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Abstract

Power consumption and process variability are two important, interconnected, challenges

of future generation large-scale High Performance Computing (HPC) data centers. For ex-

ample, current production petaflop supercomputers consume more than 10 megawatts of

machine and cooling power that costs millions of dollars every year [1]. As HPC moves

towards exascale computing, these costs will increase and power consumption is expected

to become a major concern. Not solely dynamic behavior of HPC applications but also

dynamic behavior of HPC systems makes it challenging to optimize the performance and

power efficiency of large scale applications. Dynamic behavior of applications include irreg-

ular or imbalanced applications. Dynamic behavior of HPC systems include thermal, power,

and frequency variations among processors. Smart and adaptive runtime systems have great

potential to handle these challenges transparently from the application.

In this dissertation, I first analyze frequency, temperature, and power variations in large-

scale HPC systems using thousands of cores and different applications. After I identify the

cause of each of these variations, I propose solutions to mitigate these variations to improve

performance and power efficiency. When analyzing frequency variation, I attribute man-

ufacturing related intrinsic differences in the chips’ power efficiency as the culprit behind

frequency variation under dynamic overclocking. I propose speed-aware dynamic load bal-

ancing strategies to mitigate the performance overhead due to frequency variation. When

analyzing temperature variation, I focus on inefficiencies in fan-based air cooling systems.

I propose proactive and decoupled fan control mechanisms that reduce temperature varia-
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tions and reduce cooling power consumption by predicting core temperatures using a learning

based model. When analyzing power variations, I identify manufacturing related sources of

power variation that are static and dynamic. I propose different variation aware node as-

sembly methods to mitigate the power variation. Finally, I propose a fine-grained runtime

based technique to mitigate application level variations that are caused by the characteristics

of the application itself (for example, applications with different kernel types or phases) in

order to reduce the energy consumption.
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CHAPTER 1
Overview

Just as no two people are alike, the same can be said for processors. Just as

an ideal relationship should accommodate for differences, an ideal system should

accommodate the same at scale.

As the size of the data centers and HPC centers keeps growing, power consumption grows

as well. Current petascale systems, such as Blue Waters supercomputer at UIUC, consume

tens of megawatts of power leading to millions of dollars in energy bills, significant power

strains on local, state, or regional energy grid systems, and the environmental impact on

natural resources that provide the power for the supercomputer. As the scale has been

growing rapidly over the last few decades, the extrapolations of the trends has shown that

each data-center may need their own nuclear power plants for operational energy needs

in near future. This has made scientists and engineers take action to improve power and

energy efficiency of data centers. For example, the DOE set a 20 MW power goal for an

exascale system to be built [2]. Fortunately, the efforts to improve the design and operation

of the data centers have been paying off. A 2016 report by Lawrence Berkeley National

Laboratory shows that the total energy consumption of United States data centers has been

flat-lined despite the increased volume of installed servers [3]. As shown in Figure 1.1, the

predictions show that the energy usage may remain constant until 2020, as the in-efficient

practices are replaced with more efficient technologies. These efficient practices include

not only hardware related advancements, such as optimizing the idle power consumption
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Equation 1 

� �
��� � ���

�����
����

 

Where f = fraction of 5th year shipments in installed base 
IBy = installed base in year y 
Sy = shipments in year y 

 

 
Figure 5. Total Volume Server Installed Base Estimates from Three Studies 

 

 
Figure 6. Volume Server Installed Base 2000-2020 
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(a) Total Volume Server Installed Base Estimates

ES-2 

The combination of these efficiency trends has resulted in a relatively steady U.S data center 
electricity demand over the past 5 years, with little growth expected for the remainder of this 
decade. It is important to note that this near constant electricity demand across the decade is 
occurring while simultaneously meeting a drastic increase in demand for data center services; 
data center electricity use would be significantly higher without these energy efficiency 
improvements. A counterfactual scenario was created for this study that estimates what data 
center energy consumption would have been if industry energy-savings efforts were halted in 
2010. For this scenario, the follow metrics remain static at 2010 industry-wide levels from 2010-
2020: 

• Average server utilization  
• Server power scaling at low utilization  
• Average power draw of hard disk drives  
• Average power draw of network ports 
• Average infrastructure efficiency (i.e., PUE) 

The resulting electricity demand, shown in Figure ES-1, indicates that more than 600 additional 
billion kWh would have been required across the decade.

 

Figure ES-1 Projected Data Center Total Electricity Use 

Estimates include energy used for servers, storage, network equipment, and infrastructure in all U.S. data 
centers. The solid line represents historical estimates from 2000-2014 and the dashed lines represent five 
projection scenarios through 2020; Current Trends, Improved Management (IM), Best Practices (BP), 
Hyperscale Shift (HS), and the static 2010 Energy Efficiency counterfactual.   

(b) Projected Data Center Total Electricity Use

Figure 1.1: Figures are taken from “United States Data Center Energy Usage Report”
published by the Lawrence Berkeley National Laboratory in 2016 [3].
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of the processors, but also improved operations of the data center, such as increasing the

average utilization of the servers. However, for beyond 2020, the report cautions that further

technological advancements are necessary to ensure that the energy demand does not grow

at the rate proportional to the growth of the data centers as once it used to be in early

2000s.

It is important to note that the majority (as much as 80%) of the data center electricity

is spent by servers and infrastructure divided equally among them [3]. Servers and infras-

tructure costs, which includes cooling, are the focus of this dissertation. The rest of the

electricity is consumed by network and storage, which is about less than 20% [3].

It is also important to note the motivations behind reducing the energy versus power

consumption which may not necessarily be the same. Some supercomputing facilities, such

as LLNL, only pay energy charge per kWh, despite they have a contracted maximum power

capacity [4]. Therefore, reducing the energy consumption directly reduces the costs. On the

other hand, some other facilities, such as ORNL that hosts the largest supercomputer in the

United States – Titan, is charged based on its maximum power usage [4]. Moreover, power

line infrastructure of the data center can have a maximum draw limit. Therefore, reducing

the maximum power usage or increasing the throughput under a strict power budget can

be a motivation to reduce the costs. Hence, power and energy efficient system design have

both their own merits.

This dissertation proposes novel software and hardware techniques to improve power and

energy efficiency of data centers specifically by mitigating various kinds of variability in

processors. A unified model where the runtime dynamically interacts with the data center’s

resource manager is also introduced for this purpose. DVFS and power capping are common

approaches to reduce the energy consumption or power consumption. Naive usage of these

methods can lead to performance degradation which is unfavorable by HPC users. Not only

the dynamic behavior of HPC applications (such as irregular or imbalanced applications)

but also the dynamic behavior of HPC systems (such as thermal, power variations among

processors) can cause high overhead when DVFS, and power capping methods are applied

naively. Smart and dynamic runtime systems have great potential handling these challenges

and improving performance and power efficiency transparent from the application under user
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or administrator supplied constraints.

To understand the system variability, first, this dissertation gives a detailed analysis and

identification the sources of temperature, power, and frequency variation in large-scale HPC

systems. Then, novel ways to reduce the different types of variation are proposed to improve

performance, power, and energy efficiency with minimal or no performance overhead.

1.1 Dissertation Organization

The dissertation is organized as follows:

Chapter 2 gives a high level overview of a data center system design where the resource

manager interacts with the runtime of the application dynamically to do performance, power

and energy optimizations. This chapter contains materials from my co-authored article

“Power, Reliability, and Performance: One System to Rule them All” published in the IEEE

Computer journal [5].

Chapter 3 gives a detailed analysis of frequency, power and temperature at large-scale

using top supercomputers. It also shows how manufacturing related variations cause per-

formance variations if the processors are running under dynamic-overclocking. This chapter

revises and adds upon my paper “Variation Among Processors Under Turbo Boost in HPC

Systems” published in International Conference on Supercomputing [6].

Chapter 4 provides evaluations of different solutions to mitigate the frequency variation.

Frequency variation can degrade the performance of tightly coupled HPC applications. So-

lutions to mitigate the performance degradation include: disabling Turbo Boost, replacing

slow chips, idling cores, and dynamic task redistribution. This chapter uses data from my

articles “Variation Among Processors Under Turbo Boost in HPC Systems” published in In-

ternational Conference on Supercomputing [6] and “Mitigating Processor Variation through

Dynamic Load Balancing” published in IEEE International Parallel and Distributed Pro-

cessing Symposium Workshops [7].
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Chapter 5 focuses on temperature variation. First, it provides a temperature prediction

model using neural networks. Then, it gives solutions to mitigate temperature variation with

the help of the prediction model. The solutions include: a proactive fan control mechanism

and a model-guided temperature balancing algorithm. This chapter includes work from my

paper “Support for Power Efficient Proactive Cooling Mechanisms” published in IEEE In-

ternational Conference on High Performance Computing, Data and Analytics [8] as well as

my paper “Neural Network-Based Task Scheduling with Preemptive Fan Control” published

in International Workshop on Energy Efficient Supercomputing [9].

Chapter 6 proposes techniques address power variation. Two techniques are analyzed to

mitigate the power variation. These are a power-variation aware node assembly method and

a variation-aware job scheduler that accompanies it. The ideas proposed in this chapter are

patent pending [10].

Chapter 7 addresses application related variations during the execution. Unstructured

or irregular application behavior contributes to the variability in the system. In this sec-

tion, we propose and evaluate a runtime based function-level optimization approach to do

fine-grained optimizations.

Finally, Chapter 8 summarizes the main contributions and provides a discussion of future

research.
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CHAPTER 2
A Dynamic Runtime Interacting with Data

Center’s Resource Manager

DOE set a 20 MW power budget for an exascale supercomputer to be built in the next few

years [2]. It is anticipated that such a system will face major challenges with reliability,

power management, and thermal variations. We believe smart runtime systems have a great

potential in overcoming the barriers toward exascale computing.

This chapter gives the high-level design of a unified adaptive runtime system where dif-

ferent modules such as job scheduler, resource manager and the job runtime system interact

with each other to optimize for performance and power consumption under user or admin-

istrator supplied constrains in an environment with system failures.

Traditionally, the emphasis of HPC data centers and applications has been on performance.

However, it is anticipated that future generation supercomputing systems will face major

challenges in reliability, power management, thermal variations. Disruptive solutions are

required to optimize performance in the presence of these challenges. For each job, a smart

parallel runtime system that interacts with the whole machine’s resource manager is key to

overcome the challenges of next generation supercomputing data centers. In the past, it has

been demonstrated that a smart and adaptive runtime system can:

• improve efficiency in a power-constrained environment [11],

• increase performance with load balancing algorithms [12,13],
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Figure 2.1: Figure shows overall system design with two major components interacting with
each other: Resource Manager and the Runtime System.

• control the reliability of supercomputers with substantial thermal variations [14],

• configure hardware components to save power [15,16].

Although these research directions were developed in isolation, they indicate that smart

runtime systems have a great potential to overcome barriers towards exascale computing.

What the HPC community lacks is an integrated solution that combines past research into

a single system that optimizes across multiple dimensions. We propose a comprehensive

design in which the data center resource manager dynamically interacts with the individual

runtime systems of jobs to optimize performance and power consumption in an environment

with system failures under constraints supplied by users or administrators.

At the heart of the proposed solution for power-efficiency, reliability and performance of a

HPC data center lies an adaptive and dynamic parallel runtime system. An adaptive runtime

system can migrate tasks and data from one processor to any other processor allocated to the

job. This ability can solve many challenges that upcoming supercomputers face - application

load imbalance across processors, high fault rates, power and energy constraints, and thermal

variations. These challenges are often contradictory in terms of their requirements. For

example, applying power and temperature constraints can compromise performance and

lead to load imbalance across processors. We strive to achieve a healthy balance where we
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try to maximize performance in presence of the known as well as contingent constraints and

events.

In Figure 2.1, we show a unified diagram of several important components of a data

center, their functions and interactions with each other in order to address the challenges of

power, reliability and performance. Currently, a data center user is primarily concerned the

performance of his or her job. In the future, however, power consumption of their jobs will

become a major concern. On the other hand, data center administrators have different and

more complex concerns - while they want to guarantee good performance to individual jobs,

they need to ensure that the total power consumption of the data center does not exceed its

allocated budget and that the job throughput of the data center remains high despite node

failures and thermal variations. We achieve the objectives of both the user and the system

administrators by allowing dynamic interaction between the system resource manager or

scheduler and the job runtime system. While the job scheduler ensures that at any time the

system resources are optimally allocated to the jobs based on their power and performance

characteristics, the job runtime system implements the decision of the job scheduler by being

malleable to shrink or expand itself to the nodes assigned by the scheduler and by doing

dynamic load balancing whenever beneficial.

Furthermore, the runtime system can turn on/off or reconfigure various hardware compo-

nents without impacting application performance, if adequate hardware control is provided

by vendors. Our evaluations demonstrate that these runtime capabilities result in greater

power efficiency for common HPC applications.

For the rest of this chapter, we first give background information on an adaptive runtime

system that serves perfectly for our design needs in Section 2.1. Then, we summarize and

demonstrate the past work that fits in the context of dynamic runtime that interacts with

data center’s resource manager in Sections 2.2, 2.3, 2.4. Finally, in Section 2.5, we discuss

the architecture and system needs that are required to enable our design.
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2.1 An Adaptive Runtime System for HPC

An adaptive runtime is an essential component of a system optimized for power efficiency,

reliability and performance. Adaptive runtime systems enable dynamic collection of per-

formance data, dynamic task migration (load balancing), temperature restraint and power

capping with optimal performance.

Charm++ is a C++ based parallel programming framework supported by an adaptive

runtime system, which enhances user productivity and allows programs to run portably from

small multicore computers (e.g., laptops and phones) to the largest supercomputers [17]. It

enables users to easily expose and express much of the parallelism in their algorithms while

automating many of the requirements for high performance and scalability. Charm++ has

been in production use for over fifteen years and it has thousands of users across a wide

variety of computing disciplines with multiple large scale applications including: NAMD

for molecular dynamics, ChaNGa for cosmology and OpenAtom for quantum chemistry

simulations, and many others [17].

Charm++ has three main attributes: over-decomposition, asynchronous message-driven

execution, and migratability. Over-decomposition entails dividing the computation in an

application into small work and data units so that there are many more such units than the

number of processors. Message-driven execution involves scheduling work units based on

when a message is received for them. Migratability refers to the ability to move data and

work units between processors. These attributes enable the Charm++ adaptive runtime

system to provide many useful features including dynamic load balancing, fault tolerance,

and job malleability.

An application written in Charm++ contains a collection of parallel objects that are dis-

tributed among processors and communicate via messages. These objects form the basic unit

of computation and data that can be assigned and re-assigned to processors. The program-

mer over-decomposes the problem into many more objects than the number of processors.

The Charm++ runtime system handles the assignment of these objects to processors, and

it may dynamically migrate objects to balance the load, handle faults, or to shrink-expand

the number of processors the application is running on.
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Figure 2.2: Illustration of overdecomposition with migratable objects and message driven
execution in runtime system.

Charm++ collects information about the application and the system in a distributed

database including load of processors, load of each object, communication pattern, and core

temperatures. When the number of processors are large, then the centralized data collection

becomes a performance bottleneck. Therefore, data collection and decision making are done

in a hierarchical fashion. This information is used by different modules of the adaptive

runtime to make decisions such as improving load balance, handling faults, and enforcing

power constraints.

Load balancing: Charm++ uses a measurement-based mechanism for load balancing.

It relies on a heuristic known as the principle of persistence, which states that for over-

decomposed iterative applications, the computation load and the communication pattern

of tasks or objects tend to persist over time. It uses the load statistics of the application

code collected by the runtime system. This has the advantage that it provides an automatic,

application independent way of obtaining the load statistics without any input from the user.

Using the load statistics, Charm++ executes a chosen load balancing strategy to determine

a mapping of objects to processors and then carries out migrations based on this mapping.

Charm++ consists of a suite of load balancers including several centralized, distributed and

hierarchical strategies. The runtime system can also automate the decision of when to call

the load balancer [18]. It can use the instrumented load information to predict the future load
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and make load balancing decisions. It automatically triggers load balancing when imbalance

is detected and when the benefit of load balancing is more than its overhead.

Fault tolerance: The Charm++ runtime system implements both proactive and reactive

strategies for reliability [19]. In the proactive techniques, the runtime system evacuates all

objects from a node that a monitoring system predicts is going to crash soon. Since failure

prediction is not completely accurate, the reactive techniques recover the information lost

after a failure brings down one node of the system. Those latter strategies are mostly based

on checkpoint and restart. Therefore, the global application’s state is routinely stored and

recovery implies retrieving a prior global state.

Shrink-expand: The migratability of Charm++ objects enables a unique ability called

job malleability ; during runtime, a job can shrink (decrease) or expand (increase) the number

of nodes it is running on. This feature does not require any additional code from the

application developer [20]. Shrink or expand operations can be triggered by an external

command or it could be an internal decision made by the runtime. During a shrink operation,

the runtime system reduces the number of processors that the application is running on.

First, it moves the objects away from the processors that are not going to be used anymore.

The unused processors can then be returned back to the resource manager. For an expand

operation, the runtime launches new processes on the additional processors that the resource

manager has allocated and distributes objects from current processors to the newly allocated

processors.

Figure 2.3 shows the internal components and functioning of the Charm++ Runtime

System (RTS). There are three important components of the RTS - Local Manager (LM),

Load Balancing Module (LBM), and Power Resiliency Module (PRM). Each processor has an

LM that is responsible for managing the objects residing on that processor and for interacting

with other components of the RTS. The LM of each processor periodically sends its total

compute load and compute load of each of its objects to the LBM, and the CPU temperature

is sent to the PRM. LBM makes the load balancing decisions using MetaBalancer and it

also redistributes load in response to shrink-expand commands from the resource manager.

Object migration decisions are communicated to the respective LM by the LBM. PRM, on

the other hand, is responsible for ensuring that the CPU temperatures remain below the
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Figure 2.3: Various components of adaptive runtime system and their interaction with the
resource manager.

job specific temperature threshold. The PRM controls CPU temperature by adjusting the

power cap of the CPU. When a processor’s temperature is above the threshold, then its

power cap is lowered. And when the temperature is well below the desired threshold, then

the corresponding power cap is increased while ensuring that the total power of the job

remains below the power budget allocated to the job (the determination of this budget is

described in the next section). Jobs may not have administrator rights to constrain the

power consumption of their CPUs. Therefore, the new power caps are communicated to the

resource manager which applies them to each CPU.
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2.2 Throughput Maximization Under A Power Budget

Recent advances in processor hardware design allow users to control the amount of power

consumed by the processor using software with Running Average Power Limit (RAPL)

driver [21]. Processors can be power capped to run below their Thermal Design Power

(TDP) value, where TDP is the maximum amount of power a processor can consume. The

maximum number of nodes in a data center with a power budget is determined by the

TDP of the nodes. Power capping makes it possible to control the power consumption

of nodes and thus have additional nodes while remaining within the power budget of the

data center. This is called an overprovisioned system [22]. Earlier research shows that

an increase in the power allocated to a processor does not yield a proportional increase in

job’s performance [11]. Different jobs react differently to an increase in power allocated to

the CPU. The idiosyncrasies in jobs performance based on allocated CPU power, points to

the possibility of running different applications at different power levels. Overprovisioned

systems can significantly improve performance of applications that are not sensitive to CPU

power by capping CPU powers to values below their TDP and adding more nodes to get

benefits from strong scaling. The Power Aware Resource Manager (PARM) [11] leverages

this capability by optimally distributing the available resources to the jobs - the total power

budget of the data center and the compute nodes.

The response of an application to CPU power can be captured by its power-aware speedup.

The power-aware speedup is the ratio of the execution time of a job running on a CPU capped

at a certain power level compared to the execution time of the same job when running on the

lowest allowed power level allowed by the CPU [11]. A higher value for power-aware speedup

implies that the application is sensitive to changes in the amount of power allocated to the

CPU.

Figure 2.4 shows power-aware speedups of four HPC applications having different char-

acteristics under different CPU power caps [11]. LeanMD, which is a molecular dynamics

application has the highest power-aware speedup since it is the most CPU intensive one.

Whereas Jacobi2D, which is a stencil application, has the lowest since it is memory inten-

sive. PARM makes scheduling decisions by selecting jobs and their resource configurations
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Figure 2.4: Power-aware speedups of four applications running on 20 nodes. The applications
vary from being CPU intensive to memory intensive.

(e.g., power budget and compute nodes) such that the total power-aware speedup of running

jobs is maximized.

PARM is an essential part of the overall system we propose in this work. It dynamically

interacts with the adaptive runtime system of jobs, the system hardware, the user and

the system administrator to perform several critical tasks (Figure 2.1). There are three

important components of PARM:

• Job Profiler: Before a job is added to the scheduler queue, it is profiled to develop a

power-aware strong scaling model that is used to calculate the power aware speedups.

This profiling mechanism has negligible overhead as it is sufficient to run the application

for a few iterations to get the necessary data points.

• Scheduler: PARM implements its resource allocation optimization strategy as an In-

teger Linear Program (ILP) with the objective of maximizing power-aware speedup of

running jobs under power constraints. Whenever a new job arrives or a running job

terminates, PARM’s scheduler is triggered, and re-optimizes scheduling and resource

allocation decisions. PARM’s ILP is fast enough to run frequently with negligible

overhead.
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Figure 2.5: Comparison of average completion time of jobs with SLURM and PARM, in
Rigid(R) and Malleable(M) variants. SetL has jobs that have low sensitivity to CPU power
and SetH has jobs that have high sensitivity.

• Execution Framework: This component implements the scheduler decisions by launch-

ing jobs, sending shrink or expand decisions to the runtime system of the jobs, and by

applying power caps on compute nodes. Job runtime systems interact with the execu-

tion framework to convey job termination, completion of shrink or expand operation

and any changes to CPU power caps as determined by PRM module of the runtime

system.

Figure 2.5 shows the benefits of using PARM as compared to power-unaware SLURM

which is an open source resource manager used in many supercomputers. Two versions of

PARM are compared - PARM-Rigid and PARM-Malleable. In PARM-Rigid, node allocation

decision to any job is rigid, that is it cannot be changed once the job starts running. PARM-

Malleable, on the other hand, has an additional degree of freedom that allows it to change

the nodes allocated to a running job which is made possible by the shrink and expand

feature of Charm++. The number at the top of each bar in Figure 2.5 represents average

completion time as a percentage of the average completion time using SLURM scheduler.

PARM-Malleable was able to reduce average completion time of jobs by up to 41%.
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2.3 Improving Reliability Through Temperature Restraint and

Load Balancing

Checkpoint and restart is the most popular mechanism to provide fault tolerance in HPC.

The total execution time T of an application, on an unreliable system, is given by the

equation:

T = Tsolve + Tcheckpoint + Trecover + Trestart

where Tsolve represents the total effort required to solve the problem; Tcheckpoint accumulates

all the time spent on saving the checkpoints of the system; Trecover stands for the total

work that is lost and must be recovered as a result of failures in the system; Trestart is

usually constant and represents the amount of time required to resume execution after a

crash. A system using checkpoint and restart has to choose an appropriate checkpoint

period (denoted by τ). There is a delicate balance in the value of τ . A long value of τ (low

checkpoint frequency) decreases Tcheckpoint, but may increase Trecover. Conversely, a short

value of τ (high checkpoint frequency) means a reduced Trecover, but may enlarge Tcheckpoint.

The optimum value of τ strongly depends on the mean-time-between-failures (MTBF) of

the system.

The MTBF of an electronic component is directly affected by its temperature. That re-

lation is usually exponential and there is some experimental evidence that a 10◦C increase

on a processor’s temperature decreases its MTBF in half [14]. Therefore, the reliability of

a system can be controlled by restraining the temperature of its components. The cooler

the system runs, the more reliable it is, but the slower it runs. That is because temperature

constraints are realized by restraining the power of the CPU. The runtime allows each core

to work at the maximum possible power as long as it is within the maximum temperature

threshold. If any of the cores goes above the maximum temperature threshold, then their

power is further reduced causing its temperature to fall. However, this can cause a perfor-

mance degradation for tightly coupled applications due to thermal variations. The LBM will

automatically detect any load imbalance and will make the load balancing decisions [12,13].

The runtime system must strike a balance in the temperature at which each component

should be restrained. Moreover, that balance depends on the application. Different codes
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generate different thermal profiles on the system at different stages of the application. Some

codes are more computationally intensive and tend to heat-up the processors more quickly.

Appropriate application-based temperature thresholds are stored as part of the Job Profiler

in Figure 2.1. In the end, the runtime system aims at reducing the total execution time of an

application, considering the MTBF of the system and subject to the power limitations [14].

Figure 2.6: Reduction in execution time and change in MTBF for different temperature
thresholds

Figure 2.6 shows percentage reduction in execution time after constraining core tempera-

tures to different thresholds for two different applications. The reduction in execution time

shown in Figure 2.6 is calculated compared to the baseline case where processor temper-

ature is not constrained. Figure 2.6 also shows the ratio of MTBF for the machine using

our scheme relative to the baseline case where core temperatures are not constrained. For

example, by restraining core temperatures to 42◦C in case of Jacobi2D, the MTBF for the

machine increased 2.3 times while the execution time reduced by 12% compared to the base-

line case where core temperatures are not constrained. The inverted U-shape of both of the

curves strongly suggests a trade-off between reliability (MTBF) and the slowdown induced

by the temperature restraint.

The resource manager sends the PRM of the runtime system (Figure 2.3) the upper bounds

of the temperatures that honor the power envelope of the system. Those temperature values
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are used as input to an internal resilience component in PRM and they will be changed

according to the algorithms that optimize performance and consider the MTBF of the system

and the characteristics of the application running. The output will be propagated to further

components in PRM that will later consolidate the final power limits and they will be

communicated back to the resource manager. A dynamic runtime system is fundamental in

controlling the reliability of the system and honoring the power envelope at the same time.

Since thermal variations are dynamic, a reactive runtime system efficiently responds to those

changes and provides a healthy balance between performance and reliability in the system.

2.4 Dynamic Configuration of System Components

The runtime system can take advantage of the currently available hardware “knobs” for con-

trolling power such as frequency scaling and power capping. However, greater power savings

are possible if there is more runtime control over hardware components. We demonstrate,

via cycle accurate simulations, that the runtime system can turn-off or reconfigure many

components without significant performance penalty based on the properties of the running

HPC application.

HPC systems should ideally be energy proportional ; the hardware components should

consume power and energy only when their functionality is being used. However, network

links are always “on”, independent of their utilization. In addition, processor caches consume

large amounts of power, even when they are not improving the performance of the running

application. We propose a runtime system approach that can save this wasted energy by

dynamically re-configuring the hardware based on the application needs.

Caches consume up to 40% of a processor’s power [15]. A large fraction of cache power

consumption can be saved by turning-off some cache banks in cases where the application

performance would not be degraded. Many common HPC applications cannot take advan-

tage of the caches effectively. For example, molecular dynamics applications typically have

small working data sets and do not need the large last level caches (LLC). On the other

hand, grid-based physical simulation applications typically have very large data sets that

do not fit in caches and the data reuse in cache is minimal. However, the hardware is not
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able to predict the application behavior. Therefore, we propose a runtime system approach

where the runtime uses profiling data to reconfigure the cache to save power without signif-

icant performance loss. Using a set of representative HPC applications, our previous study

demonstrates that on average, 67% of cache energy can be saved with only 2.4% performance

penalty [15].

A similar approach applies to HPC networks as well. Networks consume up to 30% of

system power even when there is no communication since the links are always on. Our

previous study demonstrates that typical HPC applications do not use a large fraction of

the links in most of their execution time [16,23]. The reason is that HPC topologies such as

Dragonfly are designed to handle the most challenging communication patterns such as all-

to-alls in FFT modules. However, typical applications have sparse communication patterns

such as nearest neighbor that cannot exploit the massive number of links in HPC networks

like Dragonfly. We propose using the runtime system to turn the links on and off adaptively.

This hardware configuration case is harder to handle since the usage of network links can be

impacted by features such as adaptive routing. Therefore, the runtime system should handle

different hardware designs based on their exact specification. Our results demonstrate that

up to 80% of the power consumption of network links can be saved using our adaptive

runtime strategy [16].

In our unified design, the best hardware configuration is determined by the Job Profiler in

Resource Manager (RM) before running each job. Using this information, LM is responsible

for applying the configuration. Power models are built using the best configuration as well.

As a hypothetical example, RM might know that turning-off half of LLC does not affect

performance, but it reduces the maximum power from 70W to 60W. Hence, 60W is used

by RM for making scheduling decisions instead of 70W. Tighter incorporation of power-

performance trade-offs of hardware configuration in scheduling decisions of the resource

manager is the subject of future work.
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Table 2.1: Desired access to hardware-level measurement and controls.
3: There is support and access. 7: There is no support.
©: Hardware has support, but the system’s software lacks support or forbids access.

Need
Platform

Cori Edison Cab Stampede

Measurements
Frequency Data 3 3 3 3

Temperature Data 3 3 © ©
Node Level Power Data 3 3 © ©
Chip Level Power Data 3 © © ©
Core Level Power Data 7 7 7 7

Controls
Application-level Frequency Scaling 3 3 © ©
Per-chip Frequency Scaling © © © ©
Per-chip Power Capping © © © ©
Per-core Frequency Scaling © 7 7 7

2.5 Architecture and System Needs

As supercomputing platforms are becoming more heterogeneous with thousands of proces-

sors, forecasts predict challenges in power, energy consumption and process variation in the

future. Therefore, it is important that applications, or runtime systems underneath the

applications, be aware of the characteristics of the undelying architecture and do necessary

optimization to reduce the power, energy consumption and mitigate the effect of performance

variations.

Many supercomputing platforms do not give users access to power or temperature mea-

surements or rights to control the frequency of the processors or to apply power-capping

algorithms. Access to these measurements and controls would give researchers the oppor-

tunity to understand the behavior of the hardware and hence improve power and energy

consumption, application performance.

Table 2.1 summarizes the support for the desired user access to hardware-level measure-

ment and controls in four top supercomputing platforms that are used in this dissertation.

Cori plaform provides the greatest support among the four platforms. It provides all of

the measurement data and as well as application-level frequency control. Such access avail-
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able to all end-users without restriction is rare among supercomputing platforms. Edison

provides read-access to node-level power and core-level temperature measurements. How-

ever, node-level power measurements are not fine-grained enough to make detailed studies

– CPU-level power measurements are necessary. Edison also provides control of frequency

and power the the level of job allocations, i.e., all nodes participating in a job have the same

frequency or power settings for the duration of the job. This also is too coarse-grain. Given

the variation we observe among chips, every chip can have a different optimal power and

frequency setting. Therefore, dynamic chip level power and frequency control is necessary.

Cab and Stampede do not provide access to either power or temperature measurements and

do not provide any frequency or power control mechanisms.

Most current power and energy related studies are usually done either in small experimen-

tal clusters or using only a few processors. Access to power related controls and measure-

ments on large-scale production supercomputers would enable researchers to extend their

studies to much larger platforms, to the benefit of the whole HPC community.

2.6 Summary

Important challenges, such as power, reliability, and thermal variations, loom in the future

of supercomputing. Addressing these concerns is imperative to harness the next generation

of high performance machines. We propose a unified system design with a smart runtime

which interacts with the system resource manager.

The combined system offers several important features. First, it honors the power con-

straints by wisely scheduling jobs and re-allocating their resources when utilization changes.

Second, it controls the reliability by a temperature-aware module that cools down the sys-

tem to an application-based optimal level. Third, it can re-configure the hardware via the

runtime without sacrificing performance.
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CHAPTER 3
Analyzing Large Scale Processor Variability

Heterogeneity in supercomputer architectures is often predicted as a characteristic of future

exascale machines with non-uniform processors. For example, this could include machines

with GPGPUs, FPGAs, or Intel Xeon Phi co-processors. However, even today’s architec-

tures with nominally uniform processors are not homogeneous, i.e., there can be performance,

power, and thermal variation among them. This variation can be caused by the Comple-

mentary Metal-Oxide-Semiconductor (CMOS) manufacturing process of the transistors in a

chip, physical layout of each node, differences in node assembly, and data center hot spots.

These variations can manifest themselves as frequency difference among processors under

dynamic overclocking. Dynamic overclocking allows the processors to automatically run

above their base operating frequency since power, heat, and manufacturing costs prevent

processors from constantly running at their maximum validated frequency. The processor

can improve performance by opportunistically adjusting its voltage and frequency within

its thermal and power constraints. Intel’s Turbo Boost Technology is an example of this

feature. Overclocking rates are dependent on each processor’s power consumption, current

draw, thermal limits, number of active cores, and the type of the workload [24].

High performance computing (HPC) applications are often more tightly coupled than

server or personal computer workloads. However, HPC systems are mostly built with com-

mercial off-the-shelf processors (with exceptions for special-purpose SoC processors as in

the IBM Blue Gene series and moderately custom products for some Intel customers [25]).
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Therefore, HPC systems with recent Intel processors come with the same Turbo Boost Tech-

nology as systems deployed in other settings, even though it may be less optimized for HPC

workloads. Performance heterogeneity among components and performance variation over

time can hinder the performance of HPC applications running on supercomputers. Even one

slow core in the critical path can slow down the whole application. Therefore heterogeneity

in performance is an important concern for HPC users.

In future generation architectures, dynamic features of the processors are expected to

increase, and cause their variability to increase as well. Thus, we expect variation to become

a pressing challenge in future HPC platforms. Our goal in this work is to measure and to

characterize the sources of variation, and to propose solutions to mitigate their effects.

The main contributions of this work include:

• Measurement and analysis of performance variation of up to 16% between processors

in top five supercomputing platforms: Cori, Edison, Cab, Stampede, Blue Waters on

1K chips

• Measurement and analysis of frequency, power, and temperature of processors on Cori,

Edison

To the best of our knowledge, there is no other work which measures and analyzes per-

formance, frequency, temperature, and power variation among nominally equal processors

under Turbo Boost at large scale (See related work in Section 3.4).

3.1 Experimental Setup

3.1.1 Platforms

We have used five different top supercomputing platforms in our experiments. We list the

detailed specifications of the platforms in Table 3.1.

Cori is a Cray XC40 supercomputer at NERSC [26]. It contains two types of nodes:

with Intel Haswell and with Intel Knights Landing processors. Both processor types have

Intel’s Turbo Boost version 2.0 feature enabled. For Haswell processors, when all cores are
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active, cores can peak up to 2.9 GHz from the nominal frequency of 2.3 GHz. Whereas

Knights Landing processors can peak up to only 1.5 GHz from their nominal frequency of

1.4 GHz. Users can specify the frequency of their jobs at launch time with srun --cpu-freq

command and specify power cap using srun --power command. The specified configuration

is applied to all nodes within the job allocation. If no configuration is specified, processors

operate under Turbo Boost.

Edison is a Cray XC30 supercomputer at NERSC [27]. Each compute node has 2 Intel

Ivy Bridge processors with Intel’s Turbo Boost version 2.0 feature enabled. The actual CPU

frequency can peak up to 3.2 GHz if there are 4 or fewer cores active within a chip. When

all cores are active, the cores can peak up to 2.8 GHz [28]. The platform gives users the

ability to change the nominal frequency and the Linux kernel’s power governors. It has 14

fixed frequency states ranging from 1.2 GHz to 2.4 GHz and users can specify the frequency

at job launch with the aprun --pstate command. The --p-governor flag sets the power

governor.

Edison has 5576 compute nodes. We have used up to 1024 randomly allocated nodes in

our experiments. Thus, we believe our results are representative of the whole machine.

Cab is a supercomputer at LLNL [29]. Each computer node has dual Intel Sandy Bridge

processors with Intel Turbo Boost version 2.0 enabled. The actual CPU frequency can peak

up to 3.3 GHz if there are 1 or 2 cores active within a chip. When all cores are active, the

cores can peak up to 3.0 GHz.

Stampede is TACC’s supercomputer [30]. Each compute node of Stampede has two Intel

Sandy Bridge processors and one Xeon Phi coprocessor. We do not use the coprocessor in

our experiments. The processors have Intel Turbo Boost version 2.0 enabled. The actual

CPU frequency can peak up to 3.5 GHz if there are 1 or 2 cores active within a chip. When

all cores are active, the cores can peak up to 3.1 GHz.

Blue Waters is a Cray XE/XK system at NCSA. For our experiments we use the XE

nodes which have two AMD processors with 16 Bulldozer cores [31]. The processors in this

system do not have a dynamic overclocking feature like Intel’s Turbo Boost.
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3.1.2 Applications

Matrix Multiplication

Dense matrix multiplication is a relatively compute-bound operation that simultaneously

stresses a broad subset of a system’s hardware. We run the sequential matrix multiplication

kernels in a loop on each core with data which fit in the last level cache (L3), i.e., we

use three 296x296 double-precision matrices, which requires around 2MB data per core and

24MB per chip where the L3 cache is 30MB on Ivy Bridge cores. Using data which fits

in cache eliminates the effect of memory and cache related performance variation in our

timings.

MKL-DGEMM: This kernel comes from Intel’s Math Kernel Library (Intel MKL) ver-

sion 13.0.3 on Edison and 13.0.2 on Stampede. Specifically, we call the cblas_dgemm func-

tion. We use this as a representative of a maximally hardware-intensive benchmark.

NAIVE-DGEMM: This kernel is a simplistic hand-written 3-loop sequential, double-

precision dense matrix multiply. We use this as a representative of application code with

typical compiler optimization settings, but that has not been hand-optimized or auto-tuned

for maximum performance on a given system architecture.

Data alignment, padding, compiler flags We use 2MB alignment using mkl_malloc()

or posix_memalign() (respectively) with 0, 64, or 128 bytes of padding for the data buffers

to avoid cache aliasing. Preliminary experiments showed that neglecting this effect created

substantial performance perturbations. We do not explore that issue both because it has

been addressed by substantial previous research and because more realistic applications are

much less likely to encounter it as consistently as our micro-benchmark. We use Intel’s icc

compiler (version 15.0.1 on Edison, and 13.0.2 on Stampede) with -O3 and -march=native

flags.

LEANMD

This is a mini-app version of NAMD, a production-level molecular dynamics application for

high performance biomolecular simulation systems [32]. It does bonded, short-range, and
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long-range force calculations between atoms. In our experiments, we use the benchmark

size of around 1.8 million atoms. This benchmark is written in the Charm++ parallel

programming framework.

JACOBI2D

This is a 5-point stencil application on a 2D grid. The application uses the Charm++ parallel

programming framework for parallelization. The grid is divided into multiple small blocks,

each represented as an object. For each iteration, the application executes in 3 stages, i.e.,

local computation, neighbor communication and barrier-based synchronization.

3.1.3 Measurement Methodology

We sample the time, hardware counters, temperature, and power for every 10 iterations

of matrix multiplication for NAIVE-DGEMM and 100 iterations for MKL-DGEMM. This

gives a sampling period of roughly 20 milliseconds. For other benchmarks, we do 1 second

periodic measurements through an external module. Our frequency measurement is based

on hardware counters and can be done on most of the HPC platforms, the only requirement

is the installation of PAPI. The temperature and power measurements are specific to Cori

and Edison.

Frequency Measurements: We use PAPI [33] to read the hardware counters. Specifi-

cally, we measure the total clock cycles, reference clock cycles, and cache misses. Total cycles

(PAPI TOT CYC) “measure the number of cycles required to do a fixed amount of work” and

reference clock cycles (PAPI REF CYC) “measure the number of cycles at a constant reference

clock rate, independent of the actual clock rate of the core” [34]. We use the total and ref-

erence cycles to calculate the cycle ratio (PAPI TOT CYC / PAPI REF CYC). The cycle ratio

gives us the effective clock rate of the processor. If the ratio is greater than one, then it

means the processor is running above the nominal speed and below means slower than the

nominal speed. When running a workload under Turbo Boost, then this ratio is typically

greater than one. On the other hand, if the processor is idle, then this ratio will typically
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be less than one [34]. In summary, we can obtain the clock frequency of the processor using

the following formula:

Freqeffective = Freqnominal ×
TotalCycles

ReferenceCycles

Temperature Measurements on Cori and Edison: Cori and Edison users have read

access to the temperature data of the cores through the /sys/devices/platform/coretemp

interface.

Power Measurements on Cori and Edison: Cori and Edison allows read access to

node level power meters for all users through the file: /sys/cray/pm_counters/power or

using PAPI ‘native’ counters. We use the first option to get each compute node’s power

consumption. The power measurements are available as the whole compute node’s power

(CPUs, RAM, and all other components) in watts. These meters read-out with an apparent

4 W resolution. Cab, Stampede, and Blue Waters do not provide an application-accessible

interface to access power consumption without a specific privilege.

We note that the CPUs in Cori, Edison, Cab, and Stampede have model-specific registers

(MSRs) that report CPU-level power and energy measurements. However, these are only

accessible to OS kernel code or processes running with administrative privileges. We discuss

this limitation further in Section 2.5.

Cori allows read access to /sys/class/powercap/intel-rapl system files which provides

chip and memory level power data.

3.1.4 Eliminating OS Interference

Operating systems and other extraneous processes can induce significant noise into the ap-

plication [35]. On Edison and Blue Waters, we eliminate the effect of OS interference by

binding all the OS processes to one core using the process launcher option aprun -r 1.

From our observations, these systems use the last core in each node to satisfy this option.

We then report measurements focusing on core 0 in each chip to avoid the effect of those OS
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processes.

Note that, after Edison switched from aprun to srun interface in early 2016, this support

has been discontinued. Unfortunately Cori, Cab and Stampede do not provide such an

option.

3.1.5 Variation Metric

We calculate the effective variation of a set of numbers S by the following formula:

VariationS (%)=[(maxS −minS )÷meanS ]×100

Since one slow processor can slow-down the whole application, we use the difference be-

tween maxS and minS in the variation formula rather than a summary statistic such as

standard variance or standard deviation.

We have used this variation metric in different contexts in this dissertation. The first

example is the variation among the cores, since there can be performance difference among

the cores running the same benchmark. In this case, S is the set of times that all the cores

take to execute the same computational kernel. Another example is when analyzing the

iteration time range within one core. S is then the set of iteration times within that core.

If the iteration time changes over time in a core (i.e., if the variation in S is high), then we

describe that core as a variable core.
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Table 3.1: Platform hardware and software details

Platforms Cori - Node Type 1 Cori - Node Type 2

Processor Intel Xeon(R) E5-2698 v3 Intel Xeon Phi(R) 7250
(Haswell) (Knights Landing)

Clock Speed Nominal 2.3 GHz Nominal 1.4 GHz

Turbo Speed #Cores: 1-2/3/4/5/6/7/8/9-16 #Cores: 1/2-68
GHz: 3.6/3.5/3.4/3.3/3.2/3.1/3.0/2.9 GHz: 1.6/1.5

TDP 135 W 215 W

Cores per node 16× 2 = 32 68

Cache size (L3) 40 MB (shared) No L3 cache

Linux Kernel 3.12.60 3.12.60

Platforms Edison Blue Waters

Processor Intel Xeon(R) E5-2695 v2 AMD Opteron 6276
(Ivy Bridge) (Interlagos)

Clock Speed Nominal 2.4 GHz Nominal 2.3 GHz

Turbo Speed #Cores: 1 / 2 / 3 / 4 / 5-12 No Boost Feature
GHz: 3.2 / 3.1 / 3.0 / 2.9 / 2.8

TDP 115 W 115 W

Cores per node 12× 2 = 24 16× 2 = 32

Cache size (L3) 30MB (shared) 16MB (shared)

Linux Kernel 3.0.101 3.0.101

Platforms Cab Stampede

Processor Intel Xeon(R) E5-2670 Intel Xeon(R) E5-2680
(Sandy Bridge) (Sandy Bridge)

Clock Speed Nominal 2.6 GHz Nominal 2.7 GHz

Turbo Speed #Cores: 1-2 / 3-4 / 5-6 / 7-8 #Cores: 1-2 / 3-5 / 6 / 7-8
GHz: 3.3 / 3.2 / 3.1 / 3.0 GHz: 3.5 / 3.4 / 3.2 / 3.1

TDP 115 W 130 W

Cores per node 8× 2 = 16 8× 2 = 16

Cache size (L3) 20MB (shared) 20MB (shared)

Linux Kernel 2.6.32 2.6.32
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3.2 Measurement and Analysis of Variation in Large Scale

Systems

Homogeneous synchronous applications running on multiple cores or processors are limited

by the slowest rank. Hence, even one slow core can degrade the performance of the whole

application. If one core is slower than others by x%, then the whole application would run

x% slower if the slow core is on the critical path. For applications with non-homogeneous

workloads, this effect is not as straightforward to measure. In the worst case scenario, the

heaviest loaded rank would be on the slowest core and that could make the application up

to x% slower.
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Figure 3.1: The distribution of benchmark times on 512 nodes of each machine looping
MKL-DGEMM a fixed number of times on each core.

The impact of the core-to-core performance difference is also based on what fraction of

the cores are fast and what fraction of them are slow. If there are only a few fast cores and

most of the cores are slower, then the situation is not unfavorable. However the opposite

of this condition, i.e most of the cores are fast but some of them are slow, is unfavorable.

Figure 3.1, shows the histogram of the core performance running a benchmark that calls

Intel MKL-DGEMM sequentially on the Edison, Cab, and Stampede supercomputers. The

overall core-to-core performance difference is around 16%, 8% and 15% respectively.
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Figure 3.2: Average frequency shows a negative correlation with total execution time on
both Edison, Cab and Stampede when running MKL-DGEMM.

To further understand this time difference, we looked into the relationship between the

total time and the average frequency of the cores from the whole execution. The frequency

difference among the chips was a result of the dynamic overclocking feature of the processors.

Figure 3.2 shows the correlation for Edison, Cab, and Stampede supercomputers on 512

compute nodes. There is an inverse linear correlation between the time and the frequency of

the processors with fit lines shown in the figure. The values of the R2 correlation coefficient

are 0.977, 0.965, 0.303 respectively, where 1 indicates a perfect linear trend. Edison and Cab

show almost perfect inverse correlation, while Stampede has a lower R2 value because of the

interference or noise: the execution time of some of the cores were longer even though they

were not running at a slower frequency. We note a few other features of these measurements.

Edison processors (Ivy Bridge) span a wider range of frequencies, nearly 400 MHz, than the

300 MHz spread among processors in Cab and Stampede (Sandy Bridge). Many of Edison’s

processors reach the maximum possible frequency, while none of those in Cab or Stampede

do the same. These observations may indicate broader generational trends among Intel

processors.

We also look for variation in a platform which does not have a dynamic overclocking
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feature: Blue Waters, which has AMD Bulldozer processors. Blue Waters cores do not show

any significant performance difference among them. Overall performance variation is less

than 1% among 512 compute nodes. Therefore we do not further analyze Blue Waters.

To summarize our motivation, we show that there is a substantial frequency and conse-

quent execution time difference among the cores under dynamic overclocking running the

same workload. In HPC applications, this variation is particularly bad for performance

because slower processors will hold back execution through the load imbalance and critical

path delays they introduce. Moreover, this effect worsens with scale, because a larger set of

processors increases the probability of encountering more extreme slow outliers.

Analysis of Intel Xeon Phi Architecture
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Figure 3.3: KNL execution time variability of 256 nodes 17408 cores. Overall variation is
53.4%. Frequency variation is almost 200 MHz.

Intel’s new generation Xeon Phi architecture shows quite different characteristics compared

to processors in the Intel Xeon family, therefore it deserves its own subsection. Here, we

analyze Knights Landing processors (KNL), as hardware details shown in Table 7.1. Knights

Landing processors have lots of small cores (68) within a chip where two cores form a tile.

There is no L3 cache, but there is a slightly larger L2 cache that is shared between two cores
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in a tile. The total L2 size is 34 MB which makes 1 MB per tile. KNLs have a narrow Turbo

Boost range with a low nominal frequency. When all cores are active, it can only boost 100

MHz, from 1.4 GHz up to 1.5 GHz. Moreover, if vector instructions are used, the effective

frequency can be even lower than the nominal frequency - which was never the case for Xeon

architectures.

We use the our MKL-DGEMM benchmark to do variabilty analysis on KNLs. This

benchmark is highly optimized and uses vector instructions. An important parameter to

tune using this benchmark is the matrix size. In Xeon architectures, we use a matrix size

that fits in L3 cache so there is no memory related variability that masks the manufacturing

related variability. Since there is no L3 cache in Xeon Phi’s, we try using a matrix size that

fits in L2 cache instead.

Figure 3.3 shows the execution time variation and frequency correlation of 256 KNL nodes

in Cori. Overall variation is 53.4%, which is quite high. However, as seen from the plot,

not all performance variation is related to frequency variation. Therefore, the R-squared

value is showing weak correlation between the execution time and frequency with a value

of 0.325. Possible causes of this variation are OS noise and shared L2 cache contention. In

fact, when we do the experiment using only one core per tile, the performance variation

almost completely disappears. Using one core per tile removes the cache contention, leaves

free cores for OS processes, and processors do not hit TDP anymore. This makes it difficult

to study the manufacturing related frequency variation in isolation.

Figure 3.4 focuses on four randomly selected nodes to show the behavior of the cores

within the node. There is no intra-chip frequency variation, so this implies Turbo Boost

changes the frequency of the cores alltogether. However, despite the fact that there is no

frequency variation, there is intra-chip perfromance variation. Especially, the first and the

last core (with IDs 0,67) in every node shows low performance. These cores created the

parallel line above the fit line in Figure 3.3. The cause of this is likely to be OS processes

on those cores.
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Figure 3.4: Plots show the execution time and frequency of four randomly selected nodes
sorted by the core and node IDs.

3.2.1 Inter-chip Frequency Variation

We first note that there is small intra-chip variation (i.e., variation between the cores within

one chip) that is not caused by frequency; however, this variation is not significant (on ar-

chitectures shown other than Xeon Phi). Therefore we only focus on the inter-chip variation

that arises even though they are all of the same product model.

There is a warm-up period from job launch to the time at which the chips settle at a
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particular frequency or a duty-cycle-determined frequency average. Figure 5.2 illustrates

this warm-up period with temperature, frequency, and power measurements of a selected

compute node. The node has two chips that behave differently. The temperature of Chip

1 is a few degrees higher over the run and it has a stable 2.8 GHz frequency. On the other

hand, chip 2 starts at 2.8 GHz and the frequency drops to 2.5 GHz after around 18 seconds.

Until the drop point, node power slowly increases from 320W to 330W and once Chip 2

hits the threshold, its frequency drops, causing its power level to drop. The duration of

the warm-up period can vary depending on the application’s compute intensity. For MKL-

DGEMM the warm-up is around 20 seconds whereas for NAIVE-DGEMM it is around 1

minute. We exclude the warm-up period in our following reported measurements.
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Figure 3.5: Plot shows the power (Pow (W)) of a randomly selected node, temperature (T1,
T2) and frequency (F1, F2) of the two chips on the node.

Table 3.2 shows the distribution of the steady-state frequencies of the chips on Edison.

For example, during the run of MKL-DGEMM, 67 of the 512 chips run at the maximum

possible frequency of 2.8 GHz. Since these chips are efficient and stable, we call these fast

chips. These make up 13% of the whole tested allocation. There are other chips which

are stable but run at a lower frequency, i.e 75 of the 512 chips run at a stable 2.7 GHz

with MKL-DGEMM. These are stable but slow chips. Moreover, some of the chips have an
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Figure 3.6: Iteration time (top plot) and frequency (bottom plot) over iterations are shown
from cores selected from 3 chips showing distinct behavior: slow, variable, and fast.

average frequency that is not one of the set values (i.e., 2.8, 2.7, 2.6 or 2.5 GHz). This means

that the chip could not settle down on a stable frequency and it is oscillating between two

frequencies, i.e., 100 of the 512 chips have an average between 2.7 GHz and 2.8 GHz with

MKL-DGEMM. We term these variable chips. Tables 3.3 and 3.4 show the corresponding

data for MKL-DGEMM on Cab and Stampede, respectively.

To understand how these types of chips behave over time, we have selected 1 core from 3

chips which behave differently and show how the iteration time and the frequency changes

over the iterations in Figure 3.6. The selected slow core has the highest iteration time

compared to the other 2 selected cores, and its frequency of 2.7 GHz does not change over
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Figure 3.7: Different chip types naturally form clusters and can be identified looking at their
percentage variability in the iteration time.

time. The fast core has the lowest iteration time and a frequency of 2.8 GHz which changes

minimally over time. On the other hand, the variable core’s iteration time the frequency

make a wave pattern. By comparing the left and right figures we can observe that when

the iteration time increases (or decreases) in the variable core, the frequency decreases (or

increases). We analyzed the time and frequency correlation earlier in Figure 3.2, and the

same correlation applies here as well. Figure 3.7 shows how variable chips can be easily

identified by looking at the percentage variability in their interation time. Up to 1.5%

variability can happen even in stable chips, but beyond that number means the chips cannot

sustain a steady frequency under the workload and is a variable chip.

Table 3.2 also shows the effect when one core is left idle. We try leaving one core idle from

the chip in socket 2 in each compute node, to eliminate the potential for OS interference by

binding the OS processes to the idle core. Leaving the core idle not only eliminates interfer-

ence, but also reduces the number and severity of slow and variable chips as well. Since the

chips run faster and more stably when one core is left idle, we discuss this arrangement as

a potential means to avoid slow processors in Chapter 6.

MKL-DGEMM is a highly-optimized kernel which puts a lot of pressure on the CPU

whereas NAIVE-DGEMM is not as intense. Consequently, while the chips fall as far down

as 2.5 GHz with MKL-DGEMM, with NAIVE-DGEMM they fall down to 2.7 GHz. In
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Table 3.2: Distribution of observed steady-state frequencies of 1K Chips on Edison

Frequency (GHz)
Application Idle cores 2.4−2.5 2.5 2.5−2.6 2.6 2.6−2.7 2.7 2.7−2.8 2.8

MKL-DGEMM
0 5 31 116 125 254 154 211 128
1 0 0 0 20 42 116 256 590

NAIVE-DGEMM
0 0 0 0 0 2 49 23 950
1 0 0 0 0 0 2 0 1022

LEANMD
0 0 0 0 0 0 0 186 838
1 0 0 0 0 0 0 8 1012

JACOBI2D
0 0 0 0 0 0 200 100 720
1 0 0 0 0 0 50 50 924

Table 3.3: Frequency distribution of MKL-DGEMM on Cab

Frequency (GHz)
2.6−2.7 2.7 2.7−2.8 2.8 2.8−2.9 2.9

16 56 548 184 210 10

Table 3.4: Frequency distribution of MKL-DGEMM
on Stampede

Frequency (GHz)
2.8−2.9 2.9 2.9−3.0 3.0 3.0−3.1

13 19 555 183 254

a run on 1024 compute nodes of Edison, we see that 92% of the chips are fast and only

about 7% of processors are unable to sustain a steady 2.8 GHz over the few minutes of

our NAIVE-DGEMM benchmark run. Others either persistently vary between 2.7 and 2.8

GHz during the run, or stabilize after a variable length of time at 2.7 GHz. These off-

nominal chips are exactly those on which the benchmark as a whole took longer to run.

LEANMD and JACOBI2D applications shows a similar behavior to NAIVE-DGEMM. The

more applications are optimized for performance, then the more they are likely to encounter

a chip running at a slower frequency. For example, an application using AVX instructions

and data tiling for memory performance would have a high CPU intensity, whereas more
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time waiting for communication, synchronization or high memory access latency would give

the CPU more idle time, which results in lower temperature and power values. We observed

by experiment that such applications may show little frequency variation or none at all.

In a CPU-intensive parallel application, processors that are even slightly slower or less

efficient than their cohort can potentially create a vicious cycle for themselves. Faster pro-

cessors will experience idle time due to load imbalance and critical path delays. During that

time, they will cool down and bank energy, stabilizing their temperature, power consump-

tion, and frequency. The slower processors will run closer to a 100% duty cycle, pushing

their temperature and power consumption up and their steady-state frequency down. As

they get hotter, draw more power, and slow down, they become worse-off relative to the

faster chips. Thus, the effect amplifies and feeds back on itself.

3.3 Temperature and/or Power as Cause of Frequency Variation

There are several possible reasons for the frequency variation that we have observed. Turbo

Boost adjusts the clock frequency based on the processor’s power, current, temperature,

active core count, and the frequency of the active cores. Active core count is irrelevant here,

because Edison’s processors can boost to a maximum of 2.8 GHz with 5–12 cores running.

We first try to understand if the frequency variation is caused by slow or variable proces-

sors reaching their temperature limit. Figure 3.8 shows what frequency level processors are

running at for each temperature bin for the NAIVE-DGEMM and MKL-DGEMM bench-

marks. We periodically collect frequency and temperature data from the whole execution

including the warm-up time. Then, we bin the data points in terms of temperature and

calculate which percentage of them show operation at each frequency level. We can see that

chips running MKL-DGEMM span a wide range of frequencies and temperatures, with no

apparent correlation. At every temperature level, there are processors from each frequency.

The fastest chips reach temperatures as high as the slower chips. For NAIVE-DGEMM,

as the temperature goes higher, the percentage of chips running at high frequency drops.

However, very few chips are anywhere near the documented threshold temperature of 76◦C.

The data for LEANMD and JACOBI2D looks very similar to NAIVE-DGEMM. Thus, we
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Figure 3.8: Plots show what percentage of the chips run at what frequency in each tem-
perature level for NAIVE-DGEMM (left plot) and MKL-DGEMM (right plot) benchmarks.
The data points are collected from the whole execution of the benchmarks and classified
according to their temperature bins. The chips’ operating temperatures are not directly
correlated with their frequency under the heavier load of MKL-DGEMM.

conclude that the chips running slower than nominal have not slowed down due to reaching

their thermal limit.

Another reason for the frequency variation could be the power draw of the cores. The
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260 4 4 F = Fast Chip= 2.8 GHz
265 8 8 S = Slow Chip= 2.7 GHz
270 60 60 V= Variable Chip= 2.7 <f< 2.8GHz
275 108 108
280 162 162
285 141 139 2
290 123 119 2 2
295 107 104 1 2
300 89 75 7 6 1
305 88 60 18 7 2 1
310 77 41 19 7 5 5
315 51 18 14 10 5 3 1
320 6 3 0 2 0 0 1

Power (W) Total = 1024F&F = 901 F&S = 63 F&V = 36 S&S = 13 S&V = 9 V&V = 2

Table 3.5: The distribution of whole-compute-node power consumption while running
NAIVE-DGEMM, for nodes containing the various possible combinations of chips. His-
tograms are given to illustrate the strong regularity present in the distribution of power con-
sumption values in the fast/fast case. This regularity suggests a relatively simple underlying
stochastic process. As a compute node includes slower and variable chips, its distribution of
measured power shifts upward, suggesting those chips are at or close to their limiting power
while the fast chips are not.

package control unit (PCU) in processors with Turbo Boost Technology 2.0 has an intelligent

exponential weight-moving average (EWMA) algorithm [36] to adjust the frequency of the

cores. According to this algorithm, energy consumption of the processor is tracked within

fixed time periods. Within these periods, if the CPU is consuming less power than a threshold

power limit, then it accumulates energy credit which can be used in the following period to

boost the CPU frequency. By default, that power threshold limit is the processor’s TDP,

which is the power level in the steady state where the frequency of the CPU could safely be

higher than the nominal frequency [36]. Intel’s RAPL [21] feature lets software set a lower

threshold. We can observe this time interval in the EWMA algorithm from the variable

core in Figure 3.6. The frequency changes in a rapid wave pattern over iterations. The core

accumulates energy credits when the frequency is low and uses those credits to increase the

frequency back again.

Table 3.5 shows the distribution of node power consumption from NAIVE-DGEMM. We

have grouped the nodes by the pair of categories assigned to the processors they contain.
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Since we only have power measurements of the whole compute node on Edison, this pairing

is necessary to identify the power consumption of different chip types. There are 3 distinct

frequency levels with NAIVE-DGEMM: 2.8 GHz, 2.7 GHz, and between 2.7-2.8 GHz. We

simply name them fast, slow, and variable chips. Since there are two chips in a node on

Edison, a node can have one of six different combination of chips. These are: fast & fast,

fast & slow, fast & variable, slow & slow, slow & variable, and variable & variable.

We can see that the variable processors systematically consume more power than slow

processors, which in turn consume more power than fast processors. This occurs because

a variable core is running at an average frequency right at the edge of what its power

consumption will allow. As temperature rises even slightly, the power consumption increases

to a point where the PCU will not allow the chip to ever step up to its higher frequency, and

so it stabilizes at a lower frequency and hence slightly lower but still near-threshold level of

power consumption. The processors have a TDP of 115 Watts. However, since the power

data is node-level power which includes not just CPU power but also power of RAM and

other components in the node, the measured power is higher than 115× 2 = 230 W.

Power measurements of LEANMD and JACOBI2D show a very similar distribution to

NAIVE-DGEMM. MKL-DGEMM also shows a similar distribution, however with a much

narrower power range of 18 Watts: [302-320], instead of 60 Watts: [260-320] in NAIVE-

DGEMM. The node categorization is more complicated then the categorization in Table 3.5

since there are 8 different frequency levels and thus 56 different node types.

Although it is hard to make a concrete conclusion without CPU-level power data, our mea-

surements show that that processors’ frequency is likely throttled down due to the power

limit. Increase in temperature increases the power consumption; however, the lack of correla-

tion between the temperature and frequency suggests the frequency variation is not directly

due to temperature-driven throttling.

A few months after these measurements are made on Edison, NERSC’s new generation

platform, Cori, have become available with Intel Haswell and Knights Landing processors

supporting new power measurement features. Unlike Edison, Cori supports chip power, as

well as memory power measurements that are available to all users of the supercomputer.

Therefore, we repeated our Edison experiments on Cori, especially to find an answer to the
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question: is power the reason of the processors to get throttled down?

Figure 3.9 shows the power and frequency correlation of power and frequency using 512

Haswell chips. The chips that have lower frequency than the maximum frequency of 2.5 GHz

consume 134 W which is just 1 W under the TDP of the chip, 135 W. Figure 3.9 shows the

temperature and power correlation of the same chips and the processors that hit the power

cap show a wide range of temperatures from 56 to 79◦C. There is no obvious correlation

between temperature and power. This allows us to conclude that temperature is not the

sole reason for frequency throttling, hitting the power cap can also be a factor. Note that the

performance variation among the Haswell chips on Cori with the MKL-DGEMM benchmark

is 14.76% which is not much different than the earlier generation processors.
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Figure 3.9: Processors that reach TDP drops their frequency and stay at 134 W level, just
under 1 W than TDP. 512 Haswell processors in Cori platform are shown.
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Figure 3.10: The processors that hit the power cap, the ones circled, have a wide range of
temperatures similar to the ones that do not hit. Temperature does not directly correlate
with power.

3.4 Related Work

There are several published evaluations of earlier generations of Intel’s Turbo Boost tech-

nology. Charles et al. show that Turbo Boost increases the performance of the applications,

but it can increase the power consumption more than the performance benefit it gives [37].

Especially with memory intensive applications, the performance benefit coming from CPU

frequency boost may not be significant. This means that performance per watt may not be

better under Turbo Boost for all workloads. Balakrishnan et al. also show that for some

benchmarks, performance per watt under Turbo Boost is worse [38]. On the other hand,

Kumar et al. show [39] performance per watt is higher in most situations when compared

with symmetric multi-core processors. Regardless of the conclusion of the performance per

watt metric under Turbo Boost, none of these studies examine the variability caused by

Turbo Boost on HPC platforms with thousands of processors working in concert.

Rountree et al. show that there is variation and hence performance degradation in appli-

cations under power capping [40, 41]. However, they do not study variation in the absence

of power capping below TDP or under Turbo Boost.
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Application performance on the Edison supercomputer under different CPU frequency

settings has been studied before [42]. Austin et al. show energy optimal CPU frequency

points for various applications. However they do not analyze CPU frequency variation in

their study and only focus on fixed frequencies below nominal speed.

Variation within a multicore processor has been demonstrated by Dighe et al [43]. Various

different variation-aware thread mapping and scheduling algorithms have been proposed for

multicore processors to minimize power or maximize performance with and without a power

bugdet [44]. Langer and Totoni propose a variation aware scheduling algorithm [45,46] with

an integer linear programming approach to find the best task to core match in a simulated

environment with variation. Hammouda et al. propose noise tolerant stencil algorithms

to tolerate the performance variations caused by various sources including dynamic power

management, cache performance, and OS jitter [47].

There have been various other studies showing the thermal variation among supercom-

puter architectures [48,49]. Moreover, there are various studies to mitigate the temperature

variation or hot spots among cores or processors. Menon et al. demonstrate a thermal

aware load balancer technique using task migration to remove the hot-spots in HPC data

centers [13]. Wang et al. propose thermal aware workload scheduling technique for green

data centers [50]. Choi et al. propose a thermal aware task scheduling technique to reduce

the temperature of the cores within a processor [51].

To the best of our knowledge, there is no other work which comprehensively measures and

analyzes performance, frequency, temperature, and power variation among nominally equal

processors under Turbo Boost at large scale.

3.5 Summary

In this chapter, we have analyzed the performance variation caused by dynamic overclocking

on top supercomputing platforms. We have shown the performance degradation caused

by frequency variation on math kernels and HPC applications. Processors have dynamic

overclocking features in order to take advantage of headroom in the operating temperature

and power consumption, and to adjust their voltage and frequency based on their thermal
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and energy constraints. If the current trend continues in the future, then the observed

variation may increase further at larger scales. Turning off these dynamic features may not

be the ideal solution to mitigate the variation because it can sacrifice available performance.

We should look for ways to mitigate variation from the application software, as we do in the

next chapter.
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CHAPTER 4
Mitigating Frequency Variation

For decades, the goal of HPC has primarily been to obtain better performance. Although

this trend had started to change when the scale and the power consumption of data centers

kept increasing significantly. In this chapter, we analyze potential solutions to mitigate

the frequency variation problem from a performance perspective. Without taking power or

energy efficiency into the picture, we exclusively focus on how to increase performance of

applications where the proccessors have different frequency levels that might dynamically

change. The solutions we propose do not all require power related measurement or control

rights. These solutions are: disabling Turbo Boost, replacing slow chips, leaving some cores

idle, and dynamic task redistribution (i.e., speed aware load balancing) with Charm++ RTS.

The main contributions of this work include:

• A demonstration of the performance degradation of HPC applications caused by vari-

ation

• Analysis of potential solutions to mitigate effects of in-homogeneity: disabling Turbo

Boost, replacing slow chips, idling cores, and dynamic task redistribution

• A speed-aware dynamic task redistribution technique which improves performance up

to 18%

Runtime-based load balancing solutions to mitigate OS related performance variabilities

have been proposed before, for example, with the Legion runtime [52]. However, to the

best of our knowledge, a runtime based speed-aware load balancing strategy have not been
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evaluated before.

4.1 Disable Turbo Boost

Turbo Boost enables the cores of Edison to speed up to 2.8 GHz when all cores are active. In

this section, we show the performance of the applications when the frequency is fixed to run

at 2.4 GHz using the aprun --pstate option (note that 2.4 GHz is the maximum possible

non-Turbo frequency to set the processors at). Setting the frequency at 2.4 GHz removes

the frequency variation among the chips and makes every chip run at 2.4 GHz.

Table 4.1: Percentage slowdown of applications when the frequency is fixed at maximum
frequency of 2.4GHz

Application % Slowdown

MKL-DGEMM 9.1

NAIVE-DGEMM 18.1

LEANMD 16.8

JACOBI2D 4.2

Our measurements show that with Turbo Boost enabled, even the slowest and the most

variable chips are consistently running beyond the nominal clock speed of 2.4 GHz and the

applications definitely have a performance gain. Table 4.1 shows the slowdown of the applica-

tions when the frequency is fixed at 2.4 GHz compared to the default case where Turbo Boost

is on. All of the applications show significant performance degradation. NAIVE-DGEMM

gets 18.1% performance degradation whereas MKL-DGEMM gets 9.1%. The applications

that are running at higher frequency levels with Turbo-Boost on (i.e., NAIVE-DGEMM),

shows more slowdown when Turbo-Boost is disabled (i.e., compared to MKL-DGEMM).

LEANMD gets 16.8% because of its computational intensity, whereas the application has

a comparatively larger memory access latency and therefore the slowdown is only 4.3%.

Memory bound applications are less affected by disabling Turbo-Boost.

As all applications lose performance with Turbo Boost off, disabling Turbo Boost is not

an ideal solution in terms of performance even though it removes the frequency variation. In
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fact, newer generation processors are becoming more dynamic. We have shown an example

of this in the previous section where newer generation Ivy Bridge processors have a wider

frequency boost range than older generation Sandy Bridge processors. Processors can take

advantage of power and thermal headroom to improve performance by opportunistically

adjusting their voltage and frequency based on embedded constraints. Instead of disabling

these dynamic features, software and applications should be able to work well with these

architectural features.

4.2 Replacing Slow Chips

In this section, we analyze replacing the chips that are running at a lower frequency as a

solution to mitigate the performance variation. We seek answer to the question: How many

chips should we replace to get x% performance benefit? Figure 4.1 shows the answer for

each application.

The left plot shows how average frequency of all chips changes with replacing the slow

chips (i.e., not running at 2.8 GHz) with fast ones (i.e., running at 2.8 GHz) starting from

the slowest. The right plot shows the percentage speedup. The speedup here is calculated by

the improvement in the minimum frequency of all chips. We use the minimum number here

since the slowest chip will be the bottleneck in a synchronized application without dynamic

load balancing.

The number of chips to replace to get a given level of performance benefit varies from ap-

plication to application. MKL-DGEMM requires many more chips to be replaced compared

to the other applications. Getting all of the chips running at 2.8GHz requires a significant

number of the chips to be replaced and therefore is not feasible. However, replacing 50 chips,

which is around 5% of the chips, would give an instant 5% speedup for MKL-DGEMM and

NAIVE-DGEMM applications. There is a trade-off between the replacement cost and the

performance benefit which varies from application to application.
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Figure 4.1: How many chips we should replace to get performance benefit?
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4.3 Leaving cores idle

The mitigation of sluggishness and variability when leaving a core idle (cf. Table 3.2) suggests

that this could be done intentionally as a means to regain threatened performance. A chip

with one or more cores idle would systematically have more head-room in power consumption,

heat output, and cache capacity. Experiments with a core idle in one chip per node show

measured cache misses on each core that were much lower than on a fully occupied chip. This

would also imply less power consumed by the memory controller (and in DRAM, though

that does not presently impact CPU frequency).

This trade-off would not be generally worthwhile on Edison for CPU-bound applications

optimizing for time-to-completion. In Figure 4.2, we calculate the aggregate throughput

if one core from each of the chips running below the highest frequency are selectively left

idle, starting from the slowest. The average frequency increases almost to the maximum

frequency with selective idling. Still, the aggregate throughput, is higher for all applications

when there is no idling.

We also experimented with leaving different core ID’s within chips idle to see if the selection

matters, but we did not observe much difference. So rather than one specific core slowing

down its chip, entire chips seem to be uniformly more or less efficient.

On other systems, with different core densities, clock speeds, and the prevalence of slow

and variable chips, this calculation could turn out differently. Given how close this trade-off

is in this setting, it’s worth considering situations in which the trade-off may differ. An

application and problem for which the working set fits better in cache or the memory bus

is less contended with one less working core might get higher performance by idling one or

more cores. To consider those effects, we also calculate the throughput with real execution

time instead of frequency-based throughput. In this case, MKL-DGEMM shows a small

increase in the throughput, up to 0.05%, when 1 core from each of the 20 chips that get

the greatest benefit is left idle. When more chips are left idle, the throughput starts falling

down again. Thus, the benefit is negligible.

On a system that charged for energy consumption instead of or in addition to time, leaving

cores idle can reduce total cost - especially if one can select the least efficient cores [46]. A
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Figure 4.2: Throughput of all cores when 1 core is left idle from chips starting from the
slowest chip.

system provisioned with more nodes than the facility can fully power and cool could be

used more fully by leaving cores idle to stay under the effective power cap [11]. Reducing

the power drawn by each chip would also reduce their operating temperature, potentially

lowering fault rates and thus improving overall time to completion [14].

4.4 Dynamic Work Redistribution

Dynamic introspective load balancing and work stealing can fully address the observed vari-

ation at a cost of overhead and implementation complexity. The load balancing algorithms

should take the CPU frequency and performance of the cores into account when distributing

the work among the cores. The load balancing can be done by the application itself or by a

run-time system. Moving only a small portion of the workload at run-time with an intelli-

gent load balancing strategy can be sufficient to compensate for the performance variation;

therefore, the load balancing overhead could be negligible or lower than the benefit obtained

from re-balancing the application.

Algorithm 1 presents a refinement based load balancing algorithm, RefineLB, available

60



in the Charm++ framework [53]. In Charm++, the work is represented as C++ objects

which can migrate from processor to processor. This algorithm moves away objects from the

most overloaded processors (defined as heavyProcs in algorithm 1) to the least overloaded

ones (lightProcs) until the overloaded processors’ load reaches the average load. A processor

is considered overloaded if its load is more than a threshold ratio above the average load of

the whole set of processors. This threshold value is typically set to 1.002. The main goal of

the algorithm is to balance the load with a minimum number of objects to be migrated.

Algorithm 1 Refinement Load Balancing Algorithm

Idea: Move heaviest object to lightest processor until the processor’s load reachs the
average load
Input: Vo (set of objects), Vp (set of processors)
Result: Map: Vo → Vp (An object mapping)

1: Heap heavyProcs = getHeavyProcs(Vp)
2: Set lightProcs = getLightProcs(Vp)
3: while heavyProcs.size() do
4: donor = heavyProcs.deleteMax()
5: while (lightProc = ligthProcs.next()) do
6: obj, lightProc = getBestProcAndObj(donor, Vo)
7: if (obj.load+lightProc.load<avgLoad) break
8: end while
9: deAssign(obj, donor)

10: assign(obj, lightProc)
11: end while

Algorithm 2 Speed-Aware Refinement Algorithm

Idea: When moving objects between processors, take processor speed into account.
Input: Sp (Speed of processor p)
Replace line 7 in Algorithm 1 with the following:

7: if (obj.load × Sdonor ÷ SlightProc + lightProc.load < avgLoad) break

The processor load is calculated by past execution time information of each object on the

processor and the background load collected by the Charm++ framework. However, when

moving one object from a heavy to light processor, the algorithm does not take into account

speed of the processors, assuming processor speeds are equal. An object’s load can change as

a result of migration (i.e, can take less time when it’s moved from a slow processor to a fast
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Figure 4.3: Speedup of RefineLB and Speed-aware RefineLB compared to no load balancing
case.

processor). Therefore, the object’s estimated load needs to be scaled with the speed of the

processors. Algorithm 7 shows the necessary change in to make in the RefineLB algorithm

to make it speed-aware. This scaling is done using the frequency of the processors; a more

advanced method can use instructions per cycle or a more detailed performance model, such

as a frequency-dependent Roofline [54], to get a better estimation.

In Figure 4.3, we show the performance of RefineLB and our speed-aware RefineLB com-

pared to no load balancing with JACOBI2D and LEANMD applications running on 6 nodes.

Note that these applications have no inherent load imbalance, so each core initially has

an equal workload. Load balancing with RefineLB improves the performance by 6% in

LEANMD and 12% in JACOBI2D compared to no load balancing. Moreover, speed-aware

RefineLB outperforms RefineLB by 2% in LEANMD and 6% in JACOBI2D. A better load

estimation with speed-awareness results in more object migration from slow chips to the fast

ones compared to non-speed aware version. Load balancing has overheads of measurement,

decision making and the actual migration. Since the number of migrated objects are a small

portion of the total number of objects, the overhead is not too much and will be compensated

after a few iterations.
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Figure 4.4: Homogeneous Processors under Turbo-Boost using Speed-aware RefineLB

In Figure 4.4, we show our speed-aware load balancer can play an effective role where

the frequency variation between processors increases over time as the processor continues

running. Here, we run Jacobi-2D with 24000 grid size and 400 block size on 2 same-model

processor nodes where one of the nodes keeps running at 2.4 GHz, while the other node

slowly throttles down from 2.4 GHz to 1.8 GHz due to its high temperature. During every

iteration, the fast node has finishes its computation earlier and it has more time to cool-down

until the barrier synchronization after each iteration. Whereas the slow node is overloaded

and it has no time to cool-down. The load balancer is triggered every 300 steps. Since

the slow processor is throttled-down more and more over time, one load balancing is not

enough to balance the load. Only after the first three migrations, performance stabilizes.

Compared to execution time before the first load balancer, we get 30% improvement after

last migration.

The overhead of the load balancing does not exceed 2 seconds in all experiments shown.

It is a small overhead which is compensated after a few iterations. For larger node-counts,

more scalable load balancing algorithms can be made speed-aware in a similar way we made

RefineLB speed-aware.
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4.4.1 Speed-Aware Load Balancer in a Heterogeneous System

In this section, we evaluate our speed-aware load balancing technique under a system where

the processor speeds are different inherently because of their models. We use a heterogeneous

cluster configuration where the processor types are different (i.e., half of them have 2.0 GHz

base clock speed and the other half has 2.4 GHz). We use an 80-node local cluster at UIUC.

The hardware details of the processors can be found in Table 7.1.

Table 4.2: Platform hardware details

Processor Intel Xeon E5-2620 Intel Xeon X3430

Clock Speed 2.0 GHz 2.4 GHz

Max Turbo Speed 2.5 GHz 2.8 GHz

Cores 6 4

Cache size(L3) 15MB 8MB

In Figure 4.5, we evaluate RefineLB and Speed-aware RefineLB performance against no

load balancing performance. We use Jacobi-2D application with grid size as 20000 and block

size as 200.

Figure 4.5: RefineLB and Speed-aware RefineLB performance compared to without load
balancing case
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Table 4.3: Object Migration with Different Load Balancers

Load Balancer # Migrations (out of 10000)

RefineLB 95

Speed-aware RefineLB 204

RefineLB improves the performance by 4% and 11% on 2 and 4 nodes (processors) re-

spectively. Speed-aware version performs around 5% and 3% better compared to RefineLB

. By taking processor clock speed into consideration and combining it with history work-

load information, Speed-aware RefineLB has a more precise estimation of resulted workload

of target processor after migration. Therefore, it can move objects more aggressively than

non-speed-aware version. Speed-aware RefineLB migrates 204 whereas RefineLB migrates

95 objects out of 10000 objects from the fast processors to the slow processors.

Problem Size Effect

The different problem size of Jacobi-2D application varies the intensity of computation,

communication and memory accesses. In the two sets of experiments below, we show that

depending on the grid and block sizes, the benefit of load balancing changes.

Different Grid Sizes: The grid size is the total workload size of the array before divided

into smaller blocks. We fix block size at 200 and vary grid size from 16000 to 24000 which is

around 1.9 GB to 4.2 GB of data in total. Figure 4.7a shows effect of grid size with our speed-

aware load balancer. We show the processor frequency behavior over iterations in Figure 4.7b

and 4.7c. When the grid size is 16000, it takes 1.47% longer to finish execution, the load

balancer has negative effect on performance and both processors run close to their peak

speed. Smaller grid size does not require much computation between two synchronizations

(iterations), and processors turn into communication stage before heat-up. The reason of

the slowdown could be the higher communication overhead when the objects are moved from

slow to fast processor. When grid size is set at 20,000 and 24,000, we have 8.51% and 3.03%

performance gain respectively. The frequency of fast node does not change over time, while

slow node’s frequency drops after about 180 iterations from 2.4 GHz to 2.0 GHz. Larger
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grid size introduces more workload for both processors and leads to frequency throttling.

On one hand, the fast node only needs to spend shorter time to finish the work and then

it gains some time to cool-down before synchronization. On the other hand, the slow node

has no time to only cool-down. When the grid size increases to 24000 load balancer works

less effectively because of the increased memory access latency.

Different Block Sizes: The block size determines the workload of each migratable

object. We show speedup ratios in Figure 4.8a with grid size fixed at 20000 and block size

varying from 100 to 800. Processor frequency behavior with block size 100 and 800 are

shown in Figure 4.8b and Figure 4.8c respectively. The highest performance improvement

is 28% when block size is set as 100. Performance gains decreases to 8.2% and 2.5% when

block size is increased to 200 and 400. This can be explained as the following. Firstly, the

system creates more objects with smaller block size, resulting in heavier background load.

Secondly, the smaller block size is more flexible to migrate. In our load balancer algorithm,

we conservatively compute workload of the target processor after object migration. Larger

objects tend to make target processor overloaded and less likely to be moved. Moreover,

when the block size is 800, we see 12.7% performance improvement and we see objects moved

from the fast node to the slow node. This inverse behavior could be caused by the different

cache size of the processors. Overall, load balancing still has a significant performance

benefit.

66



(a) 12 cores

(b) 24 cores

Figure 4.6: Comparing RefineLB and Speed-aware RefineLB
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(a) Speedup with different grid sizes

(b) Frequency when grid size=16000 (c) Frequency when grid size=20000

Figure 4.7: Speed-aware RefineLB performance on Jacobi-2D with different grid sizes.
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(a) Speedup with different block sizes

(b) Frequency when block size=100 (c) Frequency when block size=800

Figure 4.8: Speed-aware RefineLB performance on Jacobi-2D with varying block size. Load
balancer is triggered at iteration 800.
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4.5 Summary

In this chapter, we evaluate four different techniques to mitigate the frequency variation:

disabling Turbo Boost, replacing slow chips, leaving cores idle, and dynamic load balancing.

We conclude that speed-aware dynamic load balancing is the most feasible solution giving

the best performance and it does not require any change in the machine infrastructure.

Speed-aware load balancing can be both used in platforms where processors have the same

or different nominal clock frequencies (i.e., frequency variation is caused either by dynamic

overclocking or due to different processor types). We show how a dynamic runtime can cope

with the dynamic, unpredictable behavior of the chips.

For a future direction, speed-aware dynamic load balancing can be improved by taking

into account memory and compute load of Charm++ objects separately. In the current

infrastructure, the load of the objects are represented by their execution time and our speed-

aware load balacing strategy scales the execution time with the speed of the processors.

This gives a good enough estimation for most scenarios, especially for compute intensive

applications. However, for memory intensive applications, where the load is dominated by

the memory load times, the estimation will not be correct since frequency only effects the

CPU load whereas the memory load time remains the same even if the CPU speeds are

different. For this reason Charm++ infrastructure can be changed to track the memory and

computational load of the processors independently.
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CHAPTER 5
Mitigating Temperature Variation

Increasing scale of data centers and the density of server nodes pose significant challenges in

producing power and energy efficient cooling infrastructures. Current fan based air cooling

systems have significant inefficiencies in their operation causing power peaks in fan power

consumption and temperature variations among cores. In this chapter, we identify the cause

these problems and propose proactive cooling mechanisms to mitigate the power peaks and

temperature variations. An accurate temperature prediction model lies behind the basis

of our solutions. We use a neural network-based modeling approach for predicting core

temperatures of different workloads, under different core frequencies, fan speed levels, and

ambient temperatures. The model provides guidance for our proactive cooling mechanisms.

We propose a preemptive fan control mechanism that can remove the power peaks in fan

power consumption and reduce the maximum cooling power by 53% on average as well as

energy consumption up to 22%. Moreover, through our decoupled fan control method and

thermal-aware load balancing algorithm, we show that temperature variations in large scale

platforms can be reduced from 25◦C to 2◦C, making cooling systems more efficient with

negligible performance overhead.

Given the 20 MW power limit for an exascale system set by the DOE, reducing the power

consumption of high performance data centers has become an important challenge [2]. More-

over, some supercomputing facilities, such as ORNL that hosts the largest supercomputer

in the United States – Titan, is charged based on its maximum power usage [4]. This has
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increased the importance of making optimizations for power-constrained systems, improving

the performance under a strict power budget and similar power focused research [11,22,55]

compared to prior focus on energy optimizations.

Up to half of the data center power consumption can be cooling costs [56]. Addressing

data center cooling costs is becoming more challenging as supercomputers start using high-

density, fat nodes with high core counts and accelerators such as GPGPUs. Moreover, the

pressure of reducing the power costs and carbon footprint without sacrificing from application

performance has driven these systems to operate under higher ambient and liquid inlet

temperatures [57–59].

Thermal-aware workload management strategies can improve cooling efficiency, increase

the life-time of the chips, and reduce the risk of over-heating-related system failures [14,

60, 61]. However, implementing these strategies requires an accurate temperature model of

the system. Accurately predicting core temperatures is difficult due to multiple factors in-

cluding sophisticated workloads, complex thermodynamics within the data center, physical

layout of each core/node, and CMOS manufacturing differences. Some previous model-

based approaches to temperature prediction assume that all instances of a given hardware

component behave similarly [62, 63]. This assumption significantly limits the prediction ac-

curacy, because tuning model parameters for individual hardware instances quickly becomes

impractical.

We propose a learning-based temperature prediction modeling approach that can capture

complex parameters that cause on-chip temperature variations using a neural network (NN).

Figure 5.1 shows our approach which consists of four steps: (1) monitor and collect core

temperatures data under different utilization rates, core frequencies, fan speed, ambient

temperatures (2) pre-process data, (3) train the neural network model, and (4) deploy the

neural network to provide core temperature predictions. We construct the neural network

model for each chip independently. This provides more accurate temperature predictions

than existing model-based approaches. Furthermore, we study different neural-network back-

propagation algorithms and neural network structures such as the number of layers and the

number of neurons to gain an understanding of the memory and computation requirements

of the neural network deployment.
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Figure 5.1: Neural network-based thermal prediction approach.

Having an accurate temperature prediction model enables us to implement different proac-

tive cooling mechanisms that can reduce power and energy. First, we identify inefficiencies

in existing air cooling control systems. These deficiencies include reactive fan behavior and

temperature variations. We analyze temperature variations within a chip and across chips

using more than 1,000 cores in two different architectures. Finally, we propose model-guided

proactive mechanisms that mitigate these problems.

The main contributions of this chapter are the following:

• We propose a simple yet powerful neural network-based temperature prediction model

that can predict steady state core temperatures accurately under different core utilization

levels, frequency levels, and fan speeds.

• We propose a proactive fan control mechanism, precooling, that removes the power oscil-

lations and can reduce the maximum fan power by 45.6% on average as well as energy

consumption by 9.4% by predicting core temperatures.

• We analyze inter-chip and intra-chip temperature variations in two different architectures

using 1,000 cores with 25◦C variation. We show that decoupling the fans reduces the
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variation down to 10◦C, the power by additional 7.7%, and the energy by 13%. We show

that the remaining 10◦C is intra-chip variation and can be reduced to 2◦C via thermal-

aware load balancing.

5.1 Motivation and Observations

In this section, we share some observations about the cooling fans in the server nodes that set

the basis of our motivation in this chapter. Cooling fans are used to reduce the temperature of

hardware components in the servers by drawing cool air from outside into the server node and

moving heat away from the heat sinks. The particular server nodes we study in this chapter

are IBM POWER8 nodes with four individual fans at the edge of the case as illustrated in

Figure 5.2. These four fans are responsible for cooling the two chips, memory buffers, and

GPUs in the server node. If the temperature of any of these hardware components hits their

threshold (73◦C, 79◦C, and 74◦C, respectively), then the fans increase their speed rapidly

in a reactive way. If all of the components are under their threshold, then fan speed is

calculated based on the ambient temperature. When analyzing the fans, we observe three

critical behaviors: (1) synchronous control, (2) cubic polynomial exponential increase in

power, and (3) oscillations in speed.

Figure 5.2: POWER8 server node architecture illustration.

Synchronous Control: The four individual fans in the node operate synchronously (i.e.,

they have the same speed in terms of Revolutions Per Minute (RPMs)). However, because
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of the physical layout Fans 1 and 2 have more cooling effect on Chip 1 and Fans 3 and 4 have

more effect on Chip 2. Figure 5.3 shows the temperature variations among the cores within

a compute node. There is an 8◦C difference between state temperatures of the cores with

maximum being 72◦C while running a balanced benchmark. The fans keep the maximum

temperature of the cores right under the threshold of 73◦C, however Chip 1 is over-cooled

8◦C with maximum temperature of 64◦C. Synchronous control of the fans can result in even

larger with an imbalanced workload. For example, when the workload is running on Chip

2 and Chip 1 is left idle, then the temperature difference among the cores increases up to

25◦C. When trying to cool down the active chip, the idle chip is over-cooled.

In summary, “hot” cores can cause the cooling system to activate unnecessarily and result

in over-cooling surrounding hardware. “Hot” chips can have the same effect, and we analyze

the temperature variations at larger scale in Section 5.3. Low core temperatures have the

potential benefit of reducing fault rates [14]. In this chapter, we consider the cores under

a certain threshold (i.e., fan kick-off threshold) to be equal in terms of reliability and focus

our evaluation on power and energy consumption.
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Figure 5.3: There is an 8◦C steady-state temperature variation among the cores within a
node running a balanced benchmark, LeanMD.

Cubic Polynomial Growth in Power: Power consumption of the fans grows cubic

polynomially with respect to fan speed [64]. Figure 5.4 shows the total power of the four

fans at different fan speed levels. We use simple curve fitting to calculate the model function
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parameters shown in the plot. Total power can peak at over 200 W at 10,000 RPM. Even

the bursts with short duration can cause significant power peaks. We show examples of such

scenarios next.
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Figure 5.4: Fan power grows cubic polynomially with respect to fan speed.
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Figure 5.5: Fans show different behavior for different applications.

Oscillations in Fan Speed: The reactive behavior of the fans result in oscillations in fan

speed and power. Figure 5.6 shows this behavior over time under different CPU utilization

levels. We use a synthetic workload generator which starts at around 300 seconds. The lower

utilization levels shows lower peaks in fan power, whereas higher levels cause bigger jumps.
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Figure 5.6: Plots show fan power (top) and core temperature (bottom) behavior from 10%
to 100% CPU utilization levels. Purple and green lines in the bottom plots represent cores
in Chip-1 and Chip-2 respectively.

In the 100% CPU utilization case, the total fan power peaks to 81W from idle power of

29W, and settles at 40W which is half of the maximum fan power. This behavior can differ

based on the application, as it can be seen in Figure 5.5. DGEMM has the least peaks since

its running on 20 threads, whereas the other benchmarks are using all 160 SMT threads on

the node. kNeighbor and LeanMD benchmarks are computationally intensive and fans are

able to stabilize after a single peak. On the other hand, Stencil3D is a memory intensive

benchmark and fans do not seem to be able stabilize even after 15 minutes of the application

running.

This oscillatory behavior has multiple downsides. First, the maximum power consumption
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is an important cost metric for large data centers and since the fans settle much lower than

their maximum power, the budgeted power will not be fully used. Second, the oscillations

can cause fan wear and reduce hardware lifetime. Finally, making power or temperature

predictions and creating power or temperature profiles for applications becomes more diffi-

cult.

5.2 Neural Network-Based Temperature Prediction Model

In this section, we describe our experimental setup and provide the details of our temper-

ature prediction model and its validation. Our model is a proof-of-concept prototype that

can do fine-grained temperature predictions for our proactive cooling mechanisms, which is

described later in Section 5.3.

5.2.1 Experimental Setup

We use an IBM cluster with POWER8 processors running at 3.5 GHz nominal clock speed in

our experiments. Each node in the cluster has two sockets. Each socket has 10 physical cores.

Each core has 8 hardware threads. The On-Chip Controller (OCC) provides temperature and

power data. The Baseboard Management Controller (BMC) provides fan speed data and fan

speed control. The MATLAB Neural Network Toolbox [65] is used for the modeling. Then,

the neural network parameters such as weights, biases, minimum and maximum output

values are extracted, and transferred into parameters stored in the Charm++ RTS for load

balancing. The ambient temperature in the cluster room measured to be between 19◦C-23◦C.

Benchmarks: We use a set of benchmarks that exhibit different characteristics for

training and performing our experiments. These consist of compute intensive applications

DGEMM and LeanMD, a memory intensive application Stencil3D, a communication inten-

sive application kNeighbor, and lookbusy synthetic workload generator. Stencil3D is a 7-point

stencil application based on a 3D grid using the Jacobi kernel. DGEMM is a naive 3-loop

double precision matrix multiply code. LeanMD is the mini-app version of the molecular

dynamics application NAMD [66]. It simulates the behavior of atoms based on the Lennard-
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Jones potential in a 3D space consisting of atoms which are divided into cells with short

and long-range force calculations. kNeighbor is a micro-benchmark with a near-neighbor

communication pattern where each object exchanges fixed-sized messages with a fixed set of

fourteen neighbors in every iteration. lookbusy generates random instructions for Linux sys-

tems and is useful for analyzing different scenarios easily as custom custom CPU utilization

levels can be specified for each core [67].

5.2.2 Model Description and Validation

The computational neural network is inspired by biological neural networks to predict or

approximate functions that can depend on a large number of inputs. There are two phases

in using a neural network: training and deployment. During the training phase, neurons in

each layer are adjusted iteratively using training data. Then the trained neurons are used

to predict the new output in the deployment phase. Figure 5.1 shows our neural network

design. First, input data is pre-processed because training data selection and specific input

variables have a large impact on the overall accuracy of the temperature prediction. We used

stabilized temperatures for our model as we would like to predict the stable state where the

heat extraction is same as heat generation. Second, pre-processed input data is fed into the

input layer of the neural network. The input layer consists of core utilization rate, power,

fan speeds, and ambient temperature. The output layer consists of core temperatures. After

the training phase, the neural network is deployed to provide core temperature predictions.

The information flow of the training phase and the deployment phase is shown in Figure 5.1

as the solid blue line and dotted red line, respectively.

In a neural network, each connection between neighboring layers has a weight to scale

data and a bias that allows shifting of the activation function. Data (with 9 data points)

from the input layer are inserted as inputs to the next consecutive layers (hidden layers).

Then the hidden layers (each with 20 nodes) sum the data fed to them, scale (weight) the

data, and process it until the data reaches the last layer (output layer with 10 data points).

9 input data points includes power, core utilization and frequencies, fan speeds, and ambient

temperature. The 10 output data points are core temperature as there are 10 temperature

79



sensors per socket. The weights and biases of one neural network are updated as follows in

the training phase:

wij(k + 1) = wij(k)− η δek
δwij

(5.1)

η is the learning rate parameter, which determines the rate of learning. wij represents the

scalar value of weight on the connection from layer i to j. ek represents the error of NN at the

kth iteration. δek/δwij determines the weighted search direction for this iterative method.

The weights and biases of the network are updated only after the entire training set has

been applied to the network. 90% of the randomly selected data is used as a training set

and 10% is used as a validation set. An entire data set was collected for different utilization

rates (idle-100%), CPU frequencies (2 - 3.5 GHz), and fan speeds (3300 - 5800 RPM). The

gradients calculated for each training set are added together to determine the change in

weights, and biases. The weights and biases are updated in the direction of the negative

gradient of the performance function. We tried different back-propagation algorithms in

our neural network. Levenberg-Marquardt updates weight and bias values according to the

Levenberg-Marquardt optimization [68]. It is often the fastest back-propagation algorithm,

but it requires more memory than other algorithms. Scaled conjugate gradient updates

weight and bias values according to the scaled conjugate gradient method [69]. Resilient

updates weight and bias values according to the resilient back-propagation algorithm [70].

We use Newton’s Law of Cooling when predicting temperature in the transient state as

follows:

T (t) = Tp + (T0 − Tp)e−kt. (5.2)

T (t) represents the predicted temperature of a CPU in time t in transient state, where Tp and

T0 represent predicted next stable state temperature and current stable state temperature

of the core, respectively. We assume positive constant k does not change for a specific type

of CPU and fan speed, and the ambient temperature does not change either during the

heating/cooling phase.
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Figure 5.7 (a) and (d) shows the Mean Absolute Error (MAE) of using different back

propagation algorithms and using different number of neurons, respectively. MAE is a

good indicator of predictor performance and tends to decrease with the number of training

samples. Our neural network becomes more knowledgeable about the relationship between

temperature changes and resource allocation as it processes more training samples. The

Levenberg-Marquardt algorithm performs best in terms of accuracy (showing minimum mean

error) but has more computational overhead (showing higher execution time for training)

with a larger amount of neurons. Also, Figure 5.7 (c) shows MAE is consistent with all the

cores.

The time elapsed for training is shown in the Figure 5.7 (b) and (e). Scaled conjugate

gradient performs best in terms of computational overhead showing less time for training

than the other algorithms. Because using 20 neurons for the hidden layer does not improve

model accuracy, we used 15 neurons for the hidden layer. We used the Levenberg-Marquardt

back-propagation algorithm because our highest priority is model accuracy. However, scaled

conjugate gradient, or resilient algorithms can be used if learning overhead is a constraint.

We verified the accuracy of neural network approach by repeating the experiment and com-

paring the predicted core temperature over time with the actual core temperature as shown

in Figure 5.7 (f). Our neural network will be able to make accurate predictions despite slight

hardware differences, variable heat, and air circulation patterns (thermodynamic phenom-

ena) of different nodes and, furthermore, regions inside a data center.
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Figure 5.7: (a) Mean absolute error using different back-propagation algorithms; (b) Training
time using different back-propagation algorithms; (c) Mean absolute error per core using
Levenberg-Marquardt algorithm; (d) Mean absolute error using different number of neurons;
(e) Training time using different number of neurons; and (f) Model validation while increasing
CPU frequency. Plots are shown with 95% confidence interval.
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5.3 Model-Guided Proactive Fan Control

The temperature prediction model can be used to implement proactive cooling mechanisms

that mitigate the problems described earlier in Section 5.1. These problems include tem-

perature variations and reactive and oscillatory behavior in fan speed. In this section, we

propose a preemptive fan control mechanism and compare it with two other mechanisms

including the existing reactive control mechanism. Below are the fan control mechanisms we

compare:

1) Reactive Fan Control (Default Mode): This is the existing method used in the

server nodes. As we described in the Section (5.1), the fan speed is determined from core

and ambient temperatures. If any core exceeds the temperature threshold of 73◦C, then

the fans increase their speed to cool down the chips. The floor fan speed, i.e., when all

components are under their threshold, is determined by the ambient temperature. This

approach consumes minimal power if the components are under the threshold. However,

once the cores hit the threshold, then the fans react rapidly. This results in peaks in power

consumption and in certain scenarios such as compute-intensive workloads where the fan

power can triple. The fans can also be triggered by other components such as GPUs or

memory hitting their respective threshold. In our experiments, CPU core temperatures are

the sole reason for fans to trigger.

2) Constant Fan Control: As the name implies, this technique uses a constant fan speed

regardless of the processor utilization or the benchmark running. This constant speed is

sufficient to cool down the most compute-intensive benchmark, therefore it guarantees the

components will operate under the temperature threshold. This constant fan speed can be

determined by running a synthetic benchmark which fully utilizes the CPU or the most

compute-intensive benchmark that is projected to run, and measuring the fan speed that

can keep core temperatures under the threshold. Because this is the worst case, any other

benchmark will be guaranteed to operate under the temperature limit. There are advantages

and disadvantages with this technique. The advantages are the removal of the oscillatory

behavior and a potential reduction in the maximum fan power. The disadvantage is the
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increased overall power and energy consumption, because the cores will be over-cooled when

they are idle or running a non-intensive benchmark.

3) Preemptive Fan Control: This is our model-guided fan control mechanism that pre-

emptively cools the processor before the cores hit the threshold. We also refer to it as

precooling. The idea is conceptually similar to prefetching where the data is brought from

memory before it is used. In precooling, the processor is cooled before the application starts

or the fan speed speed is adjusted for different phases of the application, i.e., before a com-

putationally intensive phase. The precooling speed is determined from the temperature pre-

diction model using some hints about the application profile as we described in Section 5.2.2.

The model determines the steady-state temperatures under different fan speeds. Then, the

desired speed can be set via the job scheduler of the cluster or the runtime system of the

application. The job scheduler can set the precooling speed before the application starts. As

we showed earlier, in the most cases fans are able to find a stable level after one or a few

peaks. A job scheduler approach would eliminate that initial peak for most scenarios. At

the end of the application, the job scheduler sets the speed back to the optimal idle speed.

On the other hand, runtime systems can do more fine-grained fan optimization for appli-

cations that have different phases. The runtime system can detect the start of a different

phase and determine a new optimal fan speed. The phase could be either transitioning from

non-CPU-intensive to high-intensive or vice versa.

In Figure 5.8, we compare the fan power and the core temperatures under these three

cooling control mechanisms using the LeanMD benchmark. At the start, when the cores are

idle, the reactive and preemptive control mechanisms have the same speed and temperatures,

whereas cores under constant fan control are much cooler since fan runs at a higher speed

even when the processor is idle. Before the application start at 100s, preemptive control

starts the cooling process and the fan speed is set to the stable level of the benchmark

using the temperature prediction model. In the reactive mechanism, the fans start after

the maximum core temperature hit the threshold, which is around 15 seconds after the

application start. Only after 300 seconds (5 minutes) from the application start, the fans

gradually lower their speed and stabilize at 4900 RPM and 51W. Preemptive and reactive
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mechanisms converge to the same temperature and power level at around 400s. On the other

hand, constant fan control shows 5◦C lower maximum core temperature. Since we determine

the constant speed for the worst case benchmark in our benchmark set (which is kNeighbor),

it causes over-cooling for the LeanMD benchmark.

Table 5.1: Peak fan power and energy consumption of different fan control mechanisms and
benchmarks.

Reactive Preemptive Constant

DGEMM 61W, 19.4kJ 38W, 17.7kJ 63W, 31.3kJ

Stencil3D 81W, 21.0kJ 42W, 18.7kJ 63W, 31.3kJ

kNeighbor 84W, 29.7kJ 63W, 27.7kJ 63W, 31.3kJ

LeanMD 83W, 26.8kJ 51W, 23.7kJ 63W, 31.3kJ

Table 5.1 shows the maximum power and total energy consumption of the three mecha-

nisms in a 500-second window where the application starts at 100s as shown in Figure 5.8.

Overall, the preemptive mechanism reduces the peak fan power by 48% with DGEMM, 50%

with Stencil3D, 25% with kNeighbor, and 39% with LeandMD compared to the reactive

mechanism. Constant fan control is able to reduce the peak fan power at most by 25%, but

it increases the energy consumption by 61% which is quite significant and undesirable. In

short, preemptive cooling mechanism provides the minimum power and energy in all cases.

We have also observed reduction in chip’s maximum power consumption due to the reduc-

tion in the peak temperature of the cores in preemptive and constant fan control. However,

because the reduction is not significant (just a few watts), we are not including it in our

results.

After showing the benefits on one node, next we look at the fan behavior on 90 nodes

and how much preemptive cooling can help at large scale. Figure 5.9 shows the maximum

and stable fan power of 90 nodes running the LeanMD benchmark. The difference between

maximum and stable power is the savings that preemptive cooling can provide for each node.

The reason that each node has a different fan power despite running the same benchmark

is because of the temperature variations across the nodes. We will provide a temperature

analysis and address this issue later in this section.
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When to start precooling?

A critical factor in precooling is to determine when precooling should start. Is it before the

application starts, when the application starts, or even after the application starts? How

many seconds before or after the application starts? When the CPU is transitioning from a

low-utilization state to high-utilization state, it is important to have sufficient time to cool

the cores enough. This is not as critical when the CPU is transitioning from a high-utilization

state to low-utilization state, since the fans are going to be set to a lower level and delay in

setting the new level will not harm the cores but only cause minimal energy loss when com-

pared with the optimal case. Figure 5.10 shows that precooling needs to start within a few

seconds after the application start at the latest. The window can be extended by a few sec-

onds more if the application is not as intense and the temperatures are not increasing rapidly.

So far, we have shown how preemptive fan control can remove fan oscillations and power

peaks. Next, we are going to analyze and mitigate the temperature variation problem by

decoupling the fans.

Decoupling the Fans

The four fans in the server node change their speed synchronously, however each of the

individual fans has a different cooling effect on the two chips because of the physical layout,

which can be seen in earlier Figure 5.2. The fans are more effective in cooling closer chips. If

the fans are decoupled (i.e., controlled independently), then temperature variations can be

reduced and the fans could consume less power and energy. To evaluate the potential benefits

of decoupling the fans, we first analyze temperature variations in large scale. Figure 5.11

shows temperature distribution of 1,800 cores in two different platforms: Cori and Minsky.

Cori has Intel Haswell generation processors with 36 cores per node, and Minsky has IBM

POWER8 processors with 20 cores per node. Our goal is not to compare the cooling efficiency

of one platform to another. We are simply showing the significance of the temperature

variation problem and that it is not unique to a specific platform. The rest of our experiments

are done solely on Minsky. The maximum core-to-core temperature difference is 22◦C for

Cori and 25◦C for Minsky. Figure 5.12 shows the temperature distribution of the cores

on Minsky using three other benchmarks. While it may seem a surprise that all of the
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Table 5.2: Decoupling the left two and the right two fans reduces chip-to-chip temperature
variations, power, and energy consumption.

LeanMD Synchronous Decoupled

Fan Speeds (RPM) 4900, 4900 3900, 4900

Max Temp Chip 1, 2(C) 63, 71 70, 71

Temp Variation(C) 8 5

Power (W) 51 44

Energy (kJ) 23.7 20.6

benchmarks show a similar temperature distribution, there are two main reasons this. First,

all of the benchmarks use the cores in a balanced manner. Second, all of the benchmarks

exceed the fan kick-off threshold, therefore the fans stabilize the core temperatures optimally

just below the threshold. So, it is expected to see a similar temperature distribution.

The 25◦C variation on Minsky can be partially prevented by decoupling the fans. We have

observed that the left two fans affect Chip 1 and the right two fans affect Chip 2 most signif-

icantly. The effect on the diagonal chips are minimal. Therefore, we decouple the control of

the left two fans and right two fans from each other and evaluate potential power reductions.

Figure 5.13 shows the new temperature distribution of the cores after fans are decoupled.

The maximum temperature variation is reduced from 25◦C to 12◦C with the lowest temper-

ature of 64◦C. The remaining variation is intra-chip variation that fan decoupling cannot

resolve. Figure 5.14 shows the distribution of intra-chip temperature variation. While the

majority of the chips have less than 6◦C temperature difference among their cores, the range

can go up to 10◦C. We analyze ways to mitigate the intra-chip temperature variation, and

the potential benefits in the next section (5.4).

Table 5.3: Fan Power Reduction in Large Scale

Optimization
Benchmarks DGEMM Stencil3D kNeighbor LeanMD Average

Reactive Fan Control 5868 W 13433 W 6769 W 6770 W 8210 W

Preemptive Fan Control 3893 W 8526 W 4381 W 4224 W 5256 W

Preemptive and Decoupled Fan Control 3179 W 7972 W 3765 W 3569 W 4621 W

Total Power Reduction (%) 45.8 59.3 55.6 52.7 53.3

Table 5.2 shows various node parameters when the fans are decoupled. First, the left two
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fans are now running at 1,000 RPM less, and this results in 6W reduction in the stable

fan power. Power reduction also results in less energy consumption. The maximum core

temperature in Chip 1 is increased, but it is still kept under the threshold. In-node tempera-

ture variation reduces from 8 to 5◦C. The remaining 5◦C temperature variation is intra-chip

variation that decoupling cannot mitigate.

To summarize, Table 5.3 shows the cumulative power consumption of the 90 nodes under

reactive control, preemptive control, and decoupled control. On average, preemptive and

decoupled fan control methods can reduce the maximum power by 53.3% (45.6%, 7.7% re-

spectively) and energy by 22.4% (9.4%, 13% respectively).

Safety of Model-Based Cooling Control

Machine learning models can be error prone, therefore using a learning mechanism for a

safety-critical feature such as temperature control requires fail-safe mechanisms. There can

be different reasons for errors in learning algorithms including noise, estimation bias, and

variance (commonly known as over-fitting and under-fitting). If the model predicts the

temperature lower than it is going to be and the cores exceeds a certain level, then the

fall-back mechanisms need to take control quickly. To handle such scenarios, we can set a

maximum threshold level lower than hardware controller’s level to have a safety margin in

case there are 2-3◦C errors in the prediction. The system can still continue running while

continuing to train the model to make better predictions in the future. If the error is more

than that, then hardware controllers can take over the control in their usual way and override

the model-guided mechanism.
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Figure 5.8: Power and temperature comparison of the three fan control mechanisms with
LeanMD benchmark starting at 100s. (Preemptive cooling has been started 50s ahead of
time for clarification of the plots and the idea. It can achieve a similar effect if triggered
within few seconds of the application start as well.)
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Figure 5.9: The difference between the maximum and the stable fan gives the power reduction
that preemptive cooling can achieve with LeanMD.
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Figure 5.10: Precooling should start within a few seconds of application start at the latest.
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Figure 5.11: Steady-state temperature distribution of 1,800 cores running DGEMM kernel
in two different architectures: Cori (left) with Intel Xeon Haswell processors and Minsky
(right) with IBM POWER8 processors.

45 50 55 60 65 70 75 80 85
Temperature [C]

0

50

100

150

200

250

N
u
m

b
e
r 

o
f 

C
o
re

s

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P
ro

b
a
b
ili

ty

Fit results: mean=68.48, var=3.40

45 50 55 60 65 70 75 80 85
Temperature [C]

0

50

100

150

200

250

N
u
m

b
e
r 

o
f 

C
o
re

s

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P
ro

b
a
b
ili

ty

Fit results: mean=68.26, var=3.43

45 50 55 60 65 70 75 80 85
Temperature [C]

0

50

100

150

200

250

N
u
m

b
e
r 

o
f 

C
o
re

s

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P
ro

b
a
b
ili

ty

Fit results: mean=68.86, var=3.45

Figure 5.12: Steady-state temperature distribution of different applications on Minsky:
kNeigbor, LeanMD, Stencil3D (in order). Despite their different characteristics, applica-
tions show almost the same temperature distribution when the cores are used in balance.
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Figure 5.13: The top plot shows steady-state temperature distribution of the DGEMM
benchmark with decoupled fans on Minsky. (Notice the range change in the y-axis.) In-
dependent fan control cannot remove temperature variations fully overall, because of the
intra-chip variations.
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Figure 5.14: The distribution of intra-chip temperature variation among cores.

92



5.4 Mitigating Intra-Chip Temperature Variation

In this section, we investigate methods to solve intra-chip temperature variation problem

that preemptive and independent fan control could not mitigate fully. Temperature-aware

DVFS and load balancing are two potential solutions:

1) Temperature-Aware Frequency Control: The DVFS technique is commonly used in

power and energy optimization and it often causes performance overhead that is undesired

by HPC users. It can be used to mitigate the temperature variations and to do thermal-

aware throttling as well. DVFS can be done in core-level or chip level, while the core-level

one allows to provide finer-grained control. Most commercial processor architectures only

support chip-level DVFS. Unlike many others, POWER8 chips do have per-core voltage

regulators and support per-core DVFS [71], however it is not supported in production. For

Intel processors, only Haswell generation supports per-core DVFS and the support has been

discontinued for future generations [72].

Our temperature prediction model can be used to predict the temperatures of the cores

after DFVS is applied. During the runtime, if any of the core temperatures are predicted to

hit a certain threshold, then a new frequency can be determined and set. Chip-level DVFS

can remove chip level temperature variations; however, it is ineffective in mitigating core

level temperature variations. Therefore, we conclude, since core-level DVFS is not currently

supported in many processors yet, this is not a viable solution. We look into load balancing

next.

2) Temperature-Aware Load Balancing: Load balancing can be used to eliminate

within chip temperature variations by moving the work units away from the hot cores.

We implemented a new load balancing algorithm using Charm++’s load balancing frame-

work. In Charm++, the workload is represented as C++ objects which can migrate from

processor to processor [17]. In our algorithm, the runtime system moves objects from high-

temperature (above average) cores to low-temperature (below average) cores in order to

create temperature balance. The neural network model predicts core temperatures of po-

tential object migration and it allows us to determine the best workload distribution. Since

the neural network uses CPU utilization as input, we need to approximate the load of each
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Figure 5.15: Load balancing reduces within chip temperature variations from 5◦C to 2◦C.
(Inter-chip variation is mitigated by decoupled fans.)

task in terms of CPU utilization. We do this by calculating the ratio of a task’s execution

time and the total execution time of the tasks on the same processing core from historical

information stored in Charm++’s runtime database.

Figure 5.15 shows how core temperatures change over time with load balancing triggered

around 220s. It can be triggered earlier as well, it’s done after the cores heat up only to

show the difference between before and after load balancing temperatures clearly in the

plot. Load balancing reduces the temperature variation from 5◦C to 2◦C, and the maximum

core temperature from 71◦C to 70◦C. Around 5% of the total objects (or task units) needed

to be migrated to achieve the balance. This results in a 7% performance overhead since

the applications balance is distorted in order to create the temperature balance. Doing

temperature balancing can allow the preemptive fan speed to be set at a higher level. In

this particular case, a reduction of 1◦C in the maximum temperature only gives minimal

benefit in terms of the fan power. Load balancing may be beneficial only if the temperature

difference is greater than or equal to 6◦C. That still represents a significant portion of the

chips, to be specific 41%. As we showed earlier in Figure 5.14, within-chip temperature

variation can peak up to 10◦C . For those chips that has an intra-chip variation greater than
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6◦C, the average difference between the maximum core temperature and the average core

temperature is 3◦C. 3◦C reduction in maximum temperature in those chips reduces the peak

fan power further by 3.3% and hence the average reduction in fan power becomes 56.6%

compared to reactive fan control. This strategy comes at a cost of performance overhead

of up to 10%. Given its marginal benefit and its performance overhead, this load balancing

method may not be advisable if the CPU is at peak load like in our case. If the CPU is not

fully utilized to their capacity (i.e., when the application application behavior creates the

imbalance), then such thermal-aware mechanisms could be more useful. For example, when

running at large scale, some applications use less cores than the number of physical cores in

the node because of running out of memory. For a second example, some applications require

to launch on power of two number of processes for performance reasons and some cores may

have to be left idle. We have considered the worst-case scenario in our experiments.

5.5 Related Work

The neural network modeling approach has been gaining popularity in multiple areas of

data center resource management. It has been used to predict performance of parallel

applications [73, 74] in presence of multiple tunable parameters. Tiwari et al. uses neural

networks to do power and energy modeling of HPC kernels with different code variants [75].

Moore et al. used neural networks to build an online thermal mapping, and management

system for data centers [76,77]. This prediction approach is coarse-grained (i.e., at the level

of one or more servers), and it cannot predict individual core temperatures. Duy et al. used

neural networks to predict user demand from the usage history to be able to turn servers on

or off with their “green” scheduling algorithm for cloud data centers [60]. Neural networks

have also been used to improve job scheduling decisions by predicting resource status (i.e.,

the load of the data center based on history information) [78]. Another study uses neural

networks to predict the core, and Network-on-Chip component temperatures of the chip,

and the predictions are used for energy efficient data exchange [79]. However, they heavily

rely on the simulated data to evaluate their model, and their neural network models are not

thoroughly validated in the literature. Other machine learning models have also been used
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to predict data center temperatures [80]. However, this work does not incorporate server

fan speed data in their model, and hence when the fans are triggered, accuracy of their

temperature prediction model can drop significantly. Moreover, neural networks have shown

many advantages over statistical methods, due to their capability in handling nonlinear

behavior. Neural networks have been applied to many other areas, such as stock markets,

pattern recognition, data mining, and medical diagnosis. Still, other prediction models

such as least-square fitting model [81] can also be used to do proactive cooling mechanisms

proposed in this paper.

Recent research supports the existence of thermal and manufacturing variations in super-

computing systems [6, 41]. Thermal-aware job scheduling strategies have been proposed to

cope with this problem. However, because variations can be observed even within one node,

workload scheduling strategies would not be sufficient to address the temperature variations,

especially for large-scale HPC applications. Moreover, HPC applications may have communi-

cation patterns that allow them to benefit from topology-aware mapping strategies [82]. Job

topology requirements can conflict with thermal-aware job scheduling techniques. Therefore,

we propose a runtime-based technique for thermal-aware task scheduling that is less intrusive

than job-level scheduling, allowing the job to continue to specify topology constraints. Only

a small fraction of the tasks will be mapped to a location other than their “best” location.

Past research in thermal-aware load balancing studied reactive techniques, where the

runtime system constantly monitors core temperatures and makes decisions based on the

readings. For example, Sarood et al. proposed a temperature-restraining load balancing

algorithm [13,61]. In this work, the runtime system applies DVFS to the processors that are

exceeding a threshold temperature. However, because each processor can potentially have

a different frequency level, a load imbalance could be created among processors. Then the

runtime system applies load balancing to compensate for the disparate frequencies. This ap-

proach requires the system to monitor temperatures frequently and apply DVFS empirically

when temperatures exceed a threshold. The frequency settings are found by trial-and-error.

Another limitation of the work is that the object migrations are done without taking into

account the temperature changes of the host and donor processors after load balancing. This

will again result in the need for frequent temperature tracking and frequency control. In
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our approach, we use neural networks to guide load balancing decisions. A neural network

can precisely predict core temperatures for given workloads and for different workload-to-

processor mappings. Therefore, it eliminates the need of monitoring core temperatures

frequently and replaces empirical decision making with precise model-based decisions. The

model can predict how the temperatures of the cores are going to be after doing load balanc-

ing. Another difference in our approach is that while our load balancer aims to balance the

core temperatures, it does not try to bring the core temperatures under a certain temperature

threshold.

A forward-looking fan control mechanism, where the system uses system utilization in-

formation to predict temperatures and controls the fan to dampen power peaks has been

patented [83]. However, the effectiveness of the mechanism has not been published.

5.6 Summary

In this paper, we first analyze inefficiencies in air-cooling systems such as oscillations in fan

speed and temperature variations. We show how proactive cooling mechanisms can be used

to mitigate these inefficiencies and reduce cooling fan power by 53.3% and energy by 22.4%

without any performance overhead. These solutions cannot be used in production without

an accurate temperature prediction model. Yet, thermal-aware methods are often applied

greedily. In this work, as a proof-of-concept model, we use a neural-network based approach

that can predict steady-state core temperatures under different workloads, frequencies, and

fan speed levels. We use the guidance from the model in designing our proactive cooling

methods.
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CHAPTER 6
Mitigating Across Component Power Variation

After finding solutions to mitigate frequency and temperature variations in chapters 4 and

5, this chapter proposes solutions to mitigate power variations. HPC architectures are begin-

ning to have wide compute nodes with different components. For example, a single physical

node in SummitDev supercomputer at ORNL and Sierra supercomputer (to be built in

Lawrence Livermore National Laboratory) will contain two CPUs, four GPUs, two memory

units, 2 network adapters [84]. A illustration of a compute node on SummitDev is shown

in Figure 6.1. So far, we have solely shown the intrinsic manufacturing differences among

CPUs. However, these differences causing power variations also exist in GPUs, memory

components, network cards or disks. Yet, the assembly of the nodes are done randomly

without taking into account these variations. Power aware node assembly technique can

help mitigate the power variations and the side effects of power variations. In this chapter,

we first show the power variation of different components within a node. Later we propose

and analyze the feasibility of three different power aware physical node assembly techniques

and compare it with the currently practiced method of random assembly. These three new

assembly techniques are:

1. Categorized assembly

2. Application characteristics aware assembly

3. Balanced power node assembly
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Figure 6.1: Node architecture of ORNL SummitDev Supercomputer with IBM Power8 CPUs,
NVIDIA Tesla P100 GPUs, DDR4 memory and Mellanox EDR Infiniband network adapter.

Node assembly should be accompanied by a power-efficient job scheduler that takes into

account the power variations of the individual hardware components within the node and

the application characteristics.

The ideas proposed in this chapter are patent-pending [10,85].

6.1 Understanding the Sources of the Power Variation

The CMOS transistor sizes becoming smaller and the threshold voltages becoming lower

over time are two major causes of manufacturing related process variations. These process

variations cause yield loss; the processors that do not satisfy the performance and power

requirements have to be thrown out [86]. Even the ones that make it to production have

variability in their power and operational frequency as we have shown in the previous chap-

ters.

The are two main types of variations in CMOS very-large-scale integration (VLSI) process:

variations in gate delays and leakage current. Both of these have required limits (i.e., the

processor needs to sustain a frequency limit and it should not exceed a power limit, known

as TDP). A processor might fail in satisfying one or both of the requirements as illustrated

in Figure 6.2. Variations in gate delays cause variations in dynamic power of the chip (i.e.,

the power dissipation due to charging and discharging of load capacitance). Variations in

leakage current cause variations in static power (i.e., power dissipation due to sub-threshold
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Figure 6.2: Power and frequency characterization of a manufacturing yield. Note that the
distribution ratios in the figure do not represent actual numbers.

leakage). There is a third source of power consumption in chips, which is the short-circuit

power dissipation from VDD to ground however it constitutes less than 10% of the total

power and therefore it is not considered significant [87,88].

It has been shown that the variation can be up to 30% in frequency and 20x in leakage

power [89]. Such high variation in the manufacturing process with leaky and slow chips

have introduced the concept of Voltage binning. Voltage binning refers to the technique

of adjusting the voltage of the chip to satisfy the power or performance of the chip since

changing the voltage of the chip effects both the performance and the power of the chip [90].

With this technique, some of the leaky or slow chips can be converted into good chips by

respectively lowering or raising their supply voltage. Since leaky chips require lower and slow

chips require higher voltage levels, the chips that are both leaky and slow have to be thrown

out. Different binning techniques have been proposed to increase the yield and the profit of

the chips [90,91]. However, node level variations, where node components with each having

different power variations assembled together, have not been yet studied in the literature.
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6.2 Power Variation Analysis of Node Components

In this section, we analyze the power variation in different components of the nodes. Note

that this data is collected from a production cluster with already-binned processors. In this

chapter, we use Minsky platform located at the IBM T.J. Watson Research Center. Minsky

is the smaller scale version of to SummitDev and Sierra supercomputers with the same node

architecture as shown earlier in Figure 6.1.

In previous section, we identified the two independent sources of power consumption known

as static and dynamic power consumption. Therefore, they need to analyzed independently.

Figure 6.3 shows the static power distribution of the node components. The data represents

the power of the components collected when they are idle. Chips show 13.9%, memory

units show 25%, GPUs show 20%, and nodes show 23.5% variation in their idle power. The

difference between maximum and minimum power consumption in the components are 139

W, 30 W, 20 W, 235 W respectively.

Figure 6.5 shows the active power of the chips running four different benchmarks. They

all show a form of normal distribution. The power variation is 28% for DGEMM, 16% for

KNeighbor, 20% for Stencil3D and LeanMD benchmarks. Although the power distribution

of the applications are shifted or slightly different, the chips that consume high power versus

low power are consistent throughout different benchmarks with the R-Squared correlation

coefficient between 0.65 and 0.72. Note that this would not be the case if the applications

had large load imbalances between the chips.

Next, we look at the correlation between idle and active power consumption of the chips.

Figure 6.4 shows there is a weak correlation between them, with R-Squared value of 0.375.

The average active power of the chips are 244.6 W, whereas the average idle chip power is

191.4 W. It is not straightforward to calculate the dynamic power from the active power since

the idle power, which represents the static power is sensitive to temperature changes. So,

when the workload starts running and chip temperature increases, the static power will also

increase. However, dynamic power is not susceptible to temperature changes as much [92].

This can be seen in Figure 6.6. The R-Squared value between temperature and idle power

is 0.740, whereas it is 0.287 between temperature and active power.
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The trend shows that static power has been increasing as the gate sizes become smaller [93].

At least for this particular processor (Power8) and benckmarks, the static power is dominant.

Ignoring the temperature increase effect on static power, dynamic power constitutes only

53.2 W of the 244.6 W, which is 21.7% of the total power.
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Figure 6.3: Static (idle) power distribution of node components (notice the x axis range
change for the total node distribution in bottom right).
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Figure 6.4: Idle versus active power of chips running DGEMM benchmark.
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Figure 6.5: Power distribution of chips running different benchmarks.
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Figure 6.6: Temperature and power correlation of the chips.
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6.3 Variation Aware Node Assembly

We now describe the random node assembly and the three new techniques that we propose.

Each of the techniques has its own advantages and use cases. The three techniques we pro-

pose are: categorized assembly, application characteristics aware assembly, balanced power

node assembly.

Random assembly

Illustra(on of Data Center Components’ Efficiency 
in Random Assembly


Compute	Node	

CPU	

Memory	

GPU	

Power	efficiency	scale	

Efficient	 Not	Efficient	

Dic;onary:	

Figure 6.7: Illustration of node assembly types

This is the default assembly mechanism that is currently used in production assembly lines.

In this mechanism, the components of a physical node are assembled without considering

the characteristics of the individual components. Each component might have a different

range of power variation and hence the variation range (max to min power) can be higher

in the total node power. This is the cheapest mechanism in terms of the cost of assembly

since it does not distinguish the components.

The illustration of this is shown in Figure 6.7. The components are divided into five

different colors based on their power efficiency scale in the figure. The number five is selected

arbitrarily, in fact it can be any number greater than or equal to two.
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Type-1: Categorized assembly

Illustra(on of Type-1 Node Assembly


Figure 6.8: Illustration of node assembly Type-1: Categorized assembly

As shown in Figure 6.8, in this technique, each of the components within a node needs

to be categorized into bins in terms of their power efficiency and each node contains sub-

components that belong to same efficiency level. This method enables physical nodes to be

classified easily in terms of their power efficiency (i.e., all efficient components will be gath-

ered into an efficient node, or all inefficient components will be gathered into an inefficient

node).

With the classification of the nodes, customers that have a limited power allocation (for

example where the power infrastructure only allows a limited amount of draw), can now

have an option to buy only the efficient nodes with the cost of a more expensive hardware.

Other customers that do not have such limitation, if the hardware costs dominates the total

cost of ownership (TCO) can buy the non-efficient nodes at a cheaper price. Customers can

also buy a mixed batch of nodes of this type. Along with a smart job scheduler, this can still

reduce the power and energy consumption compared with the random assembly if the data

center is not at full load. For example, when the data center is at 90% load, the non-efficient

nodes can be turned off first.
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To calculate the power reduction using this method at a large scale, we first fit the power

of the components in a Gaussian distribution as shown in Figure 6.9. Then we generate

5,000 random nodes based on the distributions of each component. We extrapolate to 5,000

since that is the rounded size of the Summit supercomputer. We evaluate the scenario where

supercomputer contains mixed efficiency levels of Type-1 assembled nodes. Therefore, we

can simply sort each of the components in terms of their power independently to get the

node power with the Type-1 assembly. Figure 6.10 shows how much power reduction can

be achieved when the data center is at different loads based on dynamic power. The power

reduction in therms of KW shows like a dome-like curve due to the nature of Gaussian

distribution in the power of the server components. The maximum power reduction in

terms of KW happens when the data center is at a 50% load with a 110 KW reduction. To

put this into scale of the whole machine, the power of the server components that are taken

into picture in this calculation is around 6.5 MW. Note that the Summit supercomputer is

expected to consume total of 13 MW power. In terms of percentage reduction, the maximum

reduction happens when the data center is at least loads. This is because as the less nodes

are used, only the most efficient nodes will be used and others will be turned-off.

Type-2: Application characteristics aware assembly

This method proposes customized assembly techniques depending on the applications’ needs.

For example, if the node is used to run GPU intensive workloads, then it should have efficient

GPUs, but it can have inefficient CPUs. With this method, customers who know that they

are going to run dominantly CPU intensive applications can only buy those types of nodes

with efficient CPUs. A data center might have different types of workloads and hence can

contain multiple varieties of nodes assembled using this method as illustrated in shown in

Figure 6.11. In that case, the job scheduler of the data center needs to be aware of the

application characteristics and the node characteristics to be able to place the applications

to the appropriate nodes to obtain the best performance (i.e., place CPU intensive workloads

to CPU efficient nodes).

In Chapter 3, we explained how differences in chips’ power efficiency cause frequency varia-
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tion as shown in Figure 3.2. This processor-to-processor variation is around 16%. Therefore,

a 16% performance improvement can be achieved potentially using this assembly method .

Type-3: Balanced power node assembly

This technique aims to make the total node power of each node to be equal, or reduce the

variation in the total node power. This would be helpful in estimating the total power

of a node (i.e., when a data center needs to turn on or off a number of nodes, predict-

ing the required power of that would be much easier if the variation is lower). Similarly,

expected performance would also be similar, which can increase applications’ performance

predictability and reproducibility. An illustration of this technique is shown in Figure 6.12.

As we show earlier in Figure 6.3, the total node power can have a 235 Watts difference

ranging from 587 Watts to 822 Watts. This technique would reduce the difference to almost

none and the average expected node power would now be 687 Watts.
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Figure 6.9: Distribution of the active power of node components: CPU, GPU, Memory (in
order) fit to Gaussian distribution.
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Figure 6.10: Power reduction with Type-1 node assembly compared to random assembly at
different data center loads with a size of 5,000 nodes. The nodes that are not active are
assumed to be turned-off.
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Illustra(on of Type-2 Node Assembly


Figure 6.11: Illustration of node assembly Type-2: Application characteristics aware assem-
bly

Illustra(on of Type-3 Node Assembly


				 		

Figure 6.12: Illustration of node assembly Type-3: Balanced power node assembly
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6.4 Summary

In this chapter, we first identified all of the different components within a physical node

show variations in their power. Then, we proposed three new node assembly techniques in

order to mitigate the negative effects of across component power variation in a physical node.

Each of these techniques has its own merits and use cases. The first one makes component

efficiencies at the same level as node efficiency. The second one assembles based on the

applications’ characteristics. Finally, the third one tries to achieve a balanced node power.

Implementability of the assembly approaches in real life depends on the the cost of the

additional manpower required. We mention that different nodes can be sold at different

prices (i.e., efficient ones at higher prices), more in depth pricing and profitability analysis

are a recommended future directions.

The alternative common approach to exascale architecture model of fat heterogenous

nodes with GPUs is fat “homogenous” nodes that have large amounts of small cores in a

node like Intel’s Xeon Phi architecture in next generation Aurora supercomputer [94]. This

approach increases having large intra-chip core-to-core variations that cannot mitigated via

assembly methods proposed in this chapter, since there is only one big chip in a physical

node. Software-based dynamic scheduling approaches may become more important for such

architectures to cope with variability.
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CHAPTER 7
Mitigating Application-Level Variability

After addressing variability in frequency, temperature and power caused by manufacturing

related reasons, this chapter looks into application level variability that are caused by func-

tions that have different characteristics in parallel applications in order to do fine-grained

energy optimizations.

DVFS is a well-known technique to reduce the power and/or energy consumption of various

applications. While most processors provide chip-level DVFS, where the frequency of the

cores in a chip can only be changed all together; core-level DVFS, where each core can

be controlled independently, requires core-level voltage regulators in hardware and only is

supported in production in Intel Haswell generation processors. The finer grained control

that per-core DVFS provides can lead to higher energy efficiency compared to chip-level

DVFS especially for the unsynchronized, unstructured parallel applications when carefully

applied. Ability to do per-core DVFS opens up new doors for function or kernel level

optimizations within runtime systems.

Many past research propose DVFS and RAPL [21] based solutions to optimize energy con-

sumption [12,13]. These solutions have often been done at chip-level, i.e. changing the whole

chip’s frequency or capping the whole chip’s power, not the individual core frequencies or

core power. The reason for that is the lack of core level voltage regulators in the commercial

processors. For the first time, Intel Haswell generation processors introduced the support for

per-core DVFS in production [95,96]. Although this support have been discontinued on later

generations Sky Lake and Kaby Lake, it is reported to return on Ice Lake generation [97].
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The capability of doing per-core DVFS brings the premise of higher energy efficiency with

finer-grained optimizations for a variety of applications.

While some HPC applications are regular or structured with a uniform behavior, i.e. all

cores or processes within a chip execute similar type of work, such as stencil applications

etc., some HPC applications are irregular or unstructured with dynamic behavior. In those

unstructured applications, at a given time cores within a processors might do different types

of work and execute different types of functions. Moreover, each function, kernel or phase

might have a different optimal frequency level. (Note that energy optimal frequency is not

necessarily the fastest frequency, many examples of this is shown in the past [98, 99]). For

example, it has been shown that MiniFE application have loops that are affected differently

by the frequency levels. [100]. Some applications for performance reasons have dedicated

I/O or communication threads that inherently have different behavior than the rest of the

application. Yet, many commercial processors used in HPC systems do not have support

for per-core voltage and frequency scaling. With chip-level DVFS, different functions that

happen simultaneously cannot run at their energy-optimal frequency levels.

The premise of per-core DVFS can be realized with a dynamic runtime that can do fine-

grained energy optimizations. We implement a runtime based energy optimization module

in a task-based programming model that can learn the optimal frequency for each task or

function over time and show how per-core DVFS enables finer-grained optimization.

Main contributions of this chapter are:

• Analysis of per-core DVFS capabilities in three processors.

• Implementation of a fine-grained runtime technique which provides automated function-

level energy efficiency (Two modes are provided: energy efficiency, and performance).

• Identification of use cases for per-core frequency and voltage regulation that motivates

the need for implementing per-core voltage regulators in hardware.

• Up to 22% better performance or reduction in energy compared to per-chip frequency

scaling.
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To the best of our knowledge, we are not aware of any other work that does function

level energy optimization using per-core DVFS for irregular applications (See related work

in Section 7.4).

7.1 Motivation

In this section, first an analysis of the per-core DVFS support in the Haswell architecture is

provided. Later, application use cases that can benefit from per-core DVFS are identified.

7.1.1 Per-Core Voltage and Frequency Scaling

For the first time among commercial Intel processors, Haswell generation introduced per-

core voltage regulators [95]. Per-core voltage regulation, also called Fully Integrated Voltage

Regulator (FIVR) [72], give the premise of doing fine-grained power and energy control. In

this section, we first show why per-core voltage regulars are important in doing core-level

frequency scaling. We use an older Sandy Bridge generation processor which does not have

FIVR to compare per-core DVFS behavior with the Haswell generation. The details of the

processors that we use are given in Table 7.1.

Table 7.1: Platform hardware and software details

Processor Intel Haswell Intel Sandy Bridge IBM Power8

Model Xeon®E5-1620 v3 Xeon®E3-1245 Power8 8335-GTA

Cores 4 10

OS Linux Ubuntu v 3.13.0 Red Hat Ent. Linux 7.2

Turbo Speed 3.6 GHz 3.7 GHz 3.6 GHz

Max Non-Turbo Speed 3.5 GHz 3.3 GHz 3.5 GHz

Min Non-Turbo Speed 1.2 GHz 1.6 GHz 2.0 GHz

Per-Core Voltage Yes No Yes,
Regulators (FIVR) not in production

Dynamic power of the CPU is proportional to the square of the CPU voltage and to the

CPU frequency:

Power = C × V 2 × f
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Figure 7.1: Core level DVFS on Haswell architecture shows proportional/linear decrease in
power when core frequencies are dropped one by one. On the other hand, since Sandy Bridge
do not have per core voltage regulators, all core frequencies needs to be dropped together to
for a a reduction in power and temperature.

where C is capacitance, V is voltage, and f is frequency.

Voltage is a dominant factor in processor power and hence per-core frequency scaling with-

out per-core voltage regulators is not effective in terms of performance-per-watt. Because, if

the cores within the chip have different frequency levels, without per-core voltage regulators,

the voltage level of the processor is determined by the highest frequency core.

Figure 7.1 compares per-core frequency scaling behavior of two processors; one with per-

core voltage regulators (Intel Haswell) and one without (Intel Sandy Bridge). We use
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Figure 7.2: Core level frequency scaling on IBM Power8 chip.

cpufreq kernel module to control the frequency of the cores. In this experiment, we first

set the frequency of all cores to the highest level and then decrease the frequency level to

minimum one core at a time. For Haswell processor, as we decrease frequency of more

number of cores to minimum the chip power drops linearly. On the other hand, for the

Sandy Bridge processor, the chip power does not change until all of the core frequencies

are lowered together. The reason for that is actually Sandy Bridge processor do not listen

the per-core cpufreq commands and executes all of the cores at the maximum level until

all of the core-frequencies are reduced together. Another observation from Figure 7.1 is

that dynamic power of the Haswell chip constitutes 80% of the total chip power. Although

this percentage is less than the 94% ratio in the earlier generation, dynamic power is still a

major amount that can be optimized via DVFS, whereas static power is not effected by the

frequency of the cores. Figure 7.2 shows the results of the same experiment on a 10 core

IBM Power8 processor. Despite having per-core voltage regulators in hardware, per-core

DVFS is not supported in production use with cpufreq module. Although, unlike Sandy

Bridge, Power8 listens per-core DVFS commands and changes the frequency core by core.

As a result, the chip power gradually decreases as shown in the figure. However, it is still

not a linear reduction as in the case of Haswell – there is still a bigger drop when all of

the core-frequencies are changed all together. This shows per-core frequency scaling without
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per-core voltage regulation lacks effectiveness, i.e., it causes performance overhead without

reducing the energy much.

7.1.2 Application Use Cases

Per-core DVFS would be beneficial for multiple different scenarios. We identify six categories

of potential use cases that can benefit from per-core DVFS.

1. Applications with Different Kernel Types

Applications may have different kernels which have different optimal frequencies. More-

over, those kernels do not necessarily execute at the same time. MiniFE application

has shown to have two different kernels that have different characteristics [100]. Ope-

nATOM is a quantum chemistry application which has many overlapping kernels and

phases. Figure 7.3 shows the time profile graph of two processes mapped to two differ-

ent cores running the benchmark. As each color represents a Charm++ entry method,

it can be seen that there are many cases where each process is executing a different

type of function.

2. Applications with Dedicated I/O Threads

Dedicated I/O threads are used in I/O intensive parallel applications to improve the

performance by offloading the I/O work to dedicated threads. Many past work uses this

approach, including I/O frameworks [101, 102], fast asynchronous checkpoint/restart

based fault tolerance mechanisms [103], machine-learning applications [104], high per-

formance in-memory databases [105].

3. Applications with Dedicated Communication Threads

It has been shown that using dedicated communication threads to drive the network

communication helps improve the performance of communication intensive applica-

tions especially at scale. MPI Endpoints [106] and SMP mode of Charm++ [107] are

two examples of this. MPI endpoints extension enables efficient multi-threaded com-

munication by using dedicated cores that drive independent network communication.
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Although losing a core for communication might cause performance loss in a com-

putation dominant application, at large-scale when the communication becomes the

large fraction, having dedicated cores for communication improves performance [106].

Charm++ implements a similar concept, called SMP mode. In the SMP mode, a

logical node is formed by a custom number of threads and a dedicated communication

thread to handle the communication between nodes. Commonly each physical node

has one or more number of logical nodes.

4. Applications Leaving Idle Cores

Parallel applications may leave idle cores for various reasons including, for performance

reasons and for having core/count requirements.

Some applications intentionally leave idle cores in the processors for performance rea-

sons. We will give three examples to this. First, broadcast/reduction trees do not

perform as well for numbers of processor counts that are not a power of two [108].

Second, some applications run out of memory when doing large scale simulations and

might leave one or more cores idle. PDES [109] is an example to this. Third, some ap-

plications, like NAMD [107], suffers from OS interference. To remove the interference,

all OS processes are be bind to specific core, which is then excluded, i.e., not used, by

the application.

There are several applications that requires to be run on specific core counts, i.e.

such as power of two number of cores, cubic number of cores. In such scenarios,

some cores have to be left idle depending on the processor core count. For example,

LULESH [110] MPI version requires cubic number of ranks (hence cores) to map the

3D spatial domain. Graph500 benchmark [111] only supports graphs with power-of-2

vertex counts and hence MPI version is required to be to run on power-of-2 number of

cores.

Although these cases may seem to be ideal applications for per-core DVFS, in fact, if

the idle core power is already optimized to be its lowest, more power reduction cannot

be achieved by per-core DVFS. As we show in Figure 7.1, for Intel processors idle

power is not effected by the frequency. For Power8 processors, frequency effects idle
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power as shown in Figure 7.2, i.e., around 5 W per core can be reduced in application

that leave cores idle if per-core DVFS is introduced. However, it is important to note

that static power constitutes 21% of Intel Haswell processors 21%, whereas it is more

than 50% for Power8 processors.

Figure 7.3: Timeline of two processors running the OpenATOM benchmarks. Each color
represents a Charm++ entry method. Notice how different entry methods are executed on
the two processes at the same time range.

119



7.2 Runtime Guided Frequency Regulation

In this section, we first give background information on the runtime system that we use as

a proof-of-concept for our work. Then, we explain our runtime guided frequency regulation

approach.

7.2.1 Charm++ Adaptive Runtime System

Charm++ is a parallel programming framework used by many large-scale applications in-

cluding NAMD for molecular dynamics, OpenATOM for quantum chemistry, ChaNGa for

cosmology, Episimdemics for epidemic simulations and many others [17]. In Charm++, the

application data is decomposed into small task units (called chares) that communicate via

asynchronous function calls (called entry methods). The runtime system is responsible for

placement and execution of the task units.

Chares are C++ objects that represent the data and task units in Charm++. These

objects can migrate from processor to processor by the runtime in order to create load

balance. They can communicate with other objects via asynchronous function calls.

Entry Methods are asynchronous function calls on the chares. Chares can be located

in a local or a remote processor, regardless of the location the runtime will deliver the

function call as a message to its destination chase. Besides the application’s entry methods,

runtime itself also contains entry methods to do various tasks in the background such as

communication, I/O, load balancing, tracing etc.

Charm++ RTS is responsible for the mapping of the objects to processors, sending the

messages (entry method calls) to their destination chares, and executing the entry methods.

Charm++ programmer needs to write an interface file to define the class types and the

corresponding entry methods so that the runtime system can generate the corresponding

structures. Figure 7.4 shows a code snippet from the interface file of a stencil application.

There is a natural division between the application phases. The rest of the code is common

C++.

Charm++ would be a great fit to make a proof-of-concept implementation of our ideas for
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1 array [3D] Jacobi {
2 // Normal Charm++ entry methods
3 entry Jacobi(void);
4 entry void begin iteration(void);
5 entry void receiveGhosts(ghostMsg ∗gmsg);
6 entry void processGhosts(ghostMsg ∗gmsg);
7 entry void check and compute();
8 entry void doStep() {
9 serial ‘‘begin iteration’’ {

10 begin iteration();
11 }
12 for(imsg = 0; imsg < neighbors; imsg++) {
13 // ”iterations” keeps track of messages across steps
14 when receiveGhosts[iterations] (ghostMsg ∗gmsg)
15 serial ‘‘process ghosts’’ { processGhosts(gmsg); }
16 }
17 serial ‘‘doWork’’ {
18 check and compute();
19 }
20 };
21 };

Figure 7.4: Code snippet from Charm++ stencil application.

two main reasons. First, programmer writes entry methods naturally in a way that different

phases of the application are distinguished with different entry methods. This enables run-

time to distinguish different types of work units automatically by simply controlling at each

entry method-level. Second, the runtime have a transparent control over the full applica-

tion from start to end. The approaches restricted to annotated loops or kernels do not give

control over the whole application runtime which limits optimization scope and capabilities.

7.2.2 Fine-Grained Frequency Regulation in Runtime

Our approach fine-grained frequency regulation approach has three phases: 1) Statistics

collection of power and performance for different frequency levels, 2) Calculating the optimal

frequency based on the collected statistics, 3) Applying the optimal frequency on function

basis in core-level. Next, we will explain each of there steps in detail.

Our module can simply be enabled by building Charm++ with --enable-energyOpt flag

and linking the application with -module energyOpt.
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Figure 7.5: Runtime control flow.

Statistics Collection

The first phase from the start of the application is the statistics collection phase. First,

the runtime collects the power and performance characteristics of each entry method in the

application under different frequency levels. The frequency levels are set by the runtime

system as the application moved forward.

The entry method statistics are collected and stored per each instance of a chare element.

Although every instance of a chare element have the same functions, different data size might

cause different characteristics depending on the instance. Therefore, it is more accurate to

collect the statistics per instance of chare elements. Particularly, the execution time and the

energy consumption of each entry methods are collected under every supported frequency

level.

There is, however, one obstacle in collecting power statistics of the functions. Despite the

support of per-core DVFS, Haswell processors do not provide core-level power counters – only

chip level power information is available through model-specific registers (MSRs). Therefore,

a workaround is necessary. To be able to calculate the correct power information in core

level, we execute the entry methods on the cores exclusively via locks during the statistics

collection phase so that only one core is running at a time. The positive side of this approach

is that it can capture core-to-core power or performance variations that might happen since

profiling of the kernels are done on the same cores that are going to execute them after the

profiling phase. The negative side of this approach is that the measurements on single core
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may not represent the performance and power when other cores are active. First, the static

power of the other three cores needs to be subtracted from the total chip power. The static

power of the three cores can simply be calculated as three quarters of the the idle power of

the processor. Since there are four cores in the processor we use, exclusive entry methods

execution causes a 4x slowdown in the application during this phase. This is a limitation

of the processor and if there were core-level power counters, there would not be any need

for a locking mechanism. Since the statistics collection phase constitutes a small fraction

of the total application run, use of this exclusive execution method is still viable despite

its overhead. Second, we need to make sure the measurements we collect when kernels are

running exclusively are correct when they run together with other cores. Figure 7.6 shows

that for compute intensive benchmarks, like DGEMM, the optimal frequency calculated

using one core is consistent with the results when other cores are active. However for

memory intensive kernels, like MEMOPS, as more cores are running the kernel, the energy

optimal frequency drops significantly as more cores are competing for the same memory

bandwidth. Figure 7.7 shows the optimal frequency of MEMOPS kernel again, but with

varying allocated data sizes. From 128 MB to 1.5 GB data per process, the trend is more or

less consistent: as more processes are active the optimal frequency drops. This shows that

for memory intensive applications, what other cores are running effects the performance of

the kernel, therefore exclusive measurements on a single core cannot represent the general

case. Therefore, the count of memory operations (such as reads, writes, cache misses) needs

to be collected for each kernel in addition to the execution time and the power consumption

during the statistics collection phase. A method to prevent this problem could be using a

power prediction model to predict the core-power consumption [112, 113]. However, such

model can be error prone and it would increase the runtime algorithm complexity. The best

way to overcome these limitations is to provide core-level power counters and perhaps this

chapter provides a motivation for hardware developers to enable that support.
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Figure 7.6: Optimal frequency of DGEMM kernel remains more or less stable despite the
number of active cores running the kernel, wheres optimal frequency of the MEMOPS kernel
drops significantly as more cores are activated.
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Figure 7.7: Optimal frequency of the MEMOPS kernel depends more on the number of
active cores than the data size.

Optimal Frequency Calculation

After the statistics collection phase is done, optimal frequency is calculated per each entry

method in each chare instance. We implement two options: the frequency that provides
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minimal energy (MinE ) and the lowest frequency without sacrificing performance (MaxP).

MaxP mode can also be used to find the lowest frequency with sacrificing from performance

no more than a specified percentage (i.e, what is the lowest frequency that an application

can use with a maximum of x% overhead?)

Optimal Frequency Application

After the optimal frequency levels are determined, the next phase is to apply the optimal

frequency before the each method gets executed. There are some important issues that needs

to be considered when applying DVFS (p-state change) on per function basis. There is a

delay between sending p-state change request and the processor switching its frequency, this

delay is called transition delay. This delay is important in making function level transition

decisions because if the function duration is smaller than the delay, switching to a different

level may not be useful. We have observed this delay can be up to around 500 µs. This

confirms the earlier reported results on the transition delay [96]. Although the actual p-

state transition may take much shorter than 500 µs, the p-state transition requests are not

executed immediately, but in 500 µs periods in Haswell processors unlike previous generations

(including Haswell-HE) [96].

Another important concern is the overhead of applying DVFS frequently. We have mea-

sured the overhead to be between 2 to 5 µs. The overhead is mainly caused by writing the

new frequency level to the appropriate system file (two file writes for the two SMT threads).

Although this is not a significant overhead, our algorithm takes this effect into account when

making frequency scaling decisions and and tries to minimize the overhead.

Figure 7.8 shows the timeline where two kernels (Kernel-1 and Kernel-2) are executing

one after another in a core. Let’s define:

F1: energy optimal frequency for Kernel-1

F2: energy optimal Frequency for Kernel-2.

Applying the optimal frequency for Kernel-2 after the execution of Kernel-1 would be

125



Ru
nn

in
g	
at
	F

1	
:	E
ne

rg
y	
O
p2

m
al
	F
re
qu

en
cy
	

Ke
rn
el
-2
	

T l
at
en

cy
	

Ke
rn
el
-1
	

T o
ve
rh
ea
d	

T x
	

Ru
nn

in
g	
at
	F

2	
:	E
ne

rg
y	
O
p2

m
al
	F
re
qu

en
cy
	

Ω	

…
	

:	E
ne

rg
y	

Lo
ss
	

:	S
ub

-o
p2

m
al
	

En
er
gy
	

Ω	

Ω	

Ru
nn

in
g	
at
	F

1	

Ω	

Se
nd

	c
om

m
an

d	
to
		

ch
an

ge
	fr
eq

	to
	F

2	
Fr
eq

	is
		

ch
an

ge
d	
to
	F

2	

Ω	

Ti
m
el
in
e	

F
ig

u
re

7.
8:

T
im

el
in

e
of

tw
o

ke
rn

el
s

ex
ec

u
ti

n
g

on
e

an
ot

h
er

w
h
er

e
th

e
ru

n
ti

m
e

ap
p
li
es

op
ti

m
al

fr
eq

u
en

cy
.

F
ig

u
re

7.
9:

T
im

el
in

e
of

th
e

sy
n
th

et
ic

b
en

ch
m

ar
k

h
av

in
g

tw
o

ke
rn

el
s

(r
ep

re
se

n
te

d
b
y

li
gh

t
b
lu

e
an

d
d
ar

k
b
lu

e
co

lo
rs

)
ra

n
d
om

ly
ov

er
la

p
p
in

g.
E

ac
h

li
n
e

re
p
re

se
n
ts

a
p
ro

ce
ss

,
in

th
is

ca
se

fo
u
r

p
ro

ce
ss

es
ar

e
ru

n
n
in

g
in

p
ar

al
le

l.

126



beneficial only if the following condition is satisfied:

Eloss + EF1 portion + EF2 portion < EF1

EF1: Energy consumption when whole Kernel-2 runs at F1

Eloss: Energy loss occurred during DVFS overhead

EF1 portion: Energy consumption when Kernel-2 runs at F1 during the transition latency

phase

EF2 portion: Energy consumption when a portion of Kernel-2 runs at F2 after the transition

is complete

Expanding the above formula in terms of power and execution time, we get:

Toverhead × PF1 + Tlatency × PF1 + TX × PF2 < T1 × PF1

EF1: Energy consumption when all portion of Kernel-2 runs at F1

PF1: Power consumption when Kernel-2 runs at F1

PF2: Power consumption when Kernel-2 runs at F2

Toverhead: Constant, 5 microseconds

Tlatency: Constant, 500 microseconds

TX : Duration of the target kernel

Value of TX depends largely on F1 and F2. In Figure 7.10, we show experimental results

with a compute kernel where F2 is 2.3 GHz and F1 is labeled as transition frequency on the

x-axis. The first observation is that the further away the transition latency is from 2.3 GHz,

the more energy reduction is expected to happen. Second observation is that the smaller the

kernel duration is, the less energy reduction happens because of the transition latency and

overhead as described earlier in this section. Kernel duration label on each line in the plot

represents the duration when run on the highest frequency. The duration of the kernel is

adjusted simply by changing the loop counter to set how many times the kernel is executed.
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Figure 7.10: Plots shows how much energy can be reduced if a kernel that has an energy
optimal frequency of 2.3 GHz is transitioned from different frequency levels. Different lines
represent different kernel durations.

7.3 Experimental Results

In this section, we evaluate the effectiveness of our runtime module, mainly comparing with

per-chip DVFS. We first use a synthetic benchmark, CompMem, that has two different

kernels that are randomly called one after the other in every process. The goal of this

benchmark is to have processes execute functions that have different characteristics at a

given time. One kernel is a compute intensive one (i.e., a DGEMM kernel with a matrix size

that fits in cache). The second kernel is a memory intensive kernel, MEMOPS, that consists

of allocating memory, copying data into allocated memory via memcpy, and deallocating the

memory. We use an array of size approximately 500MB per process. Figure 7.9 illustrates

the timeline of this benchmark. We also implement two other versions of this benchmark;

CompIO and CompComm. CompIO benchmark has one dedicated thread doing IO opera-

tions such as file reads and writes to the local disk. The other threads are running a compute

intensive kernel. CompComm benchmark has one dedicated thread responsible for external

communication (i.e., sending and receiving messages to and from other processors).

128



Figure 7.11 compares the time and energy measurements of our fine-grained runtime based

solution (labeled as Per-core) with other chip level solutions (labeled as Per-chip-* ). Per-

core always gives the minimum energy and minimum execution time. Per-chip-K1 and Per-

chip-K2 optimizes only for kernel 1 and 2 respectively, therefore they have high execution

time overhead or high energy. Per-chip-K1&2 uses the mid-point of Per-chip-K1 and Per-

chip-K2, therefore creates a balance between the high execution time and the high energy

of those methods, however it still is not better than Per-core.
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Figure 7.11: Per-core: Uses energy optimal frequency for each kernel in core level. Per-
chip-K1: Uses per-chip DVFS with optimal frequency of kernel-1 which is 2.2 GHz, Per-
chip-K2: Uses per-chip DVFS with optimal frequency of kernel-2 which is 3.3 GHz, Per-
chip-K1&2: Uses per-chip DVFS with optimal frequencies of kernel 1 and 2 running to-
gether which is 2.7 GHz.
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7.4 Related Work

Many of the past research uses chip-level DVFS to do energy or power optimizations [114–

117]. Sarood et. al. proposes a thermal aware load balancer [12, 13] which uses chip-

level DVFS technique to restrain the temperature of the processors. Padoin et al. extends

this approach and proposes a load balancer which utilizes per-core DFVS [118]. However

this work is not done in a hardware that supports per-core DVFS, instead it simulates the

environment of a per-core DVFS by placing only one process on each chip.

Another chip-level adaptive frequency selection approach has been proposed for GPU

and CPU kernels [119]. This approach can select a kernel to run on GPU or CPU and

at which frequency level based on Pareto optimality. The first drawback of this work is

that it works at individual kernel level and assumes all threads within the processor are

executing the same kernel, and does not do any optimization in between the kernels. Our

approach does optimization for whole application and in a transparent way taking into

account frequency switching latency and overheads. This approach also proposes a kernel

classification using machine learning algorithms so that the ideal configuration of a kernel

can be applied directly. A similar approach can be applied in our runtime to make decision

making easy. One drawback of such approach is that the learning algorithm needs to be

trained for each processor type from scratch since the performance and power characteristics

can change based on the platform. The approach we propose in this chapter is not platform

specific and can be used on a new platform by only porting the power or energy reading

measurements if necessary. Therefore, despite the minimal statistics collection overhead in

the beginning of the application, our runtime based approach is much more practical.

Lim et al. proposes using DVFS in communication phases of MPI applications, such as

MPI Send, MPI Recv etc., to reduce the energy consumption [120]. Their approach is imple-

mented within MPI and transparent to the application like ours. However, their approach is

also inherently limited to communication phases within MPI. On the other hand, our scope

is the whole application and can optimize for all phases and kernels of the application. Bha-

lachandra et al. uses a similar approach for MPI; when there is slack before an MPI Barrier,

it applies DVFS to balance the arrival time of the processes to the barrier [121]. The same
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drawbacks of Lim et al.’s paper applies to this one as well.

7.5 Summary

This chapter proposes a fine grained runtime approach to fully optimize the energy efficiency

of applications at function level considering function to function variations within the appli-

cations. Per-core DVFS support from the architecture is essential in our method since cores

in the processor might be executing different functions at any given time. Per-core power

measurement support is also essential to put our method effectively in a practical use.

There are some limitations with this approach as well. The method does not support

hyper-threading since hyper-threads can share the same physical core, i.e. execute instruc-

tions from different threads in the same core, and is the hyper-threads within the same phys-

ical core is executing different application kernels or functions, there is no way to change

their frequency for each of threads separately. Another limitations is with fat nodes having

lots of cores if core-level power data is not provided by the architecture. This means for the

performance and power collection phase, the locking mechanism to ensure only one core is

executing at a time and this cause number of cores times slowdown for the data collection

phase. A future direction with this method is to understand how local optimal frequency

selection decisions effects the global application performance and combine the method with

a frequency aware load balancer.
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CHAPTER 8
Conclusion

This dissertation examined several different types of variations that are found in large scale

HPC systems. Detailed analyses of frequency, temperature, and power variations have been

presented, along with the identification of the sources of these variations and novel ways to

mitigate them.

Several contributions have been made in this dissertation. These contributions include:

• A comprehensive system within which the data center resource manager dynamically

interacts with the individual runtime systems of jobs, to optimize performance and

power consumption in an environment with system failures under constraints supplied

by users or administrators is presented.

• Measurement and analysis of performance variation of up to 16% between processors

in top supercomputing platforms including: Cori, Edison, Cab, Stampede, and Blue

Waters on 1K chips is made.

• Measurement and analysis of frequency, power, and temperature of processors on Edi-

son, Cori and Minsky is made.

• Analysis of potential solutions to mitigate the effects of frequency variation including:

disabling Turbo Boost, replacing slow chips, idling cores, and dynamic task redistri-

bution is evaluated.
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• A speed-aware dynamic task redistribution technique which improves performance up

to 18% is demonstrated.

• A simple yet powerful neural network-based temperature prediction model that can

predict steady state core temperatures accurately under different core utilization levels,

frequency levels, and fan speeds is implemented.

• A proactive fan control mechanism, called “precooling”, that removes power oscilla-

tions and can reduce the maximum fan power by 45.6% on average as well as energy

consumption by 9.4% by predicting core temperatures is proposed.

• An analysis of inter-chip and intra-chip temperature variations in two different ar-

chitectures using 1,000 cores with 25◦C variation is made. It is demonstrated that

decoupling the fans reduces the variation down to 10◦C, the power by an additional

7.7%, and the energy by 13%. Moreover, it is shown that the remaining 10◦C is

intra-chip variation and can be reduced to 2◦C via thermal-aware load balancing.

• Patent-pending power aware node assembly techniques that can help mitigate power

variations and side effects of the power variations are invented.

• An analysis of per-core DVFS capabilities in three different processors.

• A fine-grained runtime technique which provides automated function-level energy ef-

ficiency providing 5-10% more reduction in energy compared to per-chip frequency

scaling is implemented.

• Identification of use cases for per-core frequency and voltage regulation that motivates

the need for implementing per-core voltage regulators in hardware is made.

8.1 Future Directions

Different optimization approaches under the presence of variability presented in this disserta-

tion may not all comply with each other. For example, speed-aware load balancing decisions

may conflict with temperature-aware load balancing decisions considering that temperature
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does not directly correlate with speed. Another example is that the node assembly method

can potentially reduce power variations and remove the need for a speed-aware load balancer.

The variability in HPC data centers are not limited to the ones which are described in

this dissertation. This dissertation isolated the other sources and focused on manufacturing

related variability. In fact, there are multiple different sources of variability that effect the

performance of applications more directly. For example, network variability due to traffic or

cross application contention, systems software variability due different versions of compilers

or modules, SMP resource variability due to contention in shared caches, and operating sys-

tem related variability due to kernel process scheduling are some of the important ones [122].

Variability is an important concern for performance portability and reproducibility. Further

research is necessary to understand different sources of variability and mitigate their neg-

ative effects which manifest in applications over time, run-to-run, or platform-to-platform

in a holistic manner not only from performance but also from power and energy efficiency

perspective as well.
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ergy by exploiting residual imbalances on iterative applications,” in High Performance
Computing (HiPC), 2014 21st International Conference on. IEEE, 2014, pp. 1–10.

[119] P. E. Bailey, D. K. Lowenthal, V. Ravi, B. Rountree, M. Schulz, and B. R. De Supinski,
“Adaptive configuration selection for power-constrained heterogeneous systems,” in
Parallel Processing (ICPP), 2014 43rd International Conference on. IEEE, 2014, pp.
371–380.

[120] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal, “Adaptive, transparent frequency and
voltage scaling of communication phases in mpi programs,” in SC 2006 conference,
proceedings of the ACM/IEEE. IEEE, 2006, pp. 14–14.

[121] S. Bhalachandra, A. Porterfield, S. Olivier, and J. Prins, “An adaptive core-specific
runtime for energy efficiency,” in Proceedings of the IEEE International Parallel &
Distributed Processing Symposium. IEEE, 2017.

[122] D. Skinner and W. Kramer, “Understanding the causes of performance variability in
hpc workloads,” in Workload Characterization Symposium, 2005. Proceedings of the
IEEE International. IEEE, 2005, pp. 137–149.

146


	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations and Acronyms
	CHAPTER 1 Overview
	Dissertation Organization

	CHAPTER 2 A Dynamic Runtime Interacting with Data Center's Resource Manager
	An Adaptive Runtime System for hpc
	Throughput Maximization Under A Power Budget
	Improving Reliability Through Temperature Restraint and Load Balancing
	Dynamic Configuration of System Components
	Architecture and System Needs
	Summary

	CHAPTER 3 Analyzing Large Scale Processor Variability
	Experimental Setup
	Platforms
	Applications
	Measurement Methodology
	Eliminating OS Interference
	Variation Metric

	Measurement and Analysis of Variation in Large Scale Systems
	Inter-chip Frequency Variation

	Temperature and/or Power as Cause of Frequency Variation
	Related Work
	Summary

	CHAPTER 4 Mitigating Frequency Variation
	Disable Turbo Boost
	Replacing Slow Chips
	Leaving cores idle
	Dynamic Work Redistribution
	Speed-Aware Load Balancer in a Heterogeneous System

	Summary

	CHAPTER 5 Mitigating Temperature Variation
	Motivation and Observations
	Neural Network-Based Temperature Prediction Model
	Experimental Setup
	Model Description and Validation

	Model-Guided Proactive Fan Control
	Mitigating Intra-Chip Temperature Variation
	Related Work
	Summary

	CHAPTER 6 Mitigating Across Component Power Variation
	Understanding the Sources of the Power Variation
	Power Variation Analysis of Node Components
	Variation Aware Node Assembly
	Summary

	CHAPTER 7 Mitigating Application-Level Variability
	Motivation
	Per-Core Voltage and Frequency Scaling
	Application Use Cases

	Runtime Guided Frequency Regulation
	Charm++ Adaptive Runtime System
	Fine-Grained Frequency Regulation in Runtime

	Experimental Results
	Related Work
	Summary

	CHAPTER 8 Conclusion
	Future Directions

	REFERENCES

