
knowledge of the problem structure from the optimizer.

. /

Aug 11, 1995 Parallel Programmang Laboratory




J. Yelon and L. V. Kale 2

‘A Concrete Indicator of “Problem Structure” I

Problem structure is directly visible in the dataflow graph.
fib 0

/

fib 1

\

fib 2

/

fib 3

\

fib 4

/

fib 5

This shape will appear in the dataflow graph regardless of how the

program is implemented.

. /

Aug 11, 1995 Parallel Programmang Laboratory




J. Yelon and L. V. Kale

‘The Importance of Structural Knowledge'

e It is imperative that languages make it possible to obtain

w

knowledge of the problem structure.

— Load balancers need to predict communication patterns.
— Schedulers need to predict critical paths.
— Program transformations universally require dataflow

knowledge.

e Unfortunately, most existing languages are making one of two
mistakes, both of which conceal structural knowledge.

. /

Aug 11, 1995 Parallel Programmang Laboratory




J. Yelon and L. V. Kale

-

‘ Mistake #1 I

Force the programmer to store irregular data in an array.

More generally, force the programmer to store data in any
structure whose shape doesn’t match the true shape of the data.

Structure of Data

Programmer

PE1

PE2

PE3

PE4

-

Structure of Representation

Structure of Data

Optimizer

/

Aug 11, 1995

Parallel Programmaing Laboratory



J. Yelon and L. V. Kale 5

: N
‘ Mistake #2 I

Force the programmer to store irregular data in linked structures.

Structure of Data Structure of Data

x->leftptr = y->rightptr;

y->rightptr = NIL;

Programmer Optimizer

Code that builds Structure

. /

Aug 11, 1995 Parallel Programmang Laboratory




J. Yelon and L. V. Kale 6

4 N
‘ Ideal Constructs I

e Need a language construct with the following properties:

— Matches the true shape of the data, for arbitrary problem
shapes (DAGs).

— Data objects and communication paths are declared, not
created by code.

— Must be a representation of both control and data.

e The solution: A declaration for arbitrary graphs of agents.

. /

Aug 11, 1995 Parallel Programmang Laboratory




J. Yelon and L. V. Kale 7

: N
‘Agents: the Language'

A declaration for groups of agents:

AGENT agentid(argl, arg2...) RUNS { code }

A send-statement (goes inside agent-body):

SEND tag(expl, exp2...) TO agentid(expl, exp2...)

A receive-declaration (goes inside agent-body):

HANDLE tag(varl, var2...) FROM agentid(varl, var2...) { code }

. /

Aug 11, 1995 Parallel Programmang Laboratory




J. Yelon and L. V. Kale 8

‘ Analyzing Agents-code I

e Agents have names: optimizer can make assertions about which

agent does what.

e Communication patterns can be observed by looking at
T O-clauses of send-statements.

e Dataflow inherently follows shape of agent-graph, conversely,
shape of agent-graph can easily match shape of dataflow.

. /

Aug 11, 1995 Parallel Programmang Laboratory




J. Yelon and L. V. Kale 9

4 N
‘ Conclusions I

e Problem: Current data structures conceal the problem shape.

— Arrays distort the true shape of the data.

— Linked structures conceal their shapes until runtime.
e Yet, optimizers need information about the problem structure.

e Solution: provide user with means to declaratively express the

true structure of the computation.

e Effect: Many analyses become possible, this will lead to better
schedulers, load-balancers, optimizers.

. /

Aug 11, 1995 Parallel Programmang Laboratory




