4 N

Dagger: Combining Benefits of Synchronous and

Asynchronous Communication Styles

Laxmikant V. Kalé
Attila Gursoy
Department of Computer Science
University of Illinois, Urbana

_ /

Parallel Programming Laboratory, UIUC

/ ‘ Traditional SPMD '

e single process per processor
e mostly blocking message passing

— messages have tags

t1 = £0)
t2 = £0)
send(tagl,tl)
recv(tagl,t3)
t4 = g(t1,t2)
t5 = g(t1,t3)

_

Parallel Programming Laboratory, UIUC

-~

~

_

‘Overlapping Communication Latency in SPMDI
tl t2 sending receivi t4 t5
Pl
idle
P2
tl send t2 t4 receive t5
P
idle
P2

Parallel Programming Laboratory, UIUC

/ e However,

if latencies are unpredictable, SPMD cannot overlap adaptively

_

recv(tagl,a);

recv(tag2,b);

tl = f(a);

t2 = £(b);
recv(tagl,a); recv(tag2,b);
t1 = f(a); t2 = £(b);
recv(tag2,b); recv(tagl,a);
t2 = £(b); t1 = f(a);

~

Parallel Programming Laboratory, UIUC

/Overlapping in SPMD cont.

Also, SPMD cannot

e overlap communication latencies across modules

e overlap idle times across modules

(due to load imbalances and critical path)

Parallel Programming Laboratory, UIUC

-~

_

‘Message Driven Executionl

Many processes per processor
System maintains a pool of arriving messages
Processes are activated by the arrival of messages

Message Scheduling - selection of messages from the pool
— FIFO

— Priorities

Message driven execution overlaps idle times:

— while a process is waiting, another can take over

— a single process may wait for multiple messages

~

/

Parallel Programming Laboratory, UIUC

4 N

Message Driven Execution

e Adaptively overlaps delays within a module

recv(tagl,a); this spmd code can be specified in
recv(tag2,b); message driven style such that t1 or
t1 = f£(a); t2 is computed first depending on
t2 = £(b); which message arrives first

e Message driven code:
entry tagl : (message MSG *a) { f(a); }
entry tag2 : (message MSG *b) { f(b); }

_ /

Parallel Programming Laboratory, UIUC

4 N

Overlapping in Message Driven Execution cont.

e Adaptively overlaps delays across modules
not only idle times due to communication latencies but also due to

load imbalances and critical path

A
A NN .

B N = =
Cum— BN

busy [EH idle []

_ /

Parallel Programming Laboratory, UIUC

-~

_

‘A Message Driven System - Charm'

dynamic creation of processes (chares)
dynamic load balancing

specific information sharing modes
compositionality and reuse

runs on distributed and shared memory machines

— intel iPSC/860, Paragon, CM5, NCUBE /2
Multimax, Sequent Symmetry

network of workstations

~

Parallel Programming Laboratory, UIUC

/o Chare definition

~

entry EP1

entry EPn :

chare chare-name {

local variable declarations

private function-1() {C code block}

private function-m() {C code block }

(message MSGTYPE *msgptr) {C code block}

(message MSGTYPE *msgptr) {C code-block}

e Basic calls

_

— CreateChare(chareName,entryPoint,msg)

— SendMsg(entryPoint ,msg,chareID)

Parallel Programming Laboratory, UIUC

10

Problems with Message Driven Execution

e Significant performance advantages
(A.Gursoy, Ph.D Thesis 1994)

e But,

— Nondeterministic flow of control
— Message ordering bugs

— Need to handle local synchronization with buffers, counters,
and flags

4 N

_ /

Parallel Programming Laboratory, UIUC

11

-~

_

‘ Dagger I

e expresses dependencies between messages and computations

e a message can trigger a computation if it is expected

: message i
message computation & computation

expect

Charm Dagger

Parallel Programming Laboratory, UIUC

12

chare mult _chare {
int count, *row, *column; ChareIDType chareid;
entry init: (message MSG *msg) {
count = 2; MyChareID(&chareid);
Find(Atable, msg->row_index,recv.row, &chareid,NOWAIT);
Find(Btable, msg->colm_index,recv_column,&chareid,NOWAIT) ;
}
entry recv.row: (message TBL.MSG #*msg) {
row = msg->data;
if (--count == 0) multiply(row,column); }
entry recv_column: (message TBL_MSG *msg){
column = msg->data;

if (--count == 0) multiply(row,column); }

}

_ /

/Example: Matrix Multiplication Chare \

Parallel Programming Laboratory, UIUC

13

/Example: Matrix Multiplication Dag-Chare

dag chare mult_chare {
entry init: (message MSG *msg);
entry recv.row: (message TBL MSG *row);

entry recv_column: (message TBL_MSG *column) ;

when init : {
MyChareID(&chareid) ;
Find(Atable, msg—->row_index,...);
Find(Btable, msg->colm index,...);
expect(recv._row); expect(recv_column);
}
when recv._row, recv_column :

{ multiply(row->data,column->data) }

_

~

Parallel Programming Laboratory, UIUC

14

-~

Dag-Chare Definition

dag chare template {
local variable declarations
condition variable declarations

entry declarations

when depn_list_1 : when_body_1

when depn_listn : when_body.n

private function f1()

private function fm()

_

Parallel Programming Laboratory, UIUC

15

-~

Dag-Chare cont.

e Entry Points

entry entry name : (message msg type *msg)

e Expect Statement

expect (entry_name)

e Ready Statement

ready (cond_var _name)

e When Blocks

when e;,...,€e,,C1,...,Cp, : When-body

_

Parallel Programming Laboratory, UIUC

-~

Expressing Loops in Dagger

when north,south,east,west : {
update(n,s,e,w);
iteration_count = iteration_count + 1;
if (iteration_count < ITERATION_LIMIT) A
send_boundaries();
expect (north) ;
expect (south) ;
expect (east) ;

expect (west); }

_

Parallel Programming Laboratory, UIUC

17

-~

Problem with the loop example

1teration: 1 2

_

Processor 1

~ . _ processor j

Parallel Programming Laboratory, UIUC

18

/Extended Language

e Reference Numbers

— messages has reference numbers

— a when block instance is activated if reference numbers

match
e statements are modified

— entry entry name MATCH : (message msg type *msg)
— expect(entry name,reference number)

— ready(cond_var _name,reference number)

e new statements

\ — SetRefNumber (msg,reference number) ;

Parallel Programming Laboratory, UIUC

19

_

— GetRefNumber (msg) ;

Parallel Programming Laboratory, UIUC

20

-~

_

Correct Loop Program

when north,south,east,west : {

update(n,s,e,w);

iteration_count = iteration_count + 1;

if (iteration_count < ITERATION_LIMIT) A
send_boundaries(iteration_count) ;
expect (north,iteration count) ;
expect (south,iteration count);
expect(east,iteration_count);

expect (west,iteration count); }

Parallel Programming Laboratory, UIUC

21

-~

Concurrent Reductions

Processor 1:

Processor 2:

Processor p:

_

‘ Performance Results '

reduce ——=

Parallel Programming Laboratory, UIUC

22

-~

Performance Results cont.

4.5 | | | | | | |
4 F md ——
spmd --o---
35 B ©]
o ,
§ 3 F o -
i ,
.5 25 F © .
D B i
) 2
E 15t |
@)
1 F , .
05+ |
0 | | | | | | |

2 4 8 16 32 64 128
Number of Processors

Concurrent Reductions on NCUBE /2,

problem size per processor = 4096 words, number of segments = 8

_

/

Parallel Programming Laboratory, UIUC

23

_

/Summary:

e Message driven executin has performance advantages but

expresiveness difficulties

e Dagger provides benefits of both

On going work:

e Visual Dagger
e Structured Dagger
e Simulation system for message driven programs

— difficult without Dagger

— simpler flow for a restricted but common case

Parallel Programming Laboratory, UIUC

24

