
Adaptive Methods for Irregular Parallel Discrete Event
Simulation Workloads

Eric Mikida

University of Illinois at Urbana-Champaign

mikida2@illinois.edu

Laxmikant Kale

University of Illinois at Urbana-Champaign

kale@illinois.edu

ABSTRACT
Parallel Discrete Event Simulations (PDES) running at large scales

involve the coordination of billions of very fine grain events dis-

tributed across a large number of processes. At such large scales

optimistic synchronization protocols, such as TimeWarp, allow for

a high degree of parallelism between processes, but with the addi-

tional complexity of managing event rollback and cancellation. This

can become especially problematic in models that exhibit imbalance

resulting in low event efficiency, which increases the total amount

of work required to run a simulation to completion. Managing this

complexity becomes key to achieving a high degree of performance

across a wide range of models. In this paper, we address this issue

by analyzing the relationship between synchronization cost and

event efficiency. We first look at how these two characteristics are

coupled via the computation of Global Virtual Time (GVT). We then

introduce dynamic load balancing, and show how, when combined

with low overhead GVT computation, we can achieve higher effi-

ciency with less synchronization cost. In doing so, we achieve up

to 2× better performance on a variety of benchmarks and models

of practical importance.

ACM Reference format:
Eric Mikida and Laxmikant Kale. 2018. Adaptive Methods for Irregular

Parallel Discrete Event Simulation Workloads. In Proceedings of SIGSIM
Principles of Advanced Discrete Simulation, Rome, Italy, May 23–25, 2018
(SIGSIM-PADS’18), 12 pages.
https://doi.org/10.1145/3200921.3200936

1 INTRODUCTION
Discrete Event Simulation (DES) is a powerful tool for studying

interactions in complex systems. These simulations differ from tra-

ditional time-stepped simulations in that the events being simulated

occur at discrete points in time, which may not be uniformly dis-

tributed throughout the time-window being simulated. This makes

DES ideal for modeling systems such as traffic flow, supercom-

puter networks, and integrated circuits [10, 16, 30]. Each of these

modeling systems create events which a DES simulator executes in

timestamp order. As these systems being simulated grow in size and

complexity, the capability of sequential DES becomes insufficient,

and the need for a more powerful simulation engine presents itself.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGSIM-PADS’18, May 23–25, 2018, Rome, Italy
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5092-1/18/05. . . $15.00

https://doi.org/10.1145/3200921.3200936

Parallel Discrete Event Simulations (PDES) can potentially in-

crease the capability of sequential simulations, both by decreasing

time to solution and by enabling larger and more detailed models

to be simulated. However, this shift to a distributed execution envi-

ronment raises the question of how to maintain timestamp order

across multiple independent processes. Various synchronization

protocols for PDES have been proposed and well studied to address

this concern. In this paper, we focus on the Time Warp protocol

originally proposed by Jefferson et al. [17]. In the Time Warp pro-

tocol, events are executed speculatively, and when a causality error

between events is detected, previously executed events are rolled

back until a point in time is reached where it is safe to resume

forward execution.

The Time Warp protocol has been shown to achieve high perfor-

mance and scalability at large scales in numerous instances [4, 21],

however it is often the case that the models used in these studies

naturally result in a uniform and balanced execution. In realistic

models where the execution has a more irregular distribution, there

is the possibility of cascading rollbacks as described in [12]. In this

paper we aim to improve the performance and robustness of the

Time Warp protocol by developing techniques that adaptively deal

with irregularity and imbalance present in more realistic models

operating at large scales. In order to do so we focus on two related

characteristics that factor into a simulations performance: efficiency

and synchronization cost, where efficiency is the ratio of committed

events to total number of events executed.

The work and results presented in this paper utilize theCharm++

Adaptive Discrete Event Simulator (Charades). Charades was origi-

nally implemented as a Charm++ version of the Rensselaer Opti-

mistic Simulation System (ROSS) [7]. ROSS has repeatedly demon-

strated high performance at large scales, especially for network

topology models [4, 23, 29]. In [21], Mikida et al. demonstrates the

effectiveness of building ROSS on top of the Charm++ adaptive run-

time system, where performance of the models tested was improved

by 1.4 − 5× due to a more effective management of fine-grained

communication. Charades is based on this Charm++ version of

ROSS, but with major changes to the underlying infrastructure to

exploit more of the features of Charm++.

In Section 4, we study different configurations of the GVT compu-

tation and their effects on synchronization cost and event efficiency.

We show a coupling between event efficiency and synchronization

cost, which creates a tradeoff between the two quantities. In Sec-

tion 5 we study load balancing as an additional way to control event

efficiency, and show evidence that load balancing can be used to im-

prove efficiency in GVT algorithms which sacrifice event efficiency

for lower synchronization costs.

https://doi.org/10.1145/3200921.3200936
https://doi.org/10.1145/3200921.3200936

The main contributions we make in this paper are:

• Analysis of the tradeoff between synchronization cost and

event efficiency present in blocking GVT algorithms

• Development of a scalable version of a non-blocking GVT

algorithm for distributed systems

• Improvements to an existing distributed load balancing strat-

egy for PDES use cases

• Analysis of load balancing as an additional efficiency control

in concert with the non-blocking GVT algorithm

2 BACKGROUND AND RELATEDWORK
In this section, we describe Charm++ and Charades, the software

infrastructure used throughout the rest of this paper, as well as

ROSS which the work was originally based upon. We also discuss

related work in the area of GVT algorithms and load balancing in

PDES.

2.1 CHARM++
Charm++ is a parallel programming framework built upon the

notion of parallel asynchronous objects, called chares [1, 3]. In-

stead of decomposing applications in terms of cores or processes,

Charm++ applications are decomposed into collections of chares.

The Charm++ runtime system manages the placement of these

chares and coordinates the communication between them.

Forward progress of an application is based on message-driven

execution. Chares communicate via asynchronous one-sided mes-

sages, and only chares with incoming messages are scheduled for

execution. This allows the runtime to adaptively schedule chares

for execution based on the availability of work, and also leads to an

adaptive overlap of communication and computation. This overlap

relies on the fact that Charm++ applications are generally over-

decomposed: there are many more chares in the application than

there are cores.

Over-decomposition also gives the runtime system flexibility

in location management of chares, and enables another important

feature of Charm++: migration. Since the location and scheduling

of chares is managed entirely by the runtime system, it has the free-

dom to migrate chares between different hardware resources as it

sees fit. This enables features such as automated checkpoint/restart,

fault-tolerance, and dynamic load balancing.

Charm++ has a robust dynamic load balancing framework, en-

abled by migratable chares, which allows applications to dynam-

ically balance load across processes during execution. The load

balancing framework monitors execution of chares as the applica-

tion runs, and migrates chares based on the measurements it takes

and the chosen load balancing strategy. There are many built-in

load balancing strategies distributed with Charm++, as described in

Section 5. These strategies vary widely in factors such as overhead

incurred, whether or not communication is taken into account, and

how the load information is aggregated across processes.

2.2 ROSS
ROSS is a massively parallel PDES implementation developed at

RPI [6]. It utilizes the TimeWarp protocol to synchronize optimistic

simulations, where the specific mechanism for recovering from

causality violations is based on reverse execution. Each LP has a

forward event handler and a reverse event handler.When a causality

violation occurs, the affected LPs execute reverse event handlers for

events in the reverse order until they reach a safe point in virtual

time to resume forward execution. ROSS is implemented on top

of MPI, and demonstrates high performance and scalability on a

number of models. Barnes et al. obtained 97× speedup on 120 racks

(1.6 million cores) of Sequoia, a Blue Gene/Q system at Lawrence

Livermore National Laboratory, when compared to a base run on 2

racks [4], and they have a number of publications showing highly

scalable network models [23, 29].

In [21], ROSS is reimplemented on top of Charm++ in order

to take advantage of the adaptive and asynchronous nature of the

Charm++ runtime system. The primary difference between the

MPI and Charm++ implementations is the encapsulation of LPs as

chares in the Charm++ implementation, which enables the runtime

system to adaptively schedule and migrate LPs during simulation

execution. Suitability of the Charm++ programming model for

PDES applications is evidenced by a decrease in the size of the

code base by 50%, and by the increased performance and scalability

for the PHOLD benchmark and the Dragonfly model simulating

uniform traffic patterns. PHOLD event rates were increased by up

to 40%, while the event rate for the Dragonfly model were reported

to be up to 5× higher.

2.3 Charades
Charades is the simulation engine used for the experiments in this

paper, and is an evolution of the Charm++ version of ROSS. The

underlying infrastructure has been redesigned so that the GVT

computation and the Scheduler are separated into two distinct and

independent sets of chares. This allows for amodular class hierarchy

for the GVT manager chares, which aids in the development of

different GVT algorithms that can be selected from and instantiated

at runtime. Furthermore, the separation of the Scheduler and GVT

manager into independent sets of chares allows the runtime to

more effectively overlap work between GVT computation and event

execution. This is particularly important for the work in Section 4,

where the work of the GVT computation is overlapped with event

execution to decrease synchronization costs.

In addition to the redesigned infrastructure, Charades LPs are

alsomigratable by virtue of beingwritten as chares with routines for

serialization and DE-serialization. This allows them to work within

the Charm++ load balancing infrastructure. Furthermore, the LPs

monitor various metrics that can be fed into the load balancing

framework as a substitute for CPU time when determining the load

of an LP.

2.4 GVT Computation
A significant amount of work has been devoted to the study of the

GVT computation in optimistic simulations. The frequency at which

it needs to occur, and the fact that it requires global information can

cause it to become a major bottleneck if not synchronized properly.

Non-blocking GVT algorithms have been shown to be successful

on shared-memory systems by both Gomes et al. [15] and Fujimoto

et al. [13]. On distributed systems, non-blocking algorithms which

rely on atomic operations and machine clocks were studied by

Chen et al. [9] and as part of the ROSS simulation system in [5].

Srinivasan’s implementation in [27] relies on hardware support,

specifically optimized for communicating global synchronization

information. The SPEEDES simulation system also implemented an

algorithm for computing the GVTwithout blocking event execution,

however it did so by preventing the communication of new events

until after the GVT computation [28].

For this work we have implemented a GVT algorithm targeted

at high performance distributed computing environments based on

the distributed snapshot algorithms proposed by Mattern and Peru-

malla [18, 25]. The GVT algorithm work is dynamically overlapped

with other simulation tasks by the runtime system, including sched-

uling, event reception and execution, fossil collection, and rollbacks.

We specifically look at the GVTs effects on event efficiency and syn-

chronization cost. A more detailed description is given in Section 5

as well as results on 2048 processes.

2.5 Load Balancing
In [8], load balancing was shown to be effective for PDES appli-

cations running in a network of multi-user workstations. Simi-

larly, [14] demonstrates dynamic load balancing on shared-memory

processors by utilizing active process migration. Meraji et al. [20]

shows benefits of load balancing for gate-level circuit simulations,

and Deelman et al. utilizes load balancing for explicitly spatial

models [11]. Here, we propose a more generalized load balancing

framework, and one that is focused on HPC environments. We

specifically look at load balancing as a tool to improve efficiency in

conjunction with the GVT methods described in Section 4.

3 MODELS
To develop a better understanding of the impact of the techniques

explored in this paper, we focus on variations of three diverse mod-

els with wide applicability: PHOLD, Dragonfly [22], and Traffic [2].

3.1 PHOLD
PHOLD is arguably the most commonly used micro-benchmark in

the PDES community [4, 12, 31]. A basic PHOLD configuration is

specified by 6 parameters: number of LPs (N), number of starting

events (E), end time (T), lookahead (L), mean delay (M), and per-

centage of remote events (P). At the beginning of the simulation,

N LPs are created, each with with an initial set of E events to be

executed. During the execution of an event, a PHOLD LP creates

and sends a new event to be executed in the future, and thus the

simulation progresses. The execution of events is performed until

the simulation reaches virtual time T .
For sending a new event, an event executed at time t creates an

event that should be executed at time t + d , where d is the delay.

Delay is calculated as the sum of the lookahead, L, and a number

chosen randomly from an exponential distribution with meanM .

With probability P , the destination of the new event is chosen

randomly from a uniform distribution; otherwise, a self-send is

done.

By default, PHOLD leads to a highly uniform simulation with

each LP executing roughly the same number of events distributed

evenly throughout virtual time. Hence, it is not a good represen-

tative of irregular and unbalanced models. We extend the base

PHOLD with a number of parameters which control event and

work distribution in order to make it a suitable representative of

more complex simulation workloads. First, each LP is parameter-

ized by the amount of time it takes to execute an event, which is

controlled via a loop inside of forward execution that checks wall

time until the set amount has elapsed. Secondly, the percentage of

remote events, P , is now also set at the LP level rather than at the

global level for the whole simulation, which means certain LPs can

be set to do self-sends more frequently than others. By adjusting the

distributions of these two parameters, an imbalance can be created

both in the amount of work done by each LP as well as the number

of events executed by each LP.

For the experiments in this paper we use four specific configu-

rations for PHOLD. The baseline configuration (PHOLD Base) is

a balanced configuration that has 64 LPs per process with E = 16,

L = 0.1, M = 0.9 (for an expected delay of 1.0 per event), and

T = 1, 024. For the runs in this paper, this equates to N = 131, 072

total LPs and 2, 097, 152 initial events. For the base case, all LPs use

P = 50% and each event is set to take approximately 1 nanosecond

to process. The following unbalanced configurations modify the

last two parameters for subsets of LPs to create different types of

imbalance.

The work imbalance configuration (PHOLD Work) designates

10% of LPs as heavy LPs that take 10 nanoseconds to process each

event instead of the baseline of 1 nanosecond. This results in a

configuration with approximately twice the total work as PHOLD

Base. The heavy LPs occur in a contiguous block starting at an

arbitrarily chosen LP ID 2, 165. This offset was chosen so that the

block of heavy LPs does not align evenly with the 64 LPs per process,

creating more variation in processor loads that contain heavy LPs.

The event imbalance configuration (PHOLD Event) designates

10% of LPs as greedy LPs that have a remote percentage of 25% in-

stead of 50%, meaning they are twice as likely to do a self-send than

the remaining LPs. These greedy LPs are again set in a contiguous

block starting at 2, 165.

The final configuration (PHOLD Combo) is a combination of the

previous two configurations. 10% of the LPs starting at LP ID 2, 165

are both heavy and greedy, i.e. they perform ten times the work to

process each event in comparison to other LPs, and are also twice

as likely to do a self-send when compared to normal LPs.

3.2 Dragonfly
The Dragonfly model performs a packet-level simulation of the

dragonfly network topology used for building supercomputer in-

terconnects. We use a model similar to the one described in [21]

and [22]. The Dragonfly model consists of three different types of

LPs: routers, terminals, and MPI processes. The MPI process LPs

send messages to one another based on the communication pattern

being simulated. These messages are sent as packets through the

network by the terminal and router LPs.

In this paper we experiment with four different communication

patterns: Uniform Random (DFly UR) where each message sent

goes to a randomly selected MPI process, Worst Case (DFly WC)

where all traffic is directed to the neighboring group in the drag-

onfly topology, Transpose (DFly Trans) where message is sent to

diagonally opposite MPI process, and Nearest Neighbor (DFly NN)

where each message is sent to an MPI process on the same router.

The particular network configuration used in this paper has 24

routers per group and 12 terminals per model, which results in

6, 936 routers connected to 83, 232 terminals and MPI processes.

Note that all these traffic patterns simulate balanced workloads

with roughly the same number of MPI messages received by each

simulated MPI process. Furthermore, only the network traffic is

simulated, and compute time of each MPI process is ignored.

3.3 Traffic
The trafficmodel used in this paper is an extension of a trafficmodel

available in the production version of ROSS [2], with added configu-

ration parameters to create realistic scenarios. This model simulates

a grid of intersections, where each intersection is represented as an

LP. Each intersection is a four-way intersection with multiple lanes.

Cars traveling through this grid of intersections are transported

from one grid point to another through events. Different events in

this simulation represent cars arriving at an intersection, departing

from an intersection, or changing lanes.

Our baseline traffic configuration (Traffic Base) simulates

1, 048, 576 cars in a 256 × 256 grid of intersections for a total of

65, 536 total LPs. Each car chooses a source and a destination

uniformly at random from the set of intersections and travels

from source to destination. From this base configuration we derive

three unbalanced configurations by modifying the distribution

of sources and destinations of the cars. This results in a different

initial distribution of events per LP, as well as a distribution which

changes over time as cars move throughout the grid.

The first configuration (Traffic Dest) represents what traffic may

look like before a large sporting event, where a higher proportion

of cars are traveling to a similar destination. In this particular con-

figuration, 25% of the cars choose destinations in a 16 × 16 block

area at the bottom right corner of the grid, and the rest of the cars

choose their destination randomly.

The second configuration (Traffic Src) represents what traffic

may look like after the sporting event, where a higher proportion

of cars have a similar source. In this case, 10% of the cars start from

a 16 × 16 block area at the top left corner of the grid and the rest of

the cars are evenly distributed.

The final configuration (Traffic Route) is a combination of the

previous two scenarios, where 10% of cars originate from the top

left 16×16 area, and 25% of cars choose the bottom right 16×16 grid

as their destination. This leads to similar patterns as the previous

two distributions, but with the added effect of more cars following

similar routes between their sources and destinations.

4 GLOBAL VIRTUAL TIME COMPUTATION
The calculation of the Global Virtual Time (GVT) is a critical part of

an optimistic PDES simulation. The GVT is the latest virtual time

that has been reached by every LP in the simulation, and therefore

events prior to the GVT can be committed and their memory re-

claimed via fossil collection. In order to prevent the simulator from

running out of memory, the GVT must be computed frequently in

order for fossil collection to keep up with the high rate of event

creation. This, combined with the fact that the GVT computation

requires global information, means that the GVT computation can

quickly become a very costly bottleneck if not handled properly.

Red Red

Red

Synchronous GVT

QD FC

Event Execution Event Execution

Event Execution Event Execution

Asynchronous Reduction

Continuous Execution
Event Exec.

Event Execution Event Execution

RedQD FC

CD FC CD FC

Figure 1: A depiction of three different algorithms for the
GVT computation.

Furthermore, the synchronization required for the GVT computa-

tion can have additional side effects on event execution within the

simulation.

In this section, we study two key components of a GVT calcula-

tion: trigger and algorithm. The trigger determines when and how

often GVT is computed. The algorithm describes the actual process

of computing the GVT, including how the computation is synchro-

nized with the execution of LPs. The original implementation of

Charades uses a count-based trigger and a fully synchronous GVT

algorithm. This scheme is similar to the one implemented within

ROSS and has achieved high performance and scalability as stated

in Section 2. We will take this configuration as a baseline for com-

paring a virtual time-based trigger, and two GVT algorithms with

varying degrees of asynchrony.

4.1 GVT Trigger
The trigger determines when to compute the GVT, and by extension,

the state of the simulation when the GVT computation begins.

The existing trigger is one based on event count. Specifically, each

processor stops executing events and signals it is ready to take part

in the GVT computation after executing N events, where N is a

runtime parameter. This means that, in simulations where events

take roughly the same amount of time to process, each processor

will have roughly equal amounts of work during each GVT interval.

The second trigger we will be looking at is one based on a vir-

tual time leash. With the leash-based trigger, each processor stops

executing events and signals it is ready to take part in the GVT com-

putation after progressingT units of virtual time from the previous

GVT. The aim of this trigger is to keep each processor progressing

at roughly the same rate, while placing less importance on keeping

the amount of work done by each processor balanced.

4.2 GVT Algorithm
The GVT trigger controls when the scheduler signals it is ready

to compute a GVT, however the behavior of the simulator during

the computation, including when event execution resumes, is con-

trolled by the GVT algorithm itself. In the baseline synchronous

algorithm event execution is blocked until the entire GVT compu-

tation is completed. It utilizes the Quiescence Detection library in

Charm++ [26] to wait for all sent events to be received before com-

puting the GVT. The algorithm consists of three parts, as shown in

Figure 1 (top): Quiescence Detection (QD), an All-Reduce (Red), and

Fossil Collection (FC). Since LPs are suspended for the entire GVT

computation, this scheme theoretically has the highest overhead.

However, since all LPs are suspended, this scheme also computes

the maximal GVT since it knows the exact time reached by each

LP. Computing the maximal GVT also results in freeing of maximal

memory during fossil collection.

The following two algorithms preserve this basic structure, but

attempt to exploit the asynchrony in Charm++ in various ways to

decrease the time that LPs must block.

4.2.1 Asynchronous Reduction. The first technique we utilize
to decrease the GVT synchronization cost exploits asynchronous

reductions for the All-Reduce component of the computation. After

quiescence is reached in the synchronous scheme, LPs are still

blocked until after the reduction and the fossil collection occurs

(Figure 1 (top)). This leaves many processors idle while the All-

Reduce is being performed, even though the result of the All-Reduce

is not required to execute more events. To address this shortcoming,

we can restart event execution as soon as quiescence is reached

and each processors local minimum is known, as shown in Figure 1

(mid). This allows the runtime system to adaptively overlap event

execution with the All-Reduce and fossil collection, which reduces

idle time by allowing processors to do meaningful work when they

are not actively involved in the GVT computation.

4.2.2 Continuous Execution. The asynchronous reduction

scheme described above still requires event execution to completely

stop during quiescence detection, which, as we’ll see in our

experimental results, is the more costly part of the GVT synchro-

nization. The second technique we explore aims at completely

eliminating the need for LPs to block, allowing for continuous

event execution throughout the simulation. In order to accomplish

this, we use the concept of phase based completion detection to

implement a scheme similar to the those described by Mattern and

Perumalla [18, 24, 25].

In this algorithm, we use the completion detection library (CD)

in Charm++ [1] as a replacement for the QD phase of the previous

two algorithms. Unlike QD, completion detection monitors only

a subset of messages, and is triggered once all of those messages

have been received. By carefully tagging subsets of events and run-

ning multiple CD instances independently, we enable continuous

execution of events overlapped with the GVT computation.

The execution of the continuous scheme is split into two recur-

ring phases, which we refer to as the red phase and the white phase,

as shown in Figure 1 (bot). Each phase is managed by a single in-

stance of the CD library. When an event is sent in the white phase,

it is tagged as a white event and the white CD instance is informed

so it can increment its count of sent events. Similarly, events sent

during the red phase are tagged as red. When an event is received,

the corresponding CD instance is informed based on the event’s

tag so it can increment its count of received events. When it is

Synchronous Continuous
Model Count Leash Count Leash

PHOLD Base 97% 98% 95% 95%

PHOLD Work 75% 76% 52% 52%

PHOLD Event 54% 84% 60% 60%

PHOLD Combo 54% 93% 31% 31%

DFly Uniform 74% 62% 36% 36%

DFly Worst 39% 91% 2% 2%

DFly Trans 31% 85% 27% 27%

DFly NN 68% 93% 67% 67%

Traffic Base 46% 96% 54% 55%

Traffic Src 12% 97% 16% 16%

Traffic Dest 51% 96% 52% 52%

Traffic Route 11% 97% 15% 15%

Table 1: Table comparing event efficiencies between the two
different triggers. The leash trigger results in higher effi-
ciency for almost all model configurations.

time to switch from one phase to the next, the CD instance for the

current phase is informed that no more events will be sent, which

triggers a series of reductions for that CD instance to determine

the total number of events sent and received. Once the CD instance

detects that the number of sent events equals the number of re-

ceived events, the GVT can be computed with an All-Reduce of the

local minima followed by fossil collection. Throughout the entire

process, events are still being executed in the next phase, and the

work from event execution is overlapped with work for the CD

library, GVT computation, and fossil collection.

One additional difference in this new scheme is how the GVT is

computed from local minima. In the previous two schemes, since

total quiescence is reached, all events have been received and the

GVT is simply the minimum of all received events. However, the

continuous scheme never requires full quiescence so there may

be events in flight that could affect the GVT. In particular, when

switching from one phase to another, for example from white to

red, the simulator is waiting on all white events to arrive but also

sending outgoing red events. Once all white events have been

received the simulator can guarantee the minimum timestamp of

red events sent in the future, however it must also take into account

red events that have already been sent. Since it has no guarantee

that any of the previously sent red events have been received it must

track these events from the sender side. Specifically, between the

time that the phases are switched and events for the previous phase

have all been received, each processor must track the minimum

timestamp of outgoing events and take that into account when

contributing to the minimum All-Reduce.

4.3 Experimental Results
The following experiments were done on all models and config-

urations described in Section 3, using each combination of GVT

trigger and algorithm. Runs were done on 64 nodes (2,048 cores) of

the Blue Waters system at NCSA. The parameters for each trigger

were tuned to achieve the best performance. Multiple runs of each

PHOLD
 B

ase

PHOLD
 W

ork

PHOLD
 E

vent

PHOLD
 C

om
bo

DFl
y U

nifo
rm

DFl
y W

ors
t

DFl
y Tr

ans

DFl
y N

N

Tr
affi

c
Base

Tr
affi

c
Src

Tr
affi

c
Dest

Tr
affi

c
Route

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
p

e
e

d
u

p

Leash Trigger Speedup

Leash Trigger

Figure 2: Speedup of the leash-based trigger over the count-
based trigger, both using the synchronous GVT algorithm.

configuration were performed, but in all cases variance between

runs was negligible.

4.3.1 Leash-Based Trigger. In analyzing the effects of the differ-

ent GVT configurations, we look both at synchronization cost and

event efficiency and how each one impacts event rate. First, ana-

lyzing each GVT trigger under the baseline synchronous scheme

demonstrates the impact that the GVT trigger has on overall perfor-

mance. After tuning the count-based trigger for the highest event

rate, the virtual time leash for the leash-based trigger was initially

chosen so that the total number of GVT computations for the simu-

lation would be similar to what was required by the count metric.

Then the leash was increased or decreased accordingly to find opti-

mum performance. In almost all cases, the best performance came

by decreasing the leash, which resulted in more GVT computations

and a higher synchronization cost, but a higher event efficiency.

Table 1 shows the event efficiency for the two triggers, with the

leash-based trigger achieving higher efficiency for all but one model

configuration. In many cases the improvement in efficiency is signif-

icant, especially in the Traffic model where the leash-based trigger

achieves at least 96% efficiency in all configurations. The models

that see less benefit from the leash-based trigger are those where the

distribution of events across LPs is roughly uniform: PHOLD Base,

PHOLD Work, and DFly Uniform. The increased efficiency means

fewer rollbacks, and so each model has to execute fewer events

when running to completion under the leash-based trigger. Figure 2

shows the speedup of the leash-based trigger when compared to

the count-based trigger, where we see significant speedups for most

of the model configurations. In particular, the Traffic model sees

over 2x speedup for its unbalanced configurations due to the drastic

improvements to efficiency. For model configurations where the

efficiency between the two triggers was comparable, the event rates

are similar for both and may even slightly favor the count-based

trigger. In these cases, the leash-based trigger often spent more

time where LPs were blocked waiting for the GVT, either due to the

leash trigger computing GVT more often, or due to an imbalance

Model Sync Async Reduction
PHOLD Base 2.75s 2.32s (16%)

PHOLD Work 9.23s 8.73s (5%)

PHOLD Event 5.96s 5.50s (8%)

PHOLD Combo 25.14s 24.56s (2%)

DFly Uniform 3.42s 3.79s (-11%)

DFly Worst 4.73s 3.07s (35%)

DFly Trans 7.51s 5.51s (27%)

DFly NN 0.59s 0.28s (53%)

Traffic Base 5.27s 4.16s (21%)

Traffic Src 22.20s 20.80s (6%)

Traffic Dest 8.30s 7.15s (14%)

Traffic Route 26.35s 24.66s (6%)

Table 2: Table comparing the amount of time LPs spend
blocking (in seconds) under the synchronous and asynchro-
nous GVT reduction algorithms, as well as the percent im-
provement when using the asynchronous reduction.

in the amount of time spent blocking on the GVT since the number

of events computed on each PE varies per GVT in the leash-based

trigger.

4.3.2 Asynchronous Algorithms. Where the trigger had a more

profound effect on event efficiency, the primary impact of the differ-

ent GVT algorithms is in reducing the synchronization cost. Due to

the fact that the leash-based trigger provided comparable or better

performance in most cases, we will first look at the effects of each

GVT algorithm when using the leash trigger. Table 2 shows the

amount of time LPs spent blocking on the GVT computation for the

synchronous algorithm and the asynchronous reduction algorithm.

Time spent blocking when using the continuous algorithm is zero

in all cases, so is not shown in the table. The table also shows the

percent change, and we see a reduction in time blocking by over

20% in most of the Dragonfly models, and over 10% in PHOLD

Base, Traffic Base, and Traffic Dest. However this also highlights

the fact that the majority of the time spent blocking on the GVT

comes from Quiescence Detection. In Figure 3 (right), which plots

the speedup of the two GVT algorithms when compared to the

synchronous algorithm, we see that in most cases the speedup from

the asynchronous reduction scheme is comparable to the reduction

in blocking time. The results are especially pronounced in the Drag-

onfly and Traffic models, which have a lower ratio of event work

to GVT work, whereas the PHOLD models generate more events

and a smaller fraction of them are able to be executed during the

time freed up by the asynchronous reduction.

Figure 3 shows the effects of the continuous algorithm which

eliminates all LP blocking during the GVT. In cases where the

asynchronous reduction was able to improve event rate by reduc-

ing synchronization cost, we see that the continuous scheme was

able to be even more effective, achieving up to 1.5× speedup for

DFly Uniform and Traffic Base, and 3× speedup for DFly NN. For

DFly Worst, PHOLD Event, and PHOLD Combo, the efficiency is

significantly worse, which outweighs the benefits of the reduced

synchronization cost.

PH
OL
D
Ba
se

PH
OL
D
W
or
k

PH
OL
D
Ev
en
t

PH
OL
D
Co
m
bo

DF
ly
 U
ni
fo
rm

DF
ly
 W
or
st

DF
ly
 Tr
an
s

DF
ly
 N
N

Tr
af
fic
 B
as
e

Tr
af
fic
 S
rc

Tr
af
fic
 D
es
t

Tr
af
fic
 R
ou
te

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p

Algorithm Speedups (Count Trigger)

Async Reduction
Continuous

PH
OL
D
Ba
se

PH
OL
D
W
or
k

PH
OL
D
Ev
en
t

PH
OL
D
Co
m
bo

DF
ly
 U
ni
fo
rm

DF
ly
 W
or
st

DF
ly
 Tr
an
s

DF
ly
 N
N

Tr
af
fic
 B
as
e

Tr
af
fic
 S
rc

Tr
af
fic
 D
es
t

Tr
af
fic
 R
ou
te

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
p
e
e
d
u
p

Algorithm Speedups (Leash Trigger)

Async Reduction
Continuous

Figure 3: The relative speedup of each GVT algorithm when compared to the synchronous version.

When looking at how the different algorithms affect the count-

based trigger in Figure 3 (left), we see largely the same patterns

but with much larger speedups for the continuous algorithm. Fig-

ure 4 plots the actual event rates of the continuous algorithm for

both triggers, and shows the the performance is nearly identical

regardless of the trigger used. This is further backed up by nearly

identical efficiencies under each trigger as shown in Table 1. This

reveals an important side-effect of the other two GVT algorithms,

which is that by blocking the LPs during at least part of the GVT

computation, the amount of optimistic execution allowed by the

simulator is bounded by the GVT computation. LPs can not get too

far ahead due to the fact that either after N events, or T units of

virtual time depending on the trigger, they must block while other

LPs are allowed to catch up. The effects of this already showed

up when comparing the two triggers under the synchronous algo-

rithm. LPs in the count trigger can still get arbitrarily far ahead in

virtual time depending on the distribution of events, but under the

leash trigger LPs cannot, which keeps LPs closer together in virtual

time reducing the likelihood of causality violations. Once that arti-

ficial bounding is removed from the GVT computation, the rate at

which LPs progress through virtual time is completely unbounded

and solely up to the characteristics of the models themselves. This

results in lower efficiencies when compared to the synchronous

scheme, which limits the benefits from the reduced synchronization

costs. This limit is less detrimental under the count-based trigger

due to the fact that it already has relatively lower efficiencies when

compared to the leash-based trigger.

4.4 Summary
Analysis of the above GVT techniques shows a clear coupling be-

tween event efficiency and synchronization costs. The algorithms

that block event execution while waiting for quiescence achieve

a higher event efficiency by bounding the amount of execution.

Tighter leashes further improve efficiency while simultaneously

causing more frequent GVT computations, creating a tradeoff be-

tween efficiency and synchronization. The continuous algorithm

PH
OL
D
Ba
se

PH
OL
D
W
or
k

PH
OL
D
Ev
en
t

PH
OL
D
Co
m
bo

DF
ly
 U
ni
fo
rm

DF
ly
 W
or
st

DF
ly
 Tr
an
s

DF
ly
 N
N

Tr
af
fic
 B
as
e

Tr
af
fic
 S
rc

Tr
af
fic
 D
es
t

Tr
af
fic
 R
ou
te

0

50

100

150

200

250

300

350

400

450

E
v
e
n
t
R
a
te
 (
m
ill
io
n
 e
v
e
n
ts
/s
)

Continuous GVT Comparison

Count Trigger
Leash Trigger

Figure 4: Comparison of the event rates for the continuous
GVT algorithm under both triggers.

attempts to completely remove the synchronization cost, which in

turn results in lower efficiency from the now unbounded optimism.

In the next section we look at a method for improving efficiency in-

dependent of the GVT computation in order to decouple efficiency

and synchronization.

5 LOAD BALANCING
In the previous section, we explored a tradeoff between synchro-

nization cost and event efficiency. In many cases, enforcing more

synchronization was able to increase the event efficiency, and re-

sulted in a higher event rate. However, after a certain point, the

synchronization cost outweighs the benefits gained from higher ef-

ficiency. Furthermore, as shown with the continuous GVT scheme,

completely removing the synchronization cost of the global barrier

may result in even higher performance despite large decreases in

efficiency. In this section, we explore another method for affecting

the efficiency of simulations: dynamic load balancing. When the dis-

tribution of events across processors is unbalanced, processors with

little work can run far ahead of the rest, and be forced to rollback

frequently as a result. Improving efficiency with load balancing will

allow us to lower the synchronization cost of the GVT computation,

while still maintaining a certain degree of efficiency.

LPs in Charades are implemented as chares in Charm++. This

allows the runtime system to manage the location of LPs as well as

migrate them for purposes such as dynamic load balancing. During

simulation execution, the load of each LP can be measured as CPU

time automatically by the runtime system, or by metrics specific to

Charades. Once the simulator is ready to perform load balancing,

the load statistics are collected and LPs redistributed according

to the particular load balancing strategy being used. For the ex-

periments in this section we will be working with two different

strategies: GreedyLB and DistributedLB.

GreedyLB is a centralized strategy that collects profiling infor-

mation about all LPs on a single processor before redistributing

them using a greedy algorithm. It iteratively assigns the most heavy

unassigned LP to the least loaded processor until LPs have been

assigned. As this can result in almost every LP being migrated, we

also test a variation of GreedyLB that attempts to limit the number

of migrations when reassigning the LPs.

DistributedLB is a fully distributed strategy that utilizes prob-

abilistic migration and a gossip protocol as described in [19] to

minimize the overhead of load balancing. First, a global reduction

is done to determine the average load of all processors. Informa-

tion about which processors are under-loaded is then propagated

throughout the system via "gossip" messages. Once gossip is com-

plete, the overloaded processors asynchronously attempt to shift

some of their load to the under-loaded ones in a probabilistic fash-

ion. In initial experiments, this did little to affect the performance of

our simulations due to very few objects successfully migrating. For

this work, we have modified the DistributedLB algorithm by break-

ing up the load transferring step into multiple phases. In earlier

phases, only the most overloaded processors have the opportunity

to shift their load, which makes it less likely that their attempts will

fail due to other processors transferring load first. In subsequent

phases, the threshold for which processors can shift load is relaxed.

This prioritizes reducing the ratio of max to average load more

aggressively than the original implementation.

In addition to the two different strategies, we examine two dif-

ferent load metrics for determining the load of an LP. The first is

CPU time, which is automatically measured by the runtime system.

The second is the number of committed events. Using committed

events as a measure of load aims to ignore incorrect speculation

when balancing load by only focusing on meaningful work done

by each LP.

5.1 Experimental Results
The following experiments were run using the six unbalanced con-

figurations of PHOLD and Traffic, on 64 nodes (2,048 cores) of

Blue Waters. Due to the fact that the communication patterns in

Dragonfly were uniformly balanced in the amount of work for each

MPI process, load balancing had little effect on performance and

is therefore omitted from this section. In each case, load balancing

was triggered after the completion of a GVT computation and fossil

collection had occurred. This allowed for the most memory within

the LPs to be freed before migrating them to minimize the migra-

tion footprint. The particular GVT which triggered load balancing

was determined via some manual tuning, and was always some-

where within the first 10% of a simulation in order to allow enough

time for load statistics to be gathered. In all the results presented,

statistics shown are for the entire simulation run, which includes

execution both before and during the load balancing phase. Initially

we focus our analysis on the isolated effects of load balancing under

the synchronous GVT algorithm. Furthermore, we focus on the

best load balancing strategy for each model only, allowing more

space to analyze the effects of load balancing and the different load

balancing metrics. For PHOLD, DistributedLB performed the best,

where as GreedyLB was the best load balancer for the traffic model.

As stated in the previous section, variation between multiple runs

was negligible.

Figure 5 shows speedup of each model configuration with each

load measure, compared to results without load balancing. With the

exception of Traffic Dest with the count-based trigger, there is an

increase in performance in each model configuration with at least

one of the load metrics. The two primary causes for the increased

event rate are improved balance of work across processors, and

increased event efficiency. The magnitude of each effect depends

heavily on the trigger used, where load balancing serves to improve

on the shortcomings of that particular metric.

5.1.1 Synchronization Cost and Balance. In the case of Charades,
the work we are interested in balancing is the execution of events in

between GVT computations. Between two GVT computations, each

processor has a set amount of work which, based on the trigger,

is either a specified number of events to execute, or an amount

of virtual time to traverse. Processors that finish their work early

due to an imbalance in the number of events, weight of events,

or a higher efficiency resulting in less rollbacks and re-execution

will therefore reach the next GVT computation quicker and begin

blocking before other processors. Figure 6 plots the min, max, and

mean time spent blocking on the GVT across all processors. In the

cases with no load balancing, many models exhibit a wide range of

times indicative of imbalance across processors.

For the leash-based trigger, load balancing is able to decrease the

range of times, as well as lowering the max and average, meaning

less overall time spent waiting on the GVT. For configurations with

work imbalance, namely PHOLD Work and PHOLD Combo, we

see that the CPU load metric is particularly effective at decreasing

wait times. For other models where the imbalance is primarily due

to different distributions of events, both metrics are effective at

both lowering the amount of time waiting as well as shrinking the

range of times. These effects are prominent with the leash-based

trigger due to the fact that the amount of work per GVT interval

that is enforced by the trigger is not necessarily equal across all

processes and depends on the distribution of events. Load balancing

attempts to balance the amount of work required for each processor

to traverse each interval, where the leash-based trigger still plays

the role of keeping each processors rate of progress through virtual

time balanced. This results in less variation in how long it takes

each processor to get from one GVT computation to the next.

PH
OL
D
W
or
k

PH
OL
D
Ev
en
t

PH
OL
D
Co
m
bo

Tr
af
fic
 S
rc

Tr
af
fic
 D
es
t

Tr
af
fic
 R
ou
te

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p

Load Balancing Speedup (Count Trigger)

CPU Time
Commit Count

PHOLD
 W

ork

PHOLD
 E

vent

PHOLD
 C

om
bo

Tr
affi

c
Src

Tr
affi

c
Dest

Tr
affi

c
Route

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
p

e
e

d
u

p

Load Balancing Speedup (Leash Trigger)

CPU Time
Commit Count

Figure 5: Speedup of each model configuration with each load balancing metric, compared to configurations with no load
balancing.

PH
OL
D
W
or
k

PH
OL
D
Ev
en
t

PH
OL
D
Co
m
bo

Tr
af
fic
 S
rc

Tr
af
fic
 D
es
t

Tr
af
fic
 R
ou
te

0

5

10

15

20

25

30

Ti
m
e
 W

a
it
in
g
 o
n
 G
V
T
 (

s)

GVT Delay Balance (Count Trigger)

No LB
CPU Time
Commit Count

PH
OL
D
W
or
k

PH
OL
D
Ev
en
t

PH
OL
D
Co
m
bo

Tr
af
fic
 S
rc

Tr
af
fic
 D
es
t

Tr
af
fic
 R
ou
te

0

5

10

15

20

25

30
Ti
m
e
 W

a
it
in
g
 o
n
 G
V
T
 (
s)

GVT Delay Balance (Leash Trigger)

No LB
CPU Time
Commit Count

Figure 6: Min, max, and mean time across all processors spent blocking on the GVT computation. Processors with very little
work in a given interval will block longer waiting for others to catch up.

The left-hand side of figure 6 shows the GVT wait time for the

count-based metric. Load balancing is not nearly as effective at

shrinking the range of times, and in the traffic models we actually

see a wider range. The count-based metric inherently enforces

balanced GVT intervals for models like Traffic where all events

take roughly the same amount of time. However, load balancing still

manages to decrease the overall amount of time waiting on the GVT

in almost every case. This is due to a net gain in efficiency when

using load balancing as shown on the left-hand side of figure 7. The

improved efficiency results in less overall work to complete the

simulation and therefore fewer GVT calculations.

5.1.2 Efficiency. When comparing the efficiency for the two

different triggers in figure 7, we see that the effectiveness of load

balancing is the opposite of what we saw when looking at the GVT

wait time. In this case, since the count-based trigger does little

to enforce high efficiencies, load balancing is far more successful

at increasing efficiency for these configurations. Every model but

Traffic Dest saw an increase in efficiency, with the results being

particularly good for PHOLD Event with the commit metric, and

PHOLD Combo with both. The effects are less pronounced for the

Traffic models where we only see modest gains in efficiency. While

PHOLD has no communication locality, as every LP is sending to

every other LP with the same probability, migrating LPs did not

effect communication costs. For Traffic however, there is high de-

gree of communication locality, so while migrating objects may

provide a better balance of the number of events executed and com-

mitted across processors, it also causes higher communication costs

between heavily communicating LPs. For the leash-based trigger,

which enforced very high efficiency in the Traffic model, we see

PH
OL
D
W
or
k

PH
OL
D
Ev
en
t

PH
OL
D
Co
m
bo

Tr
af
fic
 S
rc

Tr
af
fic
 D
es
t

Tr
af
fic
 R
ou
te

0

20

40

60

80

100

E
ff
ic
ie
n
cy
 (
%
)

Load Balancing Efficiency (Count Trigger)

No LB
CPU Time
Commit Count

PHOLD
 W

ork

PHOLD
 E

vent

PHOLD
 C

om
bo

Tr
affi

c
Src

Tr
affi

c
Dest

Tr
affi

c
Route

0

20

40

60

80

100

E
ff

ic
ie

n
cy

 (
%

)

Load Balancing Efficiency (Leash Trigger)

No LB
CPU Time
Commit Count

Figure 7: Efficiency of each model with and without load balancing.

PHOLD Work PHOLD Event PHOLD Combo
0

20

40

60

80

100

120

140

160

180

E
v
e
n
t
R
a
te
 (
m
ill
io
n
 e
v
e
n
ts
/s
)

Continuous GVT Event Rate w/Load Balancing

No LB
CPU Time
Commit Count

PHOLD Work PHOLD Event PHOLD Combo
0

20

40

60

80

100
E

ff
ic

ie
n

cy
 (

%
)

Continuous GVT Efficiency w/Load Balancing

No LB
CPU Time
Commit Count

Figure 8: Comparison of the continuous GVT algorithm with and without load balancing.

that load balancing actually lowers the efficiency due to more roll-

backs and event cancellations between the heavily communicating

LPs.

5.1.3 Combining Load Balancing and Continuous GVT. The fact
that load balancing is able to improve efficiency is especially im-

portant when considering the fact that the limiting factor in per-

formance of the continuous GVT algorithm from Section 4 was a

decrease in event efficiency. Figure 8 shows the event rates for the

continuous GVT algorithm when load balancing is introduced. We

see event rate improved in all cases by up to 2×. All three have at

least 1.6× speedup over the original baseline configurations, and

PHOLD Work and PHOLD Event achieve their highest event rates

for any configuration studied in this paper. The efficiency plot in

figure 8 further reinforces the impact of the different load metrics.

When all other synchronization from the GVT is removed, it be-

comes clear that when addressing different types of imbalance the

correct load metric must be chosen in order to achieve the best

efficiency. For PHOLDWork, where the primary cause of imbalance

is the amount of work per event, the CPU load metric improved

efficiency by a factor of around 1.6× but the commit count metric

had no effect at all. The opposite is true for PHOLD Event where

the primary cause of imbalance is an uneven distribution of events.

For PHOLD Combo, both metrics do well but it is conceivable that

a combination of the two metrics may be even more effective.

Unfortunately, in the case of the Traffic model, the efficiency

becomes much too low in the continuous case. Combining that

with the communication locality issue described earlier means that

the continuous scheme with load balancing is ineffective, and the

rollbacks and especially cancellation events cascade out of control.

This points to a need for a communication aware load balancing

strategy, which would keep tightly coupled LPs in close proxim-

ity in an attempt to minimize the number of rollbacks and event

cancellations between them.

5.2 Summary
By introducing automated load balancing into Charades, we are

able to increase the event rate of unbalanced models by improving

both balance and efficiency. Depending on the type of imbalance

in the model, different metrics for defining the load of an LP will

improve the capability of the load balancing framework, as each

metric addresses different aspect of a simulation. Furthermore, the

effect of load balancing on event efficiency comes without addi-

tional synchronization cost, so it becomes particularly effective

when combined with the continuous GVT from Section 4. How-

ever, load balancing was not effective at addressing efficiency in

models with balanced workloads such as Dragonfly. Furthermore,

for the Traffic model, load balancing was less effective due to high

communication locality and much lower efficiencies. We leave it

as future work to further explore how careful use of different load

metrics and balancing strategies can detect and deal with event

efficiency independent from load balance. We also plan to develop

light-weight distributed strategies for better handling models with

high communication locality in order to handle negative side effects

such as an increase in cancellation events.

6 CONCLUSION
Software that enables scalable execution of discrete event simula-

tion is desirable in several domains. However the irregular, dynamic

and fine-grained nature of many PDES models makes it difficult to

scale. In particular, the event efficiency in such models can be diffi-

cult to manage and often requires the need for high synchronization

costs. In this paper, we evaluated several techniques for manag-

ing the tradeoff between synchronization cost and event efficiency.

We also provide a scalable implementation of a non-blocking GVT

algorithm to remove the synchronization cost entirely. Up to 2×

better performance is shown for a variety of models running on

2048 processors.

Furthermore, we explore dynamic load balancing as a technique

to manage event efficiency, without requiring explicit synchroniza-

tion from the GVT computation. In unbalanced model configura-

tions, load balancing is shown to increase both event rate and event

efficiency. By combining load balancing with the continuous GVT

algorithm, even higher performance is achieved for our unbalanced

version of the PHOLD benchmark than with any of the other tech-

niques in this paper, and shows that load balancing can mitigate

efficiency loss independently of the GVT algorithm used.

REFERENCES
[1] The charm++ parallel programming system manual. http://charm.cs.illinois.edu/

manuals/html/charm++/manual.html.

[2] Ross source code on github. https://github.com/carothersc/ROSS, visited 2016-

03-20.

[3] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni, M. Robson,

Y. Sun, E. Totoni, L. Wesolowski, and L. Kale. Parallel Programming with Migrat-

able Objects: Charm++ in Practice. SC, 2014.

[4] P. D. Barnes, Jr., C. D. Carothers, and D. R. e. a. Jefferson. Warp speed: Executing

time warp on 1,966,080 cores. In Conference on Principles of Advanced Discrete
Simulation, SIGSIM-PADS, pages 327–336, New York, NY, USA, 2013.

[5] D. Bauer, G. Yaun, C. D. Carothers, M. Yuksel, and S. Kalyanaraman. Seven-o’clock:

A new distributed gvt algorithm using network atomic operations. In Proceedings

of the 19th Workshop on Principles of Advanced and Distributed Simulation, PADS
’05, pages 39–48, Washington, DC, USA, 2005. IEEE Computer Society.

[6] D. W. Bauer Jr., C. D. Carothers, and A. Holder. Scalable time warp on blue

gene supercomputers. In Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop
on Principles of Advanced and Distributed Simulation, PADS ’09, pages 35–44,

Washington, DC, USA, 2009. IEEE Computer Society.

[7] C. D. Carothers, D. Bauer, and S. Pearce. ROSS: A high-performance, low-memory,

modular Time Warp system. Journal of Parallel and Distributed Computing,
62(11):1648–1669, 2002.

[8] C. D. Carothers and R. M. Fujimoto. Efficient execution of time warp programs on

heterogeneous, now platforms. IEEE Trans. Parallel Distrib. Syst., 11(3):299–317,
Mar. 2000.

[9] G. G. Chen, Boleslaw, and K. Szymanski. Time quantum gvt: A scalable compu-

tation of the global virtual time in parallel discrete event simulations.

[10] N. Choudhury, Y. Mehta, T. L. Wilmarth, E. J. Bohm, and L. V. . Kalé. Scaling

an optimistic parallel simulation of large-scale interconnection networks. In

Proceedings of the Winter Simulation Conference, 2005.
[11] E. Deelman and B. K. Szymanski. Dynamic load balancing in parallel discrete

event simulation for spatially explicit problems. In Parallel and Distributed
Simulation, 1998. PADS 98. Proceedings. Twelfth Workshop on, pages 46–53, May

1998.

[12] R. M. Fujimoto. Performance of timewarp under synthetic workloads. Distributed

Simulation Conference, 1990.

[13] R. M. Fujimoto and M. Hybinette. Computing global virtual time in shared-

memory multiprocessors. ACM Trans. Model. Comput. Simul., 7(4):425–446, Oct.
1997.

[14] D. W. Glazer and C. Tropper. On process migration and load balancing in time

warp. IEEE Transactions on Parallel and Distributed Systems, 4(3):318–327, Mar

1993.

[15] Z. X. F. Gomes, B. Unger, and J. Cleary. A fast asynchronous gvt algorithm for

shared memory multiprocessor architectures. SIGSIM Simul. Dig., 25(1):203–208,
July 1995.

[16] E. J. Gonsiorowski, J. M. LaPre, and C. D. Carothers. Improving accuracy and

performance through automatic model generation for gate-level circuit pdes

with reverse computation. In Proceedings of the 3rd ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation, SIGSIM PADS ’15, pages 87–96, New

York, NY, USA, 2015. ACM.

[17] D. Jefferson and H. Sowizral. Fast Concurrent Simulation Using the Time Warp

Mechanism. In Proceedings of the Conference on Distributed Simulation, pages
63–69, July 1985.

[18] F. Mattern. Efficient algorithms for distributed snapshopts and global virtual

time approximation. Journal of Parallel and Distributed Computing, 18:423–434,
1993.

[19] H. Menon and L. Kalé. A distributed dynamic load balancer for iterative appli-

cations. In Proceedings of SC13: International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’13, pages 15:1–15:11, New York,

NY, USA, 2013. ACM.

[20] S. Meraji, W. Zhang, and C. Tropper. On the scalability and dynamic load-

balancing of optimistic gate level simulation. Trans. Comp.-Aided Des. Integ. Cir.
Sys., 29(9):1368–1380, Sept. 2010.

[21] E. Mikida, N. Jain, E. Gonsiorowski, P. D. Barnes, Jr., D. Jefferson, C. Carothers,

and L. V. Kale. Towards pdes in a message-driven paradigm: A preliminary case

study using charm++. In Proceedings of the 2016 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation, SIGSIM PADS ’16. ACM, May 2016.

[22] M. Mubarak, C. D. Carothers, R. Ross, and P. Carns. Modeling a million-node

dragonfly network using massively parallel discrete-event simulation. In High
Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Com-
panion:, pages 366–376, Nov 2012.

[23] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns. Using massively parallel

simulation formpi collective communicationmodeling in extreme-scale networks.

In Proceedings of the 2014 Winter Simulation Conference, WSC ’14, pages 3107–

3118, Piscataway, NJ, USA, 2014. IEEE Press.

http://charm.cs.illinois.edu/manuals/html/charm++/manual.html
http://charm.cs.illinois.edu/manuals/html/charm++/manual.html
https://github.com/carothersc/ROSS

[24] K. S. Perumalla, A. J. Park, and V. Tipparaju. Gvt algorithms and discrete event

dynamics on 129k+ processor cores. In High Performance Computing (HiPC), 2011
18th International Conference on, pages 1–11, Dec 2011.

[25] K. S. Perumalla, A. J. Park, and V. Tipparaju. Discrete event execution with

one-sided and two-sided gvt algorithms on 216,000 processor cores. ACM Trans.
Model. Comput. Simul., 24(3):16:1–16:25, June 2014.

[26] A. B. Sinha, L. V. Kale, and B. Ramkumar. A dynamic and adaptive quiescence

detection algorithm. Technical Report 93-11, Parallel Programming Laboratory,

Department of Computer Science , University of Illinois, Urbana-Champaign,

1993.

[27] S. Srinivasan and P. F. Reynolds, Jr. Non-interfering gvt computation via asyn-

chronous global reductions. In Proceedings of the 25th Conference on Winter
Simulation, WSC ’93, pages 740–749, New York, NY, USA, 1993. ACM.

[28] J. S. Steinman, C. A. Lee, L. F. Wilson, and D. M. Nicol. Global virtual time and

distributed synchronization. In Proceedings of the Ninth Workshop on Parallel and

Distributed Simulation, PADS ’95, pages 139–148, Washington, DC, USA, 1995.

IEEE Computer Society.

[29] N. Wolfe, C. D. Carothers, M. Mubarak, R. Ross, and P. Carns. Modeling a million-

node slim fly network using parallel discrete-event simulation. In Proceedings of
the 2016 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation,
SIGSIM-PADS ’16, pages 189–199, New York, NY, USA, 2016. ACM.

[30] Y. Xu, W. Cai, H. Aydt, M. Lees, and D. Zehe. An asynchronous synchronization

strategy for parallel large-scale agent-based traffic simulations. In Proceedings
of the 3rd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation,
SIGSIM PADS ’15, pages 259–269, New York, NY, USA, 2015. ACM.

[31] S. B. Yoginath and K. S. Perumalla. Optimized hypervisor scheduler for parallel

discrete event simulations on virtual machine platforms. In Proceedings of the 6th
International ICST Conference on Simulation Tools and Techniques, SimuTools ’13,

pages 1–9, ICST, Brussels, Belgium, Belgium, 2013. ICST (Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering).

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 CHARM++
	2.2 ROSS
	2.3 Charades
	2.4 GVT Computation
	2.5 Load Balancing

	3 Models
	3.1 PHOLD
	3.2 Dragonfly
	3.3 Traffic

	4 Global Virtual Time Computation
	4.1 GVT Trigger
	4.2 GVT Algorithm
	4.3 Experimental Results
	4.4 Summary

	5 Load Balancing
	5.1 Experimental Results
	5.2 Summary

	6 Conclusion
	References

