Adaptive MPI: Dynamic Runtime Support for MPI Applications

\ Sam White and Laxmikant V. Kale TTLINOTS
X P A C G UniverSity Of IllinOiS at Urbana-Champaign] UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Abstract Applications

Adaptive MPI (AMPI) is an implementation of the MPI PlasComCM Harm3D

standard written on top of Charm++ and its adaptive Main simulation code for the PSAAPII Center for Exascale Solves the magnetohydrodynamics equations of motion in curved

runtime system. AMPI provides application-independent Simulation of Plasma-Coupled Combustion (XPACC). spacetime. Developed by Scott Noble at the University of Tulsa.

support for overdecomposition, dynamic load balancing,
communication/computation overlap, and online fault » Challenge: multi-rate time Air: Boundary Layer - Existing C & MPI code uses domain decomposition, no prior

tolerance. integration needed to deal with — e s e e o @ support for dynamic load balancing

AMPI programs are MPI programs without mutable multiple timescales (ns/us/ms) N Future challenge: simulation of multiple accreting black holes

global/static variables, or with them properly handled. “Golden O Py’ .approach: . suffers from load imbalance across ranks, varying over time
’ computationalists add new physics to

» Buffer zone computations cost 3-4x more FLOPs than far
the Fortrango & MPI code, software tools ‘ ' zone, black holes move through the domain
can transform it but: ‘

Exe c u t i o n M o d e I ¢ NO neW programming languages Buffer Zone (0,,) Y Far Zone (C4) Harm3D Performance on 32 Nodes of Blue Waters (NCSA)

> . . . P e] e eeeeeeeee e et e et ae et sttt e et sttt et ee ettt seee e et seset et s seteeeeseseesesesaseereeeraseens
¢ Mlnlmal Changes tO eXIStlng COde Near Zone (C,) Cray MPICH === AMP| RefineLB ==

In AMPI, the ranks of MPI COMM_WORLD are o | AMPI NoLB = AVPI Hybridl 5 —o—
. 1 d 1 1 th d (t O S). Ranks NolLB GreedyLB RefinelB DistribLB MetisLB ScotchLB MetalB Inner Zone BH 2 (C,) Zone (0,))
1mplemented as user-level threads (no processes): 1024 1100 | = BH 1
e (Can have multlple per core — 4096 | 1.05 1.14 1.15 1.06 1.08 1.13 1.14 (GreedylB) =2 - Z\%ﬁml)
Fast to context switch 1 l 8192 | 1.07 1.19 1.14 1.09 1.06 1.17 1.19 (GreedyLB)
‘ " — — 16384 | 1.04 1.18 1.14 1.08 1.06 1.16 1.16 (ScotchLB)
delivery , | L
Migratable between address =~ Sereauer _Scheduler _

spaces at runtime

Timesteps per Second

Above: PlasComCM simulation on 1024 cores of Quartz (LLNL) with different load
balancing strategies. Speedups are normalized to 1 rank per core, no load balancer. Ranks per Core

Core 0 Core 1

AMPI overlaps communication of one rank with Shared Memory Messaging Conclusions

computation of other ranks on the same core. AMPI optimizes for messages sent e ————TR Performance
Communication is spread over the timestep within the same process. e 22 o= AMPI optimizes communication based on locality

o FOI‘ LULESH, 8 ranks/core prOVideS a 4X reduction in e ettt ettt ettt s e s et e n e neeae e ene AMPI 6.9 “ Users Can tune the number Of ranks per Core based On

the peak network bandwidth needed cache sizes, communication overlap, etc.
Plug-in interface for dynamic load balancing strategies

Checkpoint/restart-based fault tolerance schemes

Zero copy messaging: low latency,
reduced memory footprint

No NIC traffic for in-process sends
| Comm-aware load balancers try to |
" ” l co-locate ranks that communicate e e Productivity

I

[-way Latency (us)

T
132m 165ms 198ms

irankjcore ms Sranks/core « No need to rewrite existing MPI applications for:
« Dynamic load balancing
« Latency tolerance

Load Balancing Online Fault Tolerance . Hard fault resilionce

AMPT’s Isomalloc memory allocator enables transparent

migration of AMPI ranks and all their data. Storage can be parallel file system,

OXFFEFFEFFE OxFEFEFEEE . In-memory c'heckpoint e O n g o I n g WO r k
I[somalloc reserves virtual memory — [Frmees SSDs, remote RAM, NVRAM, etc. Shirerears

space for each rank on every core * AMPT automatically detects failures . « Automatic global/static variable privatization via
Users just call AMPI Migrate() and restarts all. ranxs f?"m last ' Process-in-Process library or icc —fmpc-privatize
AMPI collects load statistics checkpoint online (no job restart) » Further shared-memory awareness

LB strategies are runtime options * With Isomalloc, only user code « Compliance with the latest MPI-3.1 standard

: : needed: one call to AMPI Migrate() 8192
-sers can write custom strategles - Plumber of Cores This work was funded by US DOE Award Number DE-NA0002374 and US NSF Award

0x00000000 0x00000000 Number OCI 0 7-25070.

In AMPI, a checkpoint is simply a migration to storage.

PlasComCM Checkpoint/Restart Times on Cab (LLNL)

