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Abstract—Parallel programming can be extremely challenging.
Programming models have been proposed to simplify this task,
but wide acceptance of these remains elusive for many reasons,
including the demand for greater accessibility and productivity.

In this paper, we introduce a parallel programming model
and framework called CharmPy, based on the Python language.
CharmPy builds on Charm++, and runs on top of its C++
runtime. It presents several unique features in the form of a
simplified model and API, increased flexibility, and the ability
to write everything in Python. CharmPy is a high-level model
based on the paradigm of distributed migratable objects. It
retains the benefits of the Charm++ runtime, including dynamic
load balancing, asynchronous execution model with automatic
overlap of communication and computation, high performance,
and scalability from laptops to supercomputers. By being Python-
based, CharmPy also benefits from modern language features,
access to popular scientific computing and data science software,
and interoperability with existing technologies like C, Fortran
and OpenMP.

To illustrate the simplicity of the model, we will show how
to implement a distributed parallel map function based on
the Master-Worker pattern using CharmPy, with support for
asynchronous concurrent jobs. We also present performance
results running stencil code and molecular dynamics mini-apps
fully written in Python, on Blue Waters and Cori supercomputers.
For stencil3d, we show performance similar to an equivalent
MPI-based program, and significantly improved performance
for imbalanced computations. Using Numba to JIT-compile the
critical parts of the code, we show performance for both mini-
apps similar to the equivalent C++ code.

Index Terms—programming model, parallel programming,
distributed computing, multiprocessing, Python, HPC

I. INTRODUCTION AND MOTIVATION

Effective and productive programming of parallel machines
can be extremely challenging. To this day, it remains hard to
find programming models and frameworks that are considered
accessible and productive by a wide range of users, support
a variety of use cases, and achieve good performance and
scalability on a wide range of systems. There is demand
from programmers across various domains to write parallel
applications, but they are neither computer scientists nor expert
programmers. This often leads to their need to rely on experts
to implement their ideas, settle for suboptimal (sometimes
serial) performance, or to develop codes that are difficult to
scale, maintain and extend.

A programming model must meet several demands to over-
come these challenges, including: (a) accessibility (easy to

approach, learn and use); (b) productivity; (c) provide high-
level abstractions that can hide the details of the underlying
hardware and network; (d) achieve good parallel performance;
(e) make efficient use of resources in heterogeneous envi-
ronments; (f) portability; (g) easy to integrate with existing
software. The productivity of a language and programming
model, in particular, can be a critical factor for the successful
development of a software project, and for its continued long-
term evolution.

In the realm of High-performance Computing (HPC), MPI
combined with C/C++ or Fortran is widely used. Reasons
for this include performance/scalability, the perceived sus-
tainability of these technologies, and the existence of large
legacy codebases. However, though important building-blocks,
these technologies by themselves present important limitations
towards achieving the above goals. C++ and Fortran are
arguably not introductory-level programming languages. MPI
provides message passing and synchronization primitives, but
lacks high-level features like hardware abstractions, dynamic
resource allocation, work scheduling; and is not particularly
suited for execution of asynchronous events, or applications
with load imbalance and irregular communication patterns.

Many parallel programming languages and runtimes have
been developed in the last two decades [1], with modern
ones providing high-level abstractions, task-based runtimes,
global address spaces, adaptive load balancing, and message-
driven execution. Examples of modern languages and runtimes
include Chapel [2], X10 [3], UPC [4], Legion [5], HPX
[6] and Charm++ [7]. In spite of this, MPI remains by all
appearances the de facto standard for parallel programming
in the HPC field. Analyzing the causes of this is outside the
scope of this paper, but we believe that, although these models
provide powerful abstractions, scalability and performance,
obstacles for adoption include either a real or perceived lack
of accessibility, productivity, generality, interoperability and
sustainability. Charm++ has enjoyed success with several large
applications running on supercomputers [8]–[10], but can be
improved in terms of some of these aspects.

Parallel programming frameworks based on Python have
emerged in recent years (e.g. Dask [11] and Ray [12]).
Although aimed at productivity, they tend to have limited
performance and scalability, and applicability only to specific
use cases (e.g. task scheduling, MapReduce, data analytics).

In this paper, we introduce a general-purpose parallel



programming model and distributed computing framework
called CharmPy, which builds on Charm++, and is aimed
at overcoming these challenges. One of its distinguishing
features is that it uses the Python programming language,
one of the most popular languages in use today [13] together
with C, C++ and Java. Python has become very popular for
scientific computing, data science and machine learning, as
evidenced by software like NumPy, SciPy, pandas, TensorFlow
and scikit-learn. It is also very effective for integrating existing
technologies like C, Fortran and OpenMP code. Its popularity
and ease of use [14] helps to avoid the barrier of adopting
a new language, and enables straightforward compatibility
with many established software packages. In addition, the
development of technologies like NumPy [15], Numba [16],
[17] and Cython [18] presents a compelling case for the use
of Python as a high-level language driving native machine-
optimized code. Using these technologies, it is possible to
express a program in Python using high-level concepts, and
have the critical parts (or even the bulk of it) be compiled and
run natively.

CharmPy runs on top of Charm++ [7], [19], a C++ runtime,
but it is not a simple Python binding for it. Indeed, CharmPy’s
programming model is simpler and provides unique features
that simplify the task of writing parallel applications, while
retaining the runtime capabilities of Charm++. For example,
Charm++ developers have to write special interface files for
each distributed object type; these files have to be processed
by a special translator that generates C++ code. In addition,
the Structured Dagger [20] language is often necessary for
expression of control flow and message order. With CharmPy,
all of the code can be written in Python, and no specialized
language, preprocessing or compilation steps are necessary
to run an application. CharmPy also benefits from high-level
features of Python, like automatic memory management and
object serialization.

With CharmPy, we want to meet the following goals:

• Simple, high-level programming model.
• Based on the widely used Python programming language,

equipped with modern features and extensive libraries.
• General-purpose: supporting a wide range of applications,

including those with embarrassingly parallel workloads,
and complex scientific simulations running on supercom-
puters.

• High-performance: capable of achieving performance
comparable to C++ parallel applications.

• Scalable from small devices to supercomputers.
• Programming and execution model with inherent com-

munication and computation overlap.
• Adaptive runtime features, e.g. dynamic load balancing

and automatic communication/computation overlap.

The achievement of some of these goals can be hard to
quantify, relying in some cases on subjective assessment. We
will present a use case to demonstrate the simplicity in terms
of amount of code, readability and code complexity required
to implement a non-trivial worker pool that can run multiple

independent map functions on multiple nodes with dynamic
load balancing, using the well-known master-worker pattern.
We discuss the limitations of implementing the same use
case with MPI. We will also show that parallel applications
can be written with CharmPy that are comparable in terms
of performance and scalability to applications using MPI
or written in C++. This is possible even with applications
fully written in Python, by using technologies like Numba.
Python and Charm++ are both highly portable, and CharmPy
runs on Unix, Windows, macOS and many supercomputer
environments. The code is public and open-source [21].

The rest of the paper is organized as follows. In section
II we explain the CharmPy programming model. Section III
presents the parallel map use case. Section IV covers runtime
implementation details. In section V we present performance
results. Finally, in section VI we conclude the paper.

II. THE CHARMPY PROGRAMMING MODEL

In this section, we explain the main concepts of the
CharmPy programming model, beginning with an overview
of the programming paradigm and its execution model.

A. Overview

CharmPy is based on the paradigm of distributed migrat-
able objects with asynchronous remote method invocation. A
program is expressed in terms of objects and the interactions
between them. There can exist multiple distributed objects per
processing element (PE); these objects can communicate with
any other distributed object in the system via remote method
invocation, which involves message passing. Objects are not
bound to a specific PE and can migrate between PEs without
affecting application code.

Parallel decomposition is therefore based on objects rather
than system resources, which has the benefit of enabling more
natural decomposition, abstraction from hardware, and gives
the runtime flexibility to balance load, schedule work, and
overlap computation and communication.

In the asynchronous execution model, a process does not
block waiting for a remote method to complete, and the run-
time can automatically continue scheduling other work during
that time (which is facilitated by the presence of multiple
objects per PE). Similarly, there are no blocking receives, and
the runtime schedules delivery of messages as they become
available. All of this serves to hide latency and enables the
automatic overlap of communication and computation.

Another benefit of object-based decomposition, where an
arbitrary number of objects per process can exist, is that it al-
lows for tunable fine-grained decomposition without affecting
the structure of the program. A fine-grained decomposition is
particularly beneficial in irregular applications and those with
load imbalance (the performance results in section V show an
example of this).

The execution model on which CharmPy is based, including
its benefits, has been described in detail and demonstrated in
previous works [7]. In the rest of this section we will focus
on the CharmPy programming model and API.



B. Chare: the distributed object

In CharmPy, there is a class1 named Chare that represents
distributed objects. To define a new distributed object type, the
user simply defines a new class that inherits from Chare, e.g.
class MyChare(Chare): ... . Any methods of the new chare

type will be callable remotely using regular Python method
invocation syntax.

Chares can be created at any point after runtime initializa-
tion. The runtime is represented by an object called charm
that exists on every process, and is initialized by calling
charm.start() . After initialization, control is handed to the

application via a user-defined function or chare, known as
entry point, that runs on one processor (typically PE 0).

For example, the following is a complete program that
creates a single chare, calls one of its methods, and exits after
the method has been executed:

1 from charmpy import *
2

3 class MyChare(Chare):
4 def SayHi(self, msg):

5 print(msg)
6 charm.exit()

7

8 def main(args):

9 proxy = Chare(MyChare, onPE=-1)

10 proxy.SayHi('Hello')

11

12 charm.start(main)

This program can be run on multiple processes. Line 12
starts the CharmPy runtime on each process, and indicates that
the function called main will be the entry point. In line 9, a
single chare is created. The runtime can create the chare on
any PE, because the application did not specify any. The call to
create a chare returns a special object called proxy. Proxies are
used to invoke methods remotely, and have the same methods
as the chare that they reference. In this example, the method
SayHi is called via the proxy. Remote method invocation is

explained in detail in section II-D. Finally, the parallel program
is finalized with a call to charm.exit() .

C. Collections of chares

Chares can be organized into distributed collections. Col-
lections are useful because they simplify the creation and
management of sets of related chares, and enable efficient
collective communication (broadcasts and reductions). There
are two types of collections in CharmPy:
• Arrays: collections of chares indexed by keys, with mem-

bers being able to exist anywhere on the system.
• Groups: where there is one member per PE.
The general syntax to create collections is:
proxy = Group(ChareClass, args=[x, y, ...])

proxy = Array(ChareClass, ..., args=[x, y, ...])

specifying the type of the collection (Group or Array), the
chare class, and the arguments that will be passed to the

1Class refers to the Object-oriented concept.

constructor when members are instantiated. Array creation
takes additional arguments (omitted above) to specify the type
of index, initial size of the array, and optionally the initial
mapping of chares to PEs (see section II-G for details on
creating and managing chare arrays). An application can create
multiple collections (of the same or different chare types).

It is important to note that in CharmPy, a given chare class
can be used to create groups or any type of array. This differs
substantially from Charm++, where a chare class is tied at
declaration time to a specific type of collection. For example,
in Charm++, a chare type declared to be part of a 3D-indexed
array cannot be used to create single chares, groups, or arrays
of index type other than 3D. No such restriction exists in
CharmPy.

The following example shows how to create an array of
20× 20 elements using 2D indexes:

proxy = Array(ChareType, (20,20))

In this example, the runtime decides how to distribute the
chares among PEs, because a mapping has not been specified.

As we can see, creating a collection returns a proxy, which
can be used to call methods of its members. This proxy
references all of the members of the collection. As such, if
a method is called on the proxy, it broadcasts the invocation
to all members. Given a proxy to a collection and the index of
an element, we can obtain a proxy to the individual element
with: element_proxy = proxy[index] .

Chares that are part of a collection have two special at-
tributes called thisIndex and thisProxy, the first is the index of
the chare in the collection, and the second is a proxy to the
collection.

D. Remote method invocation

Proxies are used for remote method invocation. As we saw
above, a proxy can reference a single object, or a collection
of objects. Given a proxy, methods are invoked using standard
Python function call syntax:

proxy.method(arg0, arg1, ...)

It is important to note that proxies can be passed to other
chares as arguments of methods.

A method that is invoked on a chare as a result of a
remote call (i.e. via a proxy), is also referred to as an entry
method. Entry methods are invoked by message passing. If the
caller and callee are not in the same process, the arguments
are serialized2 and sent in a message. If they are in the
same process, however, the arguments are passed by reference
directly to the callee, and a zero payload message will be sent
instead. For this reason, the caller must give up ownership and
not modify arguments after a remote method is invoked. This
optimization between local chares is specific to CharmPy and
applies to any type of entry method. In Charm++, a similar
effect can be achieved by declaring inline entry methods, but
the optimization is not applicable in general.

Calling remote methods returns immediately without wait-
ing for the method to be executed at the remote object, and

2For details on how arguments are serialized, refer to section IV-B.



consequently without waiting for a return value. Return values,
if so desired, can be obtained in two ways: (i) via a separate
method invocation if the receiver has a proxy to the caller;
(ii) using futures. When invoking any remote method, a future
[22] can be obtained by using the optional keyword argument
ret:

future = proxy.method(args, ret=True)

The call returns immediately, and the caller can use the
future to wait for the result at whatever time it is needed.
Calling future.get() will return the value, blocking if it
has not yet been received. For example:

1 result1 = remoteObj.getValue1(ret=True)

2 result2 = remoteObj.getValue2(ret=True)

3 # ... do additional work ...

4 # wait now for values from remoteObj

5 print('Result 1 is', result1.get())

6 print('Result 2 is', result2.get())

Futures can be used with broadcast calls also. Calling get

will block until the method has been executed on all the chares
of the collection. The return value will be None .

Is is important to note that blocking on a future does
not block the entire process, and the runtime can continue
scheduling other work (including for the same chare) while
the caller is waiting. To use futures, the caller must be running
in its own thread (see section II-H1). Futures are explained in
more detail in section II-H3.

E. Message order and dependencies

For performance reasons, the message-driven execution
model of Charm++ does not guarantee by default that mes-
sages from chare A to chare B will be delivered in the
same order in which they were sent. Also, unless otherwise
specified, messages can be delivered at any time as soon as
they become available at the receiving process.

There are situations, however, when messages have to be
delivered in a certain order, or only when a receiver has
reached a certain state, but relying on explicit synchronization
between chares is undesirable for performance reasons. For
these situations, CharmPy provides a simple and powerful
construct that allows specifying when remote methods should
be invoked at the receiver, in the form of the when decorator.

The decorator is placed before the method declaration, and
its general syntax is:

@when('condition')

where condition is a string containing a standard Python
conditional statement. The user can specify any general con-
dition involving the chare’s state and the arguments of the
entry method. For example:

1 @when('self.x == x')

2 def myMethod(self, x, y, ...):

3 # method is invoked when `self.x == x`

4 ...

A common use case for this is to match messages for a
method based on the current iteration in a simulation (in this

case one argument would be the iteration to which the message
belongs to, and the chare’s attribute would be the chare’s
current iteration in the simulation).

With the “when” construct, CharmPy automatically buffers
messages at the receiver and delivers them only when the user-
specified condition is met. Because of this, a remote method
can be called as soon as the caller is ready, without having to
worry about messages arriving out of order, or the receiver not
being ready, and avoids the need for explicit synchronization
between chares. Additional examples are shown below:

1 @when('x + z == self.x')

2 def myMethod1(self, x, y, z):

3 # method is invoked when the sum of the

4 # first and third argument equal x attribute

5 ...

6

7 @when('self.ready')

8 def myMethod2(self, arg0, arg1, ...):

9 # method invoked when `self.ready` is True

For a future version of CharmPy, we are considering adding
the capability of specifying when conditions on a per-message
basis (at sender side). This would be optional and would not
modify the existing API.

F. Reductions

Reductions are one of the most common collective opera-
tions in CharmPy, and are used to apply a reduction function
(also known as reducer) to a set of data that is distributed
among the chares in a collection. CharmPy internally leverages
the reduction framework in Charm++ to perform reductions in
a distributed, asynchronous and scalable manner. The general
syntax to perform a reduction is:

self.contribute(data, reducer, target)

To do a reduction, all of the chares in a collection must call
this method. Here, data is the data contributed by the chare
for reduction3. The reducer is the function that is applied to
the set of contributed data. CharmPy provides several built-
in reducers (including sum, max, min, product, gather), and
allows users to easily define their own reducers. The target
parameter determines who receives the result of the reduction.
It can be a method of a chare or set of chares, specified
using the syntax proxy.method where proxy can reference
any individual chare or collection of chares (in the latter case
the result is broadcast to all the members). The target can also
be a future (see section II-H3).

It is worth noting that reductions are asynchronous, i.e.
chares do not block waiting for reductions to complete, and
there can be multiple reductions in flight (even for the same
chare collection) at a given time.

An empty reduction can be performed by passing
data=None and reducer=None . Empty reductions are useful

for determining when a group of chares have reached a
certain point in the application, and are typically used as a
synchronization mechanism.

3In many cases data will be a NumPy array.



The following is a simple example of a sum reduction
performed by members of a chare array, with the result being
sent to element 0 of the array:

1 class Worker(Chare):
2

3 def work(self, data):

4 data = numpy.arange(20)

5 self.contribute(data, Reducer.sum,

6 self.thisProxy[0].getResult)

7

8 def getResult(self, result):

9 print("Reduction result is", result)

10 charm.exit()

11

12 def main(args):

13 # create 100 workers

14 array = Array(Worker, 100)

15 array.work()

16

17 charm.start(main)

1) Custom reducers: Users can also define their own re-
ducer functions in CharmPy. The reducer function must take
a single parameter which is a list of contributions (each
from a different chare), and return the result of reducing the
contributions. Registration of the reducer with CharmPy is
done by calling Reducer.addReducer(myReducerFunc) .

G. Chare arrays

The syntax to create N-dimensional chare arrays is:
proxy = Array(ChareClass, dims, args)

where dims is a tuple indicating the size of each dimension,
and args the list of arguments passed to the constructor of
every member. This will create

∏|dims|−1
i=0 dimsi chares. N-

dimensional arrays are indexed using Python n-tuples.
Arrays can also be sparse, i.e. a chare for every index in the

index space need not exist. In this case, elements are inserted
dynamically by the application. First, the array is created with
the following syntax:

proxy = Array(ChareClass, ndims=n, args)

where n is the number of dimensions of the index space.
Elements can subsequently be inserted by calling:

proxy.ckInsert(index, args)

followed by a call to proxy.ckDoneInserting() when
there are no more elements to insert. Custom indexes are
also supported as long as they hash to a unique integer (by
redefining Python’s __hash__ method).

1) ArrayMaps: When an array is created, the mapping of
chares to PEs is by default decided by the runtime. This
mapping can be customized using a built-in chare type called
ArrayMap. The application can provide its own ArrayMap
by defining a new chare class that inherits from ArrayMap
and redefining the def procNum(self, index) method. This
method takes an element index and returns the PE number
where it should be created. A group of ArrayMap chares must
be created prior to creating the array, and the proxy passed to
the array creation function. For example:

1 class MyMap(ArrayMap):
2 def procNum(self, index):

3 return index[0] % 20

4

5 def main(args):

6 my_map = Group(MyMap)

7 my_array = Array(MyChare, 10, map=my_map)

H. Waiting for events

1) Threaded entry methods: In CharmPy, entry methods
can run in their own thread when tagged with the @threaded

decorator4. This allows pausing the execution of the entry
method to wait for certain events. While the thread is paused,
the runtime can continue scheduling other work in the same
process. Threaded entry methods enable writing asynchronous
applications in direct-style programming, simplifying expres-
sion of control flow. More specifically, it enables the two
mechanisms described next.

2) Wait for chare state: The wait construct provides a
convenient way to suspend execution inside a chare’s entry
method until the chare reaches a specific state. The syntax is:

self.wait('condition')

where condition is a string specifying a Python conditional
statement, which is meant to evaluate the chare’s state. Reach-
ing this state will generally depend on the interaction of the
chare with other chares. As an example, consider the following
use case, where a chare performs an iterative computation. In
each iteration, the chare sends data to a set of chares, waits to
receive data from the same chares and subsequently performs
a computation. The code is shown below:

1 @threaded

2 def work(self):

3 for iteration in range(NUM_ITERATIONS):

4 for nb in self.neighbors:

5 nb.recvData(...)

6 self.wait(

7 'self.msg_count == len(self.neighbors)')

8 self.msg_count = 0

9 self.do_computation()

10

11 def recvData(self, data):

12 self.msg_count += 1

13 # ... process data ...

Note that, to suspend control flow, the caller must be
running within the context of a threaded entry method5.

3) Futures: A future [22] is an object that acts as a proxy
for a result that is initially unknown. Futures are present
in many modern programming languages. In CharmPy, they
are evaluated asynchronously, and will only block when the
creator attempts to retrieve the value.

As explained in section II-D, futures can be used to query
the result of remote calls. In addition, CharmPy allows futures
to be created explicitly, sent to other chares, and be used to

4The main function or entry point is automatically threaded by default.
5CharmPy informs at run time if a method needs to be marked as threaded.



wait until an arbitrary operation (possibly involving multiple
chares, and sequence of remote method invocations and reduc-
tions) has been completed. Chares in possession of the future
can use it to send a value to the waiting chare. For example:

1 @threaded

2 def start(self):

3 f1 = charm.createFuture()

4 f2 = charm.createFuture()

5 remoteChare.doWork(f1, f2)

6 # ... do other work ...

7 print('Value of future 1 is', f1.get())

8 print('Value of future 2 is', f2.get())

9

10 def doWork(self, f1, f2):

11 # ...

12 f1.send(x) # send value to future 1

13 # ...

14 f2.send(y) # send value to future 2

Futures can also be used as reduction targets:

1 class Worker(Chare):
2 def doWork(self, done_future):

3 x = ...

4 self.contribute(x, Reducer.sum, done_future)

5

6 def main(args):

7 # create 100 workers

8 workers = Array(Worker, 100)

9 result = charm.createFuture()

10 workers.doWork(result)

11 # wait for work to complete and final reduction

12 print('Reduction result is', result.get())

13 charm.exit()

14

15 charm.start(main)

I. Chare migration

Chares can migrate from one process to another. Reasons
for migrating chares usually have to do with resource man-
agement, for example:
• Place communicating chares in the same process, host,

or nearby host, to minimize latency and maximize band-
width.

• Balance computational load, particularly if the workload
of chares is not homogeneous.

The most common scenario is to let the runtime migrate
chares where it considers appropiate, and the application
only needs to signal the runtime at suitable points during
execution at which to do this. However, chares can also be
manually moved to a PE of the user’s choice by calling:
self.migrate(toPe)

The runtime takes care of serializing the object, migrating
it to the new location and ensuring that messages directed
to the object keep getting delivered [7]. CharmPy uses the
pickle library to serialize chares, which by default attempts

to serialize all of the attributes of the chare (which must be
pickable). The application can customize what gets pickled
(and in what form), by defining the __getstate__ and
__setstate__ methods [23].

J. Automatic load balancing

The Charm++ runtime has a load balancing framework that
can automatically measure the load of chares, calculate a new
assignment of chares to PEs (to balance load and/or optimize
communication) and migrate the chares based on the obtained
assignment. All of this occurs in a way that is transparent to
the application. Possible ways to use this framework are for
the application to tell the runtime when it is ready for load
balancing, or by having the runtime perform load balancing
periodically. CharmPy can leverage this framework, and we
illustrate the benefits of load balancing in section V.

III. USE CASE: DISTRIBUTED PARALLEL MAP WITH
CONCURRENT JOBS

The map function is a feature in many programming lan-
guages that applies a given function to each element of a
list, returning a list of results in the same order. Map can be
implemented in parallel by applying the function to different
inputs in parallel, collecting the results, and returning them to
the caller. Python’s multiprocessing library [24] implements a
parallel version, however it is limited to a single node.

In this section, we will show how to implement a distributed
parallel version that can run on multiple nodes using CharmPy.
The implementation uses the well-known Master-Worker pat-
tern. We will call each item of the input list a task. The master
can coordinate multiple independent map jobs at the same time
(which can be launched at different times), and is in charge of
dynamically giving tasks to idle workers, thus ensuring that
load balancing is achieved even in cases where tasks have
disparate workloads.

First we show how the user-facing API looks:

1 def f(x):

2 return x*x

3

4 def main(args):

5 pool = Chare(MapManager, onPE=0)

6 f1 = charm.createFuture()

7 f2 = charm.createFuture()

8 tasks1 = [1, 2, 3, 4, 5]

9 tasks2 = [1, 3, 5, 7, 9]

10 pool.map_async(f, 2, tasks1, f1)

11 pool.map_async(f, 2, tasks2, f2)

12 print("Final results are", f1.get(), f2.get())

13 charm.exit()

14

15 charm.start(main)

In this example, the main function creates a single master
chare on PE 0, which will coordinate the pool of workers
(line 5). It launches two separate jobs at the same time, to
apply function f to two different lists of items. A map job
is initiated by calling the method map_async of the master,



which receives the function to apply, the desired number of
processors to use for the job, the list of tasks, and the future
where the end result must be placed. It will block on line 12
waiting for the result of both jobs to arrive.

Now we will show how the master and workers are imple-
mented6). A worker is a chare that has a start method used
to signal the start of a new job. The method receives the job
ID, the function to apply, the list of tasks in the job, and a
proxy to the master. The code for workers is shown below:

1 class Worker(Chare):
2

3 def start(self, job_id, f, tasks, master):

4 self.job_id = job_id

5 self.func = f

6 self.tasks = tasks

7 self.master = master

8 # request a new task

9 master.getTask(self.thisIndex, job_id)

10

11 def apply(self, task_id):

12 result = self.func(self.tasks[task_id])

13 self.master.getTask(self.thisIndex,

14 self.job_id, task_id,

15 result)

In addition, workers have a method called apply that
receives a task ID and applies the function to the specified
task (line 12). Subsequently, it calls the method getTask of
the master (line 13) to request a new task. The arguments
are the chare’s index in the collection of workers (used to
identify the worker), the job ID, and the ID and result of the
last executed task (note how the previous result is sent at the
same time as a new task is requested).

Next, we show the code for the master:

1 class MapManager(Chare):
2

3 def __init__(self):

4 # create a Worker in every processor

5 self.workers = Group(Worker)

6 self.free_procs = set(range(1,

7 charm.numPes()))

8 self.next_job_id = 0

9 self.jobs = {}

10

11 def map_async(self, func, numProcs, tasks,

12 future):

13 """start a new map job"""

14 # select free processors

15 free = [self.free_procs.pop()

16 for i in range(numProcs)]

17 job = self.addJob(tasks, free, future)

18 # tell workers in free processors to start

19 for p in free:

20 self.workers[p].start(job.id, func, tasks,

21 self.thisProxy)

22

6Trivial bookkeeping code is omitted for brevity.

23 def getTask(self, src, job_id, prev_task=None,

24 prev_result=None):

25 """called by worker to get a new task"""

26 job = self.jobs[job_id]

27 if prev_task is not None:

28 job.addResult(prev_task, prev_result)

29 if not job.isDone():

30 next_task = job.nextTask()

31 if next_task is not None:

32 self.workers[src].apply(next_task)

33 else:
34 for p in job.procs: self.free_procs.add(p)

35 self.removeJob(job)

36 job.future.send(job.results)

When the master is instantiated, it creates one worker on
every PE by using a Group (line 5). It also initializes a
set that is used to track which processors are not executing
any job (line 6). When a new map job is requested via the
map_async method, the master selects the requested number

of free processors, stores the job information and signals the
workers on the selected processors to start. Workers will begin
requesting tasks by calling the method getTask of the master.
This method simply stores the result provided by the worker,
and sends a new task if there are more tasks to complete. If the
job is done, it sends the result to the future that was provided
by the user.

The full program is less than 100 lines of code and is
available in the CharmPy source code repository.

Although a functionally equivalent program can technically
be implemented using MPI, it requires a non-trivial amount of
low-level code, more so if we want an API that is similar in
terms of simplicity. Required low-level code would include: (a)
asynchronous communication; (b) ability to receive messages
of different types, from any source, at any time, and deliver
to multiple destinations in a given process; (c) threads.

To illustrate this, note how PE 0 executes both the main
function and the Master chare. At one point, the main function
is waiting for two types of events (to receive the value of
futures f1 and f2, being unknown which one will arrive first
or from which process). At the same time, the master chare
needs to process messages from any worker asking for new
tasks, and could also receive messages asking to start new jobs
(map async).

This requires a non-blocking receive loop that can process
any message type from any source, increasing the amount of
low-level code needed. When a message is received, the type
of the message and destination object needs to be determined,
the arguments unpacked, and passed to the correct destination.
Because communication must be non-blocking, and messages
can be processed at different points in the code, threads are
also required if we want application code to be able to wait
until a certain event happens without exiting a function (see
for example lines 10-12 in the main function).

CharmPy handles all of this complexity transparently, hiding
it from the application.



IV. IMPLEMENTATION DETAILS

CharmPy is implemented as a collection of Python modules
that access the Charm++ runtime. In this section, we provide
implementation details on selected parts of CharmPy.

A. Parallelism

CharmPy programs are launched in the same way as many
existing parallel applications (for example, those based on MPI
and Charm++) that launch multiple processes on clusters and
supercomputers. In this case, the executable that is launched
is the Python implementation (e.g. CPython, Intel Python or
PyPy), and the CharmPy program is passed as an argument.

The most common Python implementations do not support
concurrent threads due to the restriction imposed by the Global
Interpreter Lock (GIL) [25]. This does not represent a problem
towards achieving parallelism, because we can run multiple
CharmPy processes, which is also a typical use case with
MPI. Chares running on different PEs will do so in different
processes and execute concurrently.

It is important to note that the GIL restriction need not
affect high-performance application code, and that efficient
multithreading is possible for any code that runs outside of
the interpreter. There are many common use cases for this
in CharmPy, e.g.: NumPy can internally use multithreaded
libraries; Intel Python uses MKL to accelerate NumPy, scikit-
learn and other libraries; Numba can generate native multi-
threaded code; and OpenMP code can be called from Python.

B. Serialization

Remote methods are invoked like regular Python methods,
with the arguments serialized and packed into a message.
Arguments that are NumPy arrays, or other array structures,
with contiguous memory layouts are copied directly from the
object’s memory buffer into the message. For these types of
arguments, CharmPy includes metadata in the message header,
to allow rebuilding them at the destination.

For all other types, CharmPy uses the pickle module [23] to
serialize method arguments. Pickle can automatically serialize
most Python types, including user-defined types. In addition,
pickling of user-defined types can easily be customized, to
decide what gets pickled and in what form [23]. In some
situations, the overhead imposed by pickling can be too high
(this is particularly true in fine-grained scenarios when pick-
ling user-defined types). For the application critical path, we
recommend using built-in data types and NumPy arrays (these
bypass pickling altogether) when invoking remote methods.

Similarly, chares are also pickled when they migrate (ex-
plained in section II-I).

C. Message passing

When a remote method is called, the arguments are serial-
ized and packed into a message that is passed to the Charm++
library. Scheduling and inter-process communication is han-
dled by Charm++. Messages are sent from the process where
the source object is located to the process with the destination
object. When a message reaches the destination process, it

goes through the scheduler and delivered to the CharmPy
runtime, which takes care of unpacking and deserializing the
message and invoking the corresponding Python method.

As explained in section II-D, if the source and destination
objects are on the same process, the data is not copied into
a message and instead is passed by reference directly into a
buffer of the destination object. Note that this differs from
the general behavior of Charm++ and is made possible by the
Python runtime.

Charm++ provides many communication layers, including
one based on MPI, as well as layers for special interconnects
like Intel OFI, Cray GNI and IBM PAMI.

D. Reductions
Reductions involving common functions (like sum, max

and min) with primitive data types (e.g. integer and floating
point numbers) are performed entirely in C++ by the Charm++
runtime. In this case, the data is passed from CharmPy to the
Charm++ library, which performs the reduction, asks CharmPy
to convert the result to a CharmPy-compliant message, and
sends the result to the target. Charm++ internally performs
reductions in a distributed fashion using topology-aware span-
ning trees. For custom reducers, reductions are performed in
a similar way, with the distinction that Charm++ transfers
control to CharmPy when the user-defined reduction function
needs to be applied.

E. Cython implementation of CharmPy
Python modules can be implemented in C as so called C-

extension modules. These interact with the Python interpreter
at the C-level, are compiled, and can be used from code written
in Python. Cython [18] generates C-extension modules from
Python and Pyrex language, which is a superset of Python that
allows for specific C constructs (particularly C types).

We have recently implemented critical parts of CharmPy in
Cython, and will continue to extend this to other parts, as well
as make further use of low-level optimizations. Note that all
of this is transparent to application-level code and does not
affect CharmPy’s programming model or API.

V. PERFORMANCE EVALUATION WITH PARALLEL
SCIENTIFIC WORKLOADS

In this section we evaluate the performance of CharmPy on
two different supercomputers: Blue Waters [26], a Cray XE
system with AMD 6276 “Interlagos” processors and 3D torus
topology; and Cori [27], a Cray XC40 system with Intel Xeon
Phi “Knight’s Landing” (KNL) nodes and Dragonfly topology.

We run two mini-apps: a 7-point stencil code on a 3D
grid (referred to as stencil3d), and a molecular dynamics
(MD) miniapp called LeanMD [28]. We have implemented
versions of both mini-apps that are fully written in Python,
with their computation-heavy functions compiled at runtime
using Numba7 [17]. As we will see, the performance achieved
is similar to the equivalent C++ code. For stencil3d, we also
compare performance with an MPI version of the code.

7All that is required is writing @numba.jit before the function decla-
ration.
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Fig. 1. Performance of stencil3d on Blue Waters (weak scaling) on up to
2048 nodes (using 32 cores per node), and 1000 iteration run.

A. Stencil3d

The stencil3d benchmark implements a 7-point stencil code
on a 3D grid decomposed into equal-sized blocks. The code
is part of the CharmPy source code repository [21]. For
this experiment, we also implemented an MPI version using
mpi4py [29], which shares code with the CharmPy version.
The compute kernel is the same in both versions, and is JIT-
compiled at runtime using Numba/LLVM. The MPI code is
thus similar to an MPI+C version, but note that there is an
advantage over precompiled code in that the exact block size
is known at JIT-compile time, and thus the quality of loop
unrolling by LLVM can improve.

For MPI, we decompose the grid into N blocks, where N
is the number of MPI ranks. CharmPy can use any arbitrarily
fine-grained decomposition, i.e. the grid can be decomposed
into any number of blocks (where each block is a chare),
and there can be multiple blocks per process. The level of
decomposition can be tuned without altering the structure of
the program. For this experiment, however, we use the same
decomposition as MPI (one block (chare) per process) because
this is a highly regular application with no load imbalance.

Fig. 1 shows results of a weak scaling scenario on Blue
Waters on up to 2048 nodes. As we can see, the performance
of all three implementations is similar. In the worst case, the
performance of CharmPy is only 6.2% lower than Charm++
(with 32k cores). The performance of the Charm++ version
performs best in all cases, which is expected since it is fully
implemented in C++, whereas the other two versions run part
of their code in Python. It is worth noting that one of the
main reasons why the performance of the Python versions
is similar to C++ is because the compute kernel and other
numerical sections (which are written in Python), are compiled
to machine-optimized code using Numba. Based on the results,
we can also see that CharmPy does not add a significant
amount of runtime overhead compared to MPI or Charm++.

Fig. 2 shows a strong scaling scenario on 2 KNL nodes of
Cori, scaling from 8 to 128 cores. Performance scales linearly
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Fig. 2. Performance of stencil3d on 2 Cori KNL nodes (strong scaling) on
1000 iteration run. The y-axis scale is logarithmic.

from a time-per-step of roughly 1600 ms to 110 ms (y-axis
scale is logarithmic). We observe very similar performance
between the three implementations.

B. Stencil3d with load imbalance

To show the dynamic load balancing capabilities of
CharmPy, we modified the stencil3d benchmark to simulate
load imbalance by having blocks perform different amount
of work. This is achieved by extending the duration of the
compute kernel by a factor αi that varies depending on the
block index i. That is, on each iteration the program measures
the time to run the compute kernel (denoted as tk), and waits
for tk × αi seconds. Let N be the total number of blocks
in the MPI version. Blocks with i ≤ 0.2N or i ≥ 0.8N
always have a fixed load factor of α = 10. For the rest,
αi = 100 i

N + 5d iter30 e, where iter is the current iteration
number. In practice, the nature of the imbalance is such that the
ratio between the maximum load of a block and the average
load of blocks is approximately 2.1 on average in the cases
tested8.

For CharmPy, we use a finer-grained decomposition of 4
blocks (chares) per process, required to be able to balance
load by migrating chares. To ensure that the load of each
portion of the grid is the same between MPI and CharmPy,
the decomposition is made in a way that every chare is strictly
within the confines of an MPI block, and chares that are part
of the same MPI block i have the same load factor αi.

Fig. 3 shows the results. For CharmPy and Charm++, we
test with dynamic load balancing on and off (“lb” and “no
lb”, respectively). The application tells the runtime to balance
load every 30 iterations. As we can see, the performance
without load balancing is again very similar between the three
implementations. With load balancing, performance improves
substantially, ranging from 1.9x to 2.27x speedup.

8The average load is the lowest bound on the best possible maximum load
after load balancing, and may or may not be achievable in practice depending
on how load is quantized among blocks.
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Fig. 4. Performance of LeanMD on Blue Waters with 8 million particles
(strong scaling). The y-axis scale is logarithmic.

C. LeanMD

LeanMD is a molecular dynamics simulation program for
Charm++ that simulates the behavior of atoms based on
the Lennard-Jones potential (which describes the interaction
between two uncharged molecules or atoms). The computation
performed in this code mimics the short-range non-bonded
force calculation of NAMD [8], and resembles the LJ force
computation of the miniMD benchmark in the Mantevo bench-
mark suite [30].

LeanMD uses a very fine-grained decomposition where a
PE can have hundreds of chares at a given time, and there is
simultaneous communication between many small groups of
chares. We fully ported LeanMD to Python, with the physics
code JIT-compiled by Numba.

Fig. 4 shows results running a strong-scaling benchmark
on Blue Waters with 8 million particles. The performance of
CharmPy is within 20% of the C++ version. This difference
is higher than that observed in the previous benchmarks. The
reason is the extra overhead of the CharmPy runtime, which

is more pronounced in this case due to the large amount of
chares per PE. We expect these results to improve in future
versions of CharmPy, by making further use of Cython in
performance-critical parts of the runtime, and heavier use of
C-level optimizations (as explained in section IV-E).

VI. CONCLUSION AND FUTURE WORK

CharmPy is a parallel programming model based on the
Python language and built on top of the Charm++ runtime.
The model is based on the paradigm of distributed migratable
objects with asynchronous message-driven execution. Adap-
tive runtime capabilities include dynamic load balancing and
automatic overlap of computation and communication.

Our main design goals for CharmPy include simplicity,
productivity, and the ability to take advantage of an efficient
adaptive runtime system. In addition, we believe that providing
a high-level parallel and distributed programming framework
for Python, based on a proven model and runtime is important,
as Python is quickly becoming very popular and its use
widespread in areas like scientific computing, data science and
machine learning. Distributed machine learning, for example,
is an scenario that is being tackled by Ray (which shares
some capabilities with CharmPy), and can benefit from the
scalability and performance of CharmPy.

In this paper, we have explained the concepts and syntax of
CharmPy, showing how to write parallel applications. One of
the examples shown (implemented on less than 100 lines of
code) is a general-purpose distributed map function that can
run independent jobs simultaneously on multiple nodes, with
load balancing support. We have also shown that it is possible
to write parallel applications in Python using CharmPy that
scale to very large core counts on supercomputers, and perform
similarly to the equivalent MPI or C++ versions.

As future work, we plan to continue incorporating features
from Charm++, including: fault-tolerance, shrink-expand,
power and temperature optimizations, and upcoming support
for heterogeneous computing. Shrink-expand (the capability
to vary the amount of hardware resources during execution)
is particularly useful in cloud environments. Heterogeneous
computing will allow leveraging CPUs, GPUs and other accel-
erators on a node dynamically, balancing load between them.
We are also planning on developing higher-level abstractions
to distribute common Python workflows and data structures
like NumPy arrays and pandas dataframes in a way that
preserves their APIs.
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