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Abstract—As an increasing number of leadership-class systems
embrace GPU accelerators in the race towards exascale, efficient
communication of GPU data is becoming one of the most critical
components of high-performance computing. For developers of
parallel programming models, implementing support for GPU-
aware communication using native APIs for GPUs such as
CUDA can be a daunting task as it requires considerable effort
with little guarantee of performance. In this work, we demon-
strate the capability of the Unified Communication X (UCX)
framework to compose a GPU-aware communication layer that
serves multiple parallel programming models of the Charm++
ecosystem: Charm++, Adaptive MPI (AMPI), and Charm4py.
We demonstrate the performance impact of our designs with
microbenchmarks adapted from the OSU benchmark suite,
obtaining improvements in latency of up to 10.2x, 11.7x, and
17.4x in Charm++, AMPI, and Charm4py, respectively. We also
observe increases in bandwidth of up to 9.6x in Charm++,
10x in AMPI, and 10.5x in Charm4py. We show the potential
impact of our designs on real-world applications by evaluating a
proxy application for the Jacobi iterative method, improving the
communication performance by up to 12.4x in Charm++, 12.8x
in AMPI, and 19.7x in Charm4py.

Index Terms—GPU communication, UCX, Charm++, AMPI,
CUDA-aware MPI, Python, Charm4py

I. INTRODUCTION

The parallel processing power of GPUs have become central

to the performance of today’s High Performance Computing

(HPC) systems, with seven of the top ten supercomputers in

the world equipped with GPUs [1]. GPU-accelerated appli-

cations often store the bulk of their data in device memory,

increasing the importance of efficient inter-GPU data transfers

on modern systems.
Although vendors provide GPU programming models such

as CUDA for executing kernels and transferring data, their

limited functionality makes it challenging to implement a gen-

eral communication backend for parallel programming models

on distributed-memory machines. Direct GPU-GPU commu-

nication crossing the process boundary can be implemented

using CUDA Inter-process Communication (IPC), but requires

extensive optimization such as IPC handle cache and pre-

allocated device buffers [2]. Direct inter-node transfers of GPU

data cannot be implemented solely with CUDA and requires

additional hardware and software support [3]. Adding support

for GPUs from other vendors such as AMD or Intel requires

another round of development and optimization efforts that

could have been spent elsewhere.

There have been a number of software frameworks aimed at

providing a unified communication layer over the various types

of networking hardware, such as GASNet [4], libfabric [5], and

UCX [6]. While they have been successfully adopted in many

parallel programming models including MPI and PGAS for

communication involving host memory, UCX is arguably the

first framework to support production-grade, high-performance

inter-GPU communication on a wide range of modern GPUs

and interconnects. In this work, we utilize the capability

of UCX to perform direct GPU-GPU transfers to support

GPU-aware communication in multiple parallel programming

models from the Charm++ ecosystem including MPI and

Python: Charm++, Adaptive MPI (AMPI), and Charm4py.

We extend the UCX machine layer in the Charm++ runtime

system to enable the transfer of GPU buffers and expose this

functionality to the parallel programming models, with model-

specific implementations to support their user applications.

Our tests on a leadership-class system show that this approach

substantially improves the performance of GPU communica-

tion for all models.
The major contributions of this work are the following:

• We present designs and implementation details to enable

GPU-aware communication using UCX as a common ab-

straction layer in multiple parallel programming models:

Charm++, AMPI, and Charm4py.

• We discuss design considerations to support message-

driven execution and task-based runtime systems by

performing a metadata exchange between communication

endpoints.

• We demonstrate the performance impact of our mech-

anisms using a set of microbenchmarks and a proxy

application representative of a scientific workload.

II. BACKGROUND

A. GPU-aware Communication
GPU-aware communication has developed out of the need to

rectify productivity and performance issues with data transfers

involving GPU buffers. Without GPU-awareness, additional

code is required to explicitly move data between host and

device memory, which also substantially increases latency and

reduces attainable bandwidth.
The GPUDirect [7] family of technologies have been lead-

ing the effort to resolve such issues on NVIDIA GPUs. Ver-
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sion 1.0 allows Network Interface Controllers (NICs) to have

shared access to pinned system memory with the GPU and

avoid unnecessary memory copies, and version 2.0 (GPUDi-

rect P2P) enables direct memory access and data transfers

between GPU devices on the same PCIe bus. GPUDirect

RDMA [8] utilizes Remote Direct Memory Access (RDMA)

technology to allow the NIC to directly access memory on the

GPU. Based on GPUDirect RDMA, the GDRCopy library [9]

provides an efficient low-latency transport for small messages.

The Inter-Process Communication (IPC) feature introduced

in CUDA 4.1 enables direct transfers between GPU data

mapped to different processes, improving the performance of

communication crossing the process boundary [2].

MPI is one of the first parallel programming models and

communication standards to adopt these technologies and

support GPUs in the form of CUDA-aware MPI, which is

available in most MPI implementations. Other parallel pro-

gramming models have either built direct GPU-GPU commu-

nication mechanisms natively using GPUDirect and CUDA

IPC, or adopted a GPU-aware communication framework.

B. UCX

Unified Communication X (UCX) [6] is an open-source,

high-performance communication framework that provides

abstractions over various networking hardware and drivers, in-

cluding TCP, OpenFabrics Alliance (OFA) verbs, Intel Omni-

Path, and Cray uGNI. It is currently being developed at a fast

pace with contributions from multiple hardware vendors as

well as the open-source community.

With support for tag-matched send/receive, stream-oriented

send/receive, Remote Memory Access (RMA), and remote

atomic operations, UCX provides a high-level API for parallel

programming models to implement a performance-portable

communication layer. Projects using UCX include Dask,

OpenMPI, MPICH, and Charm++. GPU-aware communica-

tion is supported on NVIDIA and AMD GPUs through its

tagged and stream APIs. When provided with pointers to GPU

memory, these APIs utilize the respective CUDA or ROCm

libraries to perform efficient GPU-GPU transfers.

C. Charm++

Charm++ [10] is a parallel programming system based

on the C++ language, developed around the concept of mi-

gratable objects. A Charm++ program is decomposed into

objects called chares that execute in parallel on the Processing

Elements (PEs, typically CPU cores), which are scheduled

by the runtime system. This object-centric approach enables

overdecomposition, where the problem domain is decomposed

into a larger number of chares than the number of available

PEs. Overdecomposition empowers the runtime system to

control the mapping and scheduling of chares onto PEs,

facilitating computation-communication overlap and dynamic

load balancing.

The execution of a Charm++ program is driven by messages

exchanged between chare objects. Each message encapsulates

information about the work to be performed on the receiver

chare (i.e., entry method in Charm++) and relevant data.

Incoming messages are stored in a message queue associ-

ated with each PE, which are picked up by the scheduler.

Communication in Charm++ is asynchronous as the sender

does not wait for any reply or acknowledgement from the

receiver, and messages are asynchronously received in the

message queue. Communication operations initiated by chare

objects pass through various layers in the Charm++ runtime

system until they eventually reach the machine layer. Charm++

supports various low-level transports with different machine

layer implementations, including TCP/IP, Mellanox Infiniband,

Cray uGNI, IBM PAMI, and UCX.

Charm++ has support for GPU-GPU transfers implemented

using CUDA memory copies and IPC, but it is limited to

a single node and has inadequate performance. This work

enables GPU-aware communication seamlessly within and

across nodes using UCX, improving the performance of GPU-

accelerated applications developed with any of the parallel

programming models in the Charm+ ecosystem.

D. Adaptive MPI

Adaptive MPI (AMPI) [11] is an MPI library implementa-

tion developed on top of the Charm++ runtime system. AMPI

virtualizes the concept of an MPI rank: whereas a traditional

MPI library equates ranks with operating system processes,

AMPI supports execution with multiple ranks per process.

This empowers AMPI to co-schedule ranks that are located

on the same PE based on the delivery of messages. Users can

tune the number of ranks they run with based on performance.

AMPI ranks are also migratable at runtime for the purposes

of dynamic load balancing or checkpoint/restart-based fault

tolerance.

Communication in AMPI is handled through Charm++ and

its optimized networking layers. Each AMPI rank is associated

with a chare object. AMPI optimizes communication based

on locality of the recipient rank as well as the size and

datatype of the message buffer. Small buffers are packed inside

a regular Charm++ message in an eager fashion, and the Zero

Copy API [12] is used to implement a rendezvous protocol

for larger buffers. The underlying runtime optimizes message

transmission based on locality over user-space shared memory,

Cross Memory Attach (CMA) for within-node, or RDMA

across nodes. This work extends such optimizations to the

context of multi-GPU nodes connected by a high performance

network programmable with the UCX API.

E. Charm4Py

Charm4Py [13] is a parallel programming framework based

on the Python language, developed on top of the Charm++

runtime system. It seeks to provide an easily-accessible par-

allel programming environment with improved programmer

productivity through Python, while maintaining high scalabil-

ity and performance of the adaptive C++-based runtime. Being

based on Python, Charm4py can readily take advantage of

many widely-used software libraries such as NumPy, SciPy,

and pandas.
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Fig. 1. Software stack of the Charm++ family of parallel programming
models.

Chare objects in Charm4py communicate with each other

by asynchronously invoking entry methods as in Charm++.

The parameters are serialized and packed into a message that

is handled by the underlying Charm++ runtime system. This

allows our extension of the UCX machine layer to also support

GPU-aware communication in Charm4py.

Aside from the Charm++-like communication through entry

method invocations, Charm4py also provides a functionality to

establish streamed connections between chares, called chan-
nels [14]. Channels provide explicit send/receive semantics

to exchange messages, but retains asynchrony by suspending

the caller object until the respective communication is com-

plete. We extend the channels feature to support GPU-aware

communication in Charm4py, which is discussed in detail in

Section III-D.

III. DESIGN AND IMPLEMENTATION

To accelerate communication of GPU-resident data, we

utilize the capability of UCX to directly send and receive

GPU data through its tagged APIs. UCX is supported as a

machine layer in Charm++, positioned at the lowest level

of the software stack directly interfacing the interconnect, as

illustrated in Figure 1. As AMPI and Charm4py are built

on top of the Charm++ runtime system, all host-side com-

munication travels through the Charm++ core and Converse

layers where layer-specific headers are added or extracted,

with actual communication primitives executed by the machine

layer.

The main idea of enabling GPU-aware communication in

the Charm++ family of parallel programming models is to

retain this route to send metadata and host-side data, while

separately supplying GPU data to the UCX machine layer.

The metadata is necessitated by the message-driven execution

model in Charm++, as shown in Figure 2. The sender object

provides the data it wants to send to the entry method

invocation, but the receiver does not post an explicit receive

function. Instead, the sender’s message arrives in the message

queue of the PE that currently owns the receiver object.

When the message is picked up by the scheduler, the receiver

object and target entry method are resolved using the metadata

// Sender object ’s method
void Sender ::foo() {

// Send a message to the receiver object
// to execute the ’bar’ entry method
receiver.bar(my_val1 , my_val2);

}

// Receiver object ’s entry method ,
// executed once the sender ’s message
// is picked up by the scheduler
void Receiver ::bar(int val1 , double val2) {

// val1 and val2 are available
...

}

.
Fig. 2. Message-driven execution in Charm++.

MSG_BITS
(4)

PE_BITS
(default: 32)

CNT_BITS
(default: 28)

Tag (64 bits)

Fig. 3. Tag generation for GPU communication in UCX machine layer.

contained in the message. Any host-resident data destined

for the receiving chare is unpacked from the message and

delivered to the receiver’s entry method.

With our GPU-aware communication scheme, the sender

object’s GPU buffers are not included as part of the message.

Only metadata containing information about the GPU data

transfer initiated by the sender and sender’s data on host

memory are contained in the message. Source GPU buffers are

directly provided to the UCX machine layer to be sent, and

a receive for the incoming GPU data is posted once the host-

side message arrives on the receiver. A noticeable limitation of

this approach is the delay in posting the receive caused by the

need to wait for the host-side message containing the metadata.

We are currently working on an improved mechanism where

explicit receives can be posted in advance. Note that while

the UCX machine layer provides the fundamental capability

to transfer buffers directly between GPUs, additional imple-

mentations to each of the parallel programming models are

required as described in the following sections.

A. UCX Machine Layer

Originally contributed by Mellanox, the UCX machine

layer in Charm++ is designed to handle low-level commu-

nication using the UCP tagged API, providing a portable

implementation over all the networking hardware supported

by UCX. To support GPU-aware communication, we extend

the UCX machine layer to provide an interface for sending

and receiving GPU data with the UCP tagged API. We adopt

a tag generation scheme specific to GPU-GPU transfers to

separate this path from the existing host-side messaging, as

shown in Figure 3. The first four bits (MSG_BITS) of the

64-bit tag are used to differentiate the message type, where

the new UCX_MSG_TAG_DEVICE type is added for inter-GPU

communication. The remainder of the tag is split into the

source PE index (PE_BITS, 32 by default) and the value of
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// Charm ++ Interface (CI) file
// Exposes chare objects and entry methods
chare MyChare {

entry MyChare ();
entry void recv(nocopydevice char data[size],

size_t size);
};

.
// C++ source file
// (1) Sender chare
void MyChare ::send() {

peer.recv(CkDeviceBuffer(send_gpu_data), size);
}

// (2) Receiver ’s post entry method
void MyChare ::recv(char*& data , size_t& size) {

// Set the destination GPU buffer
// Receive size is optional
data = recv_gpu_data;

}

// (3) Receiver ’s regular entry method
void MyChare ::recv(char* data , size_t size) {

// Receive complete , GPU data is available
...

}

.
Fig. 4. GPU-aware communication interface in Charm++.

// Converse layer metadata
struct CmiDeviceBuffer {

const void* ptr; // Source GPU buffer address
size_t size;
uint64_t tag; // Set in the UCX machine layer
...

};

// Charm ++ core layer metadata
struct CkDeviceBuffer : CmiDeviceBuffer {

CkCallback cb; // Support Charm ++ callbacks
...

};

.
Fig. 5. Metadata object used for GPU communication in Charm++.

a counter maintained by the source PE (CNT_BITS, 28 by

default). This division can be modified by the user to allocate

more bits to one side or the other to accommodate different

scaling configurations.

The core functionalities of GPU-aware communication in

the UCX machine layer are exposed as the following functions:

void LrtsSendDevice(int dest_pe , const void*& ptr ,
size_t size , uint64_t& tag);

void LrtsRecvDevice(DeviceRdmaOp* op,
DeviceRecvType type);

.LrtsSendDevice provides the functionality to send GPU

data using the information provided by the calling layer

including the destination PE, address of the source GPU buffer,

size of the data, and a reference to the 64-bit tag to be set.

The tag is generated within this function by incrementing

the tag counter of the source PE, and included as metadata

by the caller to be sent along with any host-side data. Once

the destination UCP endpoint is determined, the source GPU

buffer is sent separately with ucp_tag_send_nb using the

ptr size tag cb

CkDeviceBuffer

User

Charm++ 
Core

Converse

UCX 
Machine 
Layer

ptr size tag cb

CmiSendDevice

LrtsSendDevice

Generate and store tag

Send GPU data

Network

1

2

3

4

Pack with host-side data and send5

Fig. 6. Sender-side logic of GPU-aware communication in Charm++.

generated tag.

Once the metadata arrives on the destination PE, the cor-

responding receive for the incoming GPU data is posted with

LrtsRecvDevice. The DeviceRdmaOp struct passed by the

calling layer contains metadata necessary to post the receive

with ucp_tag_recv_nb, such as the address of the destination

GPU buffer, size of the data, and the tag set by the sender.

DeviceRecvType denotes which parallel programming model

has posted the receive, so that the appropriate handler function

can be invoked once the GPU data has been received. The

following sections describe in detail how the different parallel

programming models build on the UCX machine layer to

perform GPU-aware communication.

B. Charm++

Communication in Charm++ occurs between chare objects

that may be scheduled on different PEs. It should be noted that

multiple parameters can be passed to a single entry method

invocation, as in Figure 2. We provide an additional attribute

in the Charm++ Interface (CI) file, nocopydevice, to annotate

parameters on GPU memory. Figure 4 illustrates this extension

as well as the usage of a CkDeviceBuffer object, which wraps

the address of a source GPU buffer and is used by the runtime

system to store metadata regarding the GPU-GPU transfer. The

structure of CkDeviceBuffer is presented in Figure 5.

1) Send: An entry method invocation such as peer.recv()

in Figure 4 executes a generated code block that prepares a

message containing data on host memory and sends it to the

receiver object. We modify the code generation to send GPU

buffers in tandem, using the CkDeviceBuffer objects provided

by the user (one per buffer). These objects hold information

necessary for the UCX machine layer to send the GPU buffers

with LrtsSendDevice. The tags set by the machine layer

are stored in the CkDeviceBuffer objects, which are packed

with host-side data as well as other metadata needed by the

Converse and Charm++ core layers. This packed message is

sent separately, also using the UCX machine layer. Figure 6

illustrates this process.

2) Receive: To receive the incoming GPU data directly

into the user’s destination buffers and avoid extra copies, we

provide a mechanism for the user to specify the addresses
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Fig. 7. Sender-side logic of GPU-aware communication in AMPI.

of the destination GPU buffers by extending the Zero Copy

API [12] in Charm++. The user can provide this information

to the runtime system in the post entry method of the receiver

object, which is executed by the runtime system before the

actual target entry method, i.e., regular entry method. As can

be seen in Figure 4, the post entry method has a similar

function signature as the regular entry method, with parameters

passed as references so that they can be set by the user.

When the message containing host-side data and meta-

data (including CkDeviceBuffer objects) arrives, the post

entry method of the receiver chare is first executed. Using

information about destination GPU buffers provided by the

user in the post entry method and source GPU buffers in

the CkDeviceBuffer objects, the receiver instructs the UCX

machine layer to post receives for the incoming GPU data with

LrtsRecvDevice. Once all the GPU buffers have arrived, the

regular entry method is invoked, completing the communica-

tion.

C. Adaptive MPI

Each AMPI rank is implemented as a chare object on top

of the Charm++ runtime system, to enable virtualization and

adaptive runtime features such as load balancing. Commu-

nication between AMPI ranks occurs through an exchange

of AMPI messages between the respective chare objects. An

AMPI message adds AMPI-specific data such as the MPI

communicator and user-provided tag to a Charm++ message,

and we modify how it is created to support GPU-aware

communication with the CkDeviceBuffer metadata object.

This change is transparent to the user, and GPU buffers

can be directly provided to AMPI communication primitives

such as MPI_Send and MPI_Recv like any CUDA-aware MPI

implementation.

1) Send: The user application can send GPU data by in-

voking a MPI send call with parameters including the address

of the source buffer, number of elements and their datatype,

destination rank, tag, and MPI communicator. The chare object

that manages the destination rank is first determined, and the

source buffer’s address is checked to see if it is located on

GPU memory. A software cache containing addresses known

to be on the GPU is maintained on each PE to optimize this

if not gpu_direct:
# Host -staging mechanism (not GPU -aware)
# Transfer GPU buffer to host memory and send
charm.lib.CudaDtoH(h_send_data , d_send_data , size ,

stream)
charm.lib.CudaStreamSynchronize(stream)
channel.send(h_send_data)

# Receive and transfer to GPU buffer
h_recv_data = partner_channel.recv()
charm.lib.CudaHtoD(d_recv_data , h_recv_data , size ,

stream)
charm.lib.CudaStreamSynchronize(stream)

else:
# GPU -aware communication
# Send and receive using GPU buffers directly
channel.send(d_send_data , size)
channel.recv(d_recv_data , size)

.
Fig. 8. Channel-based communication in Charm4py. CUDA functions are
included in the Charm++ library as C++ functions and exposed through
Charm4py’s Cython layer.

process. Figure 7 illustrates the mechanism that is executed

when the source buffer is found to be on the GPU, where a

CkDeviceBuffer object is first created in the AMPI runtime

to store the information provided by the user. A Charm++

callback object is also created and stored as metadata, which

is used by AMPI to notify the sender rank when the com-

munication is complete. The source GPU buffer is sent in

an identical manner as Charm++ through the UCX machine

layer with LrtsSendDevice. The tag that is needed by the

receiver rank to post a receive for the incoming GPU data is

also generated and stored inside the CkDeviceBuffer object.

Note that this tag is separate from the MPI tag provided by the

user, which is used to match the host-side send and receive.
2) Receive: Because there are explicit receive calls in the

MPI model in contrast to Charm++, there are two possible

scenarios regarding the host-side message that contains meta-

data: the message arrives before the receive is posted, and

vice versa. If the message arrives first, it is stored in an

unexpected message queue, which is searched for a match

when the receive is posted later. If the receive is posted first,

it is stored in a request queue to be matched when the message

arrives. The receive for the incoming GPU data is posted after

this match of the host-side message, with LrtsRecvDevice in

the UCX machine layer. Another Charm++ callback is created

for the purpose of notifying the destination rank, which is

invoked by the machine layer when the GPU data arrives.

D. Charm4py

GPU-aware communication in Charm4py is built around

the Channel API, which provides functionality for the user to

provide the address of the destination GPU buffer. While the

API itself is in Python, its core functionalities are implemented

with Cython [15] and the underlying Charm++ runtime system

is comprised of C++. Cython generates C extension modules

to support C constructs and types to be used with Python for

interoperability and performance, and is used extensively in the

Charm4py runtime. The Cython layer is also used to interface

with the Charm++ runtime, which performs the bulk of the
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Fig. 9. Sender-side logic of GPU-aware communication in Charm4py.

work for GPU-aware communication with the UCX machine

layer. Note that the Python interface for UCX, UCX-Py [16],

is not used in this work as Charm4py can directly utilize the

UCX functionalities in C/C++ through the Charm++ runtime

system.

Figure 8 compares our GPU-aware communication support

against the host-staging mechanism in a ping-pong exchange

of GPU data. The two chares involved establish a channel,

through where data on host or GPU memory is exchanged

depending on gpu_direct flag. The host-staging version needs

to explicitly move data between host and device memory using

the CUDA API, adding complexity to the programmer and

degrading performance. Note that the channel send and receive

calls are asynchronous; the coroutine posting the receive is

suspended until the message arrives. Such asynchronous com-

munication is implemented with futures [17], a key component

of Charm4py.
1) Send: As can be seen from Figure 8, addresses of the

source and destination GPU buffers can be directly provided to

Charm4py’s channel API. The address and size of the buffer

are propagated to the Charm++ runtime system through the

Cython layer, which are used to construct the CkDeviceBuffer

metadata object. The steps after this point are similar to

Charm++ and AMPI, where the metadata is used by the UCX

machine layer to send the source GPU buffer, and the metadata

itself is packed together with the host-side data and Charm4py-

specific information to be sent separately to the receiver object.

This process is illustrated in Figure 9.
2) Receive: When the host-side message containing meta-

data about the GPU-GPU transfer arrives, it is used to post

the receives for the incoming GPU data in the UCX ma-

chine layer. A Charm++ callback is created and tied to the

LrtsRecvDevice function, so that it can be invoked when

the GPU-GPU transfer is complete. This callback invocation

fulfills the future that has suspended the channel receive call,

allowing the user application (coroutine) to continue.

IV. PERFORMANCE EVALUATION

In this section, we describe the hardware platform and soft-

ware configurations, as well as the set of micro-benchmarks

and proxy application used to evaluate the performance of our

GPU-aware communication designs.

A. Experimental Setup

The Summit supercomputer at Oak Ridge National Lab-

oratory is used to evaluate the performance of GPU-aware

communication mechanisms implemented in Charm++, AMPI

and Charm4py. The experiments are scaled up to 256 nodes

of Summit, where each IBM AC922 node contains two IBM

Power9 CPUs and six NVIDIA Tesla V100 GPUs. Each CPU

is connected to three GPUs, which are interconnected via

NVLink with a theoretical peak bandwidth of 50 GB/s. For a

GPU to communicate with another GPU connected to the other

CPU, data needs to travel through the X-Bus that connects the

CPUs with a bandwidth of 64 GB/s. The network interconnect

is based on Mellanox Enhanced Data Rate (EDR) Infiniband,

providing up to 12.5 GB/s of bandwidth.

Charm++, AMPI and Charm4py are configured to use the

non-SMP build, using one CPU core as the single PE for each

process and one process per GPU device. On a single node

of Summit, for example, six PEs (and processes) execute in

parallel using all six available GPUs. To accurately evaluate

the impact of GPU-awareness on communication performance

by separating communication from computation, the problem

domain is decomposed into the same number of chare objects

as the number of PEs and GPUs (no overdecomposition in

Charm++/Charm4py, no virtualization in AMPI).

For reference, the performance of OpenMPI is provided

along with the AMPI results, which also maps one process

to each GPU. Since both AMPI and OpenMPI utilize UCX to

transfer GPU data, this comparison isolates the performance

differential incurred by the layers above UCX. Note that AMPI

delivers messages through the Charm++ runtime system for its

adaptive runtime features, in contrast to OpenMPI which can

directly utilize UCX for communication.

B. Micro-benchmarks

To evaluate the performance of point-to-point commu-

nication primitives involving GPU memory, we adapt the

widely used OSU micro-benchmark suite [18] to Charm++

and Charm4py. We also add an option to use the host-

staging mechanism, which stages the GPU buffer on host

memory before performing communication, to measure the

performance impact of our implementations to enable GPU-

aware communication. This option is added to the original MPI

versions of the benchmarks as well for AMPI and OpenMPI.

Performance results are presented with both axes in log-scale,

comparing the GPU-aware version of the benchmark (suffixed

with D) against the host-staging version (suffixed with H).

1) Latency: The OSU latency benchmark repeats ping-pong

iterations for different message sizes, where the sender sends

a message to the receiver and waits for a reply. Once the

message arrives, the receiver sends a message with the same

size back to the sender, completing one iteration. GPU-aware

communication allows the message buffers to be supplied

directly to the communication primitives, whereas the host-

staging version requires additional data transfers between host

and device.
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Fig. 10. Comparison of intra-node latency between host-staging and direct GPU-GPU mechanisms.
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Fig. 11. Comparison of inter-node latency between host-staging and direct GPU-GPU mechanisms.

Figures 10 and 11 illustrate the improvements in intra-

node and inter-node latency with GPU-awareness in Charm++,

AMPI and Charm4py. The range of performance improve-

ments in the latency benchmark is summarized in Table I,

where the achieved speedups with small messages using the

eager protocol are denoted in a separate row. The observed

improvement in latency increases with message size with

large messages in all three programming models, as the host-

staging mechanism suffers significant slowdowns caused by

host memory copies in the Charm++ runtime system.

Although the performance of AMPI improves substantially

with GPU-aware communication, it does not quite match the

latency of CUDA-aware OpenMPI. To further investigate this

issue, we isolate the time taken in UCX by taking advantage of

the modular property of the UCX machine layer. We can easily

disable the CmiSend/RecvDevice calls in the Converse layer

and invoke receive handlers directly, allowing us to determine

the time taken outside of UCX. This turns out to be about 8 μs,

which tells us that the GPU-GPU transfer itself with UCX has

a latency of less than 2 μs, similar to OpenMPI. Thus most

of the overhead is AMPI-specific, which has multiple factors:

message packing and unpacking, additional host-side message

that contains metadata, Charm++ callback invocations, and

the fact that the receiver rank cannot post a receive until the

metadata message is received. There are also a couple of heap

memory allocations that are used to retain metadata for the

UCX machine layer. We plan to further analyze and optimize

the code to get AMPI’s performance as close to OpenMPI as

possible.

It should be noted that the detection of the GDRCopy library

by UCX is essential in order to achieve low latencies with

small messages, which is not included in the default library

search path on Summit. With the rendezvous protocol, UCX

switches to the CUDA IPC transport for intra-node transfers,

and to the pipelined host-staging mechanism that stages GPU

data on host memory in chunks for inter-node communication.

2) Bandwidth: In the OSU bandwidth benchmark, the

sender performs a number of back-to-back non-blocking sends

designated by the window size for each message size, then

waits for a reply from the receiver. The receiver performs the

reverse, posting multiple non-blocking receives followed by

a send. The increases in bandwidth achieved by our GPU-

aware communication mechanisms are illustrated in Figures 12

and 13, with the range of improvement detailed in Table I.

Charm++ and AMPI achieve close to the maximum attainable

bandwidth (50 GB/s for intra-node, 12.5 GB/s for inter-node),

with Charm++ demonstrating up to 44.7 GB/s and 10 GB/s,

and AMPI up to 45.4 GB/s and 10 GB/s for intra-node and

inter-node, respectively. It is worth noting that the host-staging

version of AMPI (AMPI-H) suffers a degradation in bandwidth

at 128 KB due to a sudden increase in latency, which is being

investigated. Charm4py’s bandwidth only reaches 35.5 GB/s

for intra-node and 6.0 GB/s for inter-node in the given range

of message sizes, but we observe that it keeps increasing as

messages become larger than 4 MB.

C. Proxy Application: Jacobi3D

To assess the impact of GPU-aware communication on ap-

plication performance, we implement a proxy application, Ja-

cobi3D, on all three parallel programming models: Charm++,

AMPI, and Charm4py. Jacobi3D performs the Jacobi iterative

method in a three-dimensional space, using CUDA kernels to
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Fig. 12. Comparison of intra-node bandwidth between host-staging and direct GPU-GPU mechanisms.
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Fig. 13. Comparison of inter-node bandwidth between host-staging and direct GPU-GPU mechanisms.

TABLE I
IMPROVEMENT IN LATENCY AND BANDWIDTH WITH GPU-AWARE COMMUNICATION.

Improvement Type Intra-node Inter-node
Charm++ AMPI Charm4py Charm++ AMPI Charm4py

Latency Range 2.1x – 10.2x 1.9x – 11.7x 1.8x – 17.4x 1.2x – 4.1x 1.8x – 3.5x 1.5x – 3.4x
Eager 4.4x 3.6x 1.9x 4.1x 3.4x 1.8x

Bandwidth Range 1.4x – 9.6x 1.3x – 10.0x 1.3x – 10.5x 1.2x – 2.7x 1.3x – 2.6x 1.0x – 1.5x

perform stencil computations on the GPU. The problem do-

main is decomposed into equal-size cuboid blocks, minimizing

surface area. Each block exchanges its halo data on the GPU

with up to six neighbors, which are either provided directly to

the communication primitives (GPU-aware) or staged through

host memory. Note that Jacobi3D is configured to run for a set

number of iterations without convergence checks, to evaluate

the performance of point-to-point communication.

We evaluate both weak and strong scaling performance of

Jacobi3D using up to 256 nodes (1,536 GPUs) of Summit,

comparing the overall time and communication time per

iteration of the host-staging and GPU-aware communication

mechanisms. Jacobi3D is weak scaled with a base domain

size of 1, 5363 double values and each dimension doubled in

x, y, z order. Strong scaling experiments executed on eight to

256 nodes maintain the domain size of 3, 0723 doubles.

1) Charm++: Figure 14 shows the weak and strong scaling

performance of the Charm++ version of Jacobi3D. With weak

scaling, the GPU-aware version (Charm++-D) demonstrates

a speedup between 1.1x and 12.4x in communication per-

formance, with the largest speedup obtained on a single

node. This is an expected result as the improvement in

latency and bandwidth are more significant for intra-node

communication. The improved communication performance

translates into reductions in overall iteration time, between

5% and 37%. The relative speedup obtained with GPU-aware

communication decreases as the number of nodes increases,

as slower inter-node communication starts to dominate intra-

node communication. With strong scaling, the improvement

in communication performance ranges between 12% and 82%

and overall iteration time between 9% and 27%, with the

largest speedup obtained on a single node.

2) AMPI: Figure 15 illustrates the weak and strong scal-

ing performance of the AMPI version of Jacobi3D, with

the performance of OpenMPI provided as reference. With

weak scaling, GPU-awareness improves the communication

performance by factors between 1.3x and 12.8x, accelerat-

ing the overall performance up to 41%. The GPU-aware

communication performance in AMPI is similar to that of

OpenMPI up to 16 nodes, but starts to fall behind at larger

scales. We suspect that this is due to the additional metadata

exchange performed in AMPI whose performance impact

becomes more pronounced at large node counts, but plan to

look into this issue in more detail. With strong scaling, AMPI
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Fig. 14. Comparison of Charm++ Jacobi3D performance between host-staging and direct GPU-GPU mechanisms.
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Fig. 15. Comparison of AMPI Jacobi3D performance between host-staging and direct GPU-GPU mechanisms.
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Fig. 16. Comparison of Charm4py Jacobi3D performance between host-staging and direct GPU-GPU mechanisms.

achieves a speedup between 1.9x and 2.6x in communication

performance and an improvement in overall iteration time

between 27% and 74%.

3) Charm4py: The weak and strong scaling performance

of Charm4py are depicted in Figure 16. As the support for

GPU-aware communication in Charm4py significantly im-

proves performance especially for large messages as seen in

Figures 10c and 11c, communication performance is improved

by factors between between 1.9x and 19.7x with weak scaling.

Because communication performance has a greater impact

on the overall performance in Charm4py compared to other

parallel programming models, we observe speedups in overall

execution time between 1.9x and 7.3x. With strong scaling, the

improvement in communication performance ranges between

1.4x and 3.0x, resulting in speedups between 1.5x and 2.7x in

the overall iteration times.

V. RELATED WORK

There have been many publications on supporting GPU-

aware communication in the context of parallel programming

models. Works from the MVAPICH group [2], [3], [19]

utilize CUDA and GPUDirect technologies to optimize inter-

GPU communication in MPI. Hanford et al. [20] highlights

shortcomings of current GPU communication benchmarks and

shares experiences with tuning different MPI implementations.

Khorassani et al. [21] evaluates the performance of vari-

ous MPI implementations on GPU-accelerated OpenPOWER

systems. Chen et al. [22] proposes compiler extensions to

support GPU communication in the UPC programming model.

This work is distinguished from other related studies in

demonstrating designs for GPU-aware communication and

their performance in multiple parallel programming models

built on a common abstraction layer based on UCX.

VI. CONCLUSION

In this work, we have discussed the importance of GPU-

aware communication in today’s GPU-accelerated supercom-

puters, and the associated technologies that are involved

in supporting direct GPU-GPU transfers for several parallel

programming models: Charm++, AMPI, and Charm4py. We

leverage the capability of the UCX framework to seamlessly

support inter-GPU communication through a set of high-

performance APIs, implementing an extension to the UCX

machine layer in the Charm++ runtime system to provide a

performance-portable communication layer for the Charm++

family of parallel programming models. With designs to

utilize the UCX machine layer for GPU-aware communication

while retaining the semantics of message-driven execution, we

demonstrate substantial improvements in performance using

latency and bandwidth benchmarks adapted from the OSU

487



benchmark suite, as well as a proxy application representing

a widely used stencil algorithm.

With GPU-aware communication support in place for the

Charm++ ecosystem, we plan to incorporate computation-

communication overlap with overdecomposition [23] to mini-

mize communication overheads on modern GPU systems. We

also plan on supporting collective communication of GPU

data, using this work as the basis to translate collective

communication primitives to point-to-point calls.

While UCX proves to be an effective framework for uni-

versally accelerating GPU communication, there is still room

for performance improvement as indicated by the differential

between AMPI and OpenMPI. One of the potential areas of

improvement is GPU support in the active messages API of

UCX, which could better fit the message-driven execution

model of Charm++. Another is supporting user-provided tags

in the Charm++ runtime system, which would eliminate the

need to delay the posting of the receive for GPU data until

the arrival of the metadata message.
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