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/ ‘ Traditional SPMD '

e single process per processor
e mostly blocking message passing

— messages have tags

t1 = £0)
t2 = £0)
send(tagl,tl)
recv(tagl,t3)
t4 = g(t1,t2)
t5 = g(t1,t3)
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‘Overlapping Communication Latency in SPMDI
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/ e However,

if latencies are unpredictable, SPMD cannot overlap adaptively

\_

recv(tagl,a);

recv(tag2,b);

tl = f(a);

t2 = £(b);
recv(tagl,a); recv(tag2,b);
t1 = f(a); t2 = £(b);
recv(tag2,b); recv(tagl,a);
t2 = £(b); t1 = f(a);
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/Overlapping in SPMD cont.

Also, SPMD cannot

e overlap communication latencies across modules

e overlap idle times across modules

(due to load imbalances and critical path)
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‘Message Driven Executionl

Many processes per processor
System maintains a pool of arriving messages
Processes are activated by the arrival of messages

Message Scheduling - selection of messages from the pool
— FIFO

— Priorities

Message driven execution overlaps idle times:

— while a process is waiting, another can take over

— a single process may wait for multiple messages

~
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Message Driven Execution

e Adaptively overlaps delays within a module

recv(tagl,a); this spmd code can be specified in
recv(tag2,b); message driven style such that t1 or
t1 = f£(a); t2 is computed first depending on
t2 = £(b); which message arrives first

e Message driven code:
entry tagl : (message MSG *a) { f(a); }
entry tag2 : (message MSG *b) { f(b); }

\_ /

Parallel Programming Laboratory, UIUC




4 N

Overlapping in Message Driven Execution cont.

e Adaptively overlaps delays across modules
not only idle times due to communication latencies but also due to

load imbalances and critical path
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‘A Message Driven System - Charm'

dynamic creation of processes (chares)
dynamic load balancing

specific information sharing modes
compositionality and reuse

runs on distributed and shared memory machines

— intel iPSC/860, Paragon, CM5, NCUBE /2
Multimax, Sequent Symmetry

network of workstations
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/o Chare definition

~

entry EP1

entry EPn :

chare chare-name {

local variable declarations

private function-1() {C code block}

private function-m() {C code block }

(message MSGTYPE *msgptr) {C code block}

(message MSGTYPE *msgptr) {C code-block}

e Basic calls

\_

— CreateChare(chareName,entryPoint,msg)

— SendMsg(entryPoint ,msg,chareID)
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Problems with Message Driven Execution

e Significant performance advantages
(A.Gursoy, Ph.D Thesis 1994)

e But,

— Nondeterministic flow of control
— Message ordering bugs

— Need to handle local synchronization with buffers, counters,
and flags
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‘ Dagger I

e expresses dependencies between messages and computations

e a message can trigger a computation if it is expected

: message i
message  computation & computation

expect

Charm Dagger
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chare mult _chare {
int count, *row, *column; ChareIDType chareid;
entry init: (message MSG *msg) {
count = 2; MyChareID(&chareid);
Find(Atable, msg->row_index,recv.row, &chareid,NOWAIT);
Find(Btable, msg->colm_index,recv_column,&chareid,NOWAIT) ;
}
entry recv.row: (message TBL.MSG #*msg) {
row = msg->data;
if (--count == 0 ) multiply(row,column); }
entry recv_column: (message TBL_MSG *msg){
column = msg->data;

if (--count == 0) multiply(row,column); }

}
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/Example: Matrix Multiplication Chare \
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/Example: Matrix Multiplication Dag-Chare

dag chare mult_chare {
entry init: (message MSG *msg);
entry recv.row: (message TBL MSG *row);

entry recv_column: (message TBL_MSG *column) ;

when init : {
MyChareID(&chareid) ;
Find(Atable, msg—->row_index,...);
Find(Btable, msg->colm index,...);
expect(recv._row); expect(recv_column);
}
when recv._row, recv_column :

{ multiply(row->data,column->data) }

\_
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Dag-Chare Definition

dag chare template {
local variable declarations
condition variable declarations

entry declarations

when depn_list_1 : when_body_1

when depn_listn : when_body.n

private function f1()

private function fm()
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Dag-Chare cont.

e Entry Points

entry entry name : (message msg type *msg)

e Expect Statement

expect (entry_name)

e Ready Statement

ready (cond_var _name)

e When Blocks

when e;,...,€e,,C1,...,Cp, : When-body
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Expressing Loops in Dagger

when north,south,east,west : {
update(n,s,e,w);
iteration_count = iteration_count + 1;
if (iteration_count < ITERATION_LIMIT) A
send_boundaries();
expect (north) ;
expect (south) ;
expect (east) ;

expect (west); }
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Problem with the loop example

1teration: 1 2

\_

Processor 1

~ . _ processor j
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/Extended Language

e Reference Numbers

— messages has reference numbers

— a when block instance is activated if reference numbers

match
e statements are modified

— entry entry name MATCH : (message msg type *msg)
— expect(entry name,reference number)

— ready(cond_var _name,reference number)

e new statements

\ — SetRefNumber (msg,reference number) ;
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— GetRefNumber (msg) ;
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Correct Loop Program

when north,south,east,west : {

update(n,s,e,w);

iteration_count = iteration_count + 1;

if (iteration_count < ITERATION_LIMIT) A
send_boundaries(iteration_count) ;
expect (north,iteration count) ;
expect (south,iteration count);
expect(east,iteration_count);

expect (west,iteration count); }
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Concurrent Reductions

Processor 1:

Processor 2:

Processor p:
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‘ Performance Results '

reduce ——=
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Performance Results cont.
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/Summary:

e Message driven executin has performance advantages but

expresiveness difficulties

e Dagger provides benefits of both

On going work:

e Visual Dagger
e Structured Dagger
e Simulation system for message driven programs

— difficult without Dagger

— simpler flow for a restricted but common case
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