
Sam White and Laxmikant V. Kale
University of Illinois at Urbana-Champaign

Adaptive MPI: Dynamic Runtime Support for MPI Applications

Abstract
Adaptive MPI (AMPI) is an implementation of the MPI
standard written on top of Charm++ and its adaptive
runtime system. AMPI provides application-independent
support for overdecomposition, dynamic load balancing,
communication/computation overlap, and online fault
tolerance.
AMPI programs are MPI programs without mutable
global/static variables, or with them properly handled.

• Can have multiple per core
• Fast to context switch
• Scheduled based on message

delivery
• Migratable between address

spaces at runtime

Applications

Conclusions
Performance
• AMPI optimizes communication based on locality
• Users can tune the number of ranks per core based on

cache sizes, communication overlap, etc.
• Plug-in interface for dynamic load balancing strategies
• Checkpoint/restart-based fault tolerance schemes

Productivity
• No need to rewrite existing MPI applications for:

• Dynamic load balancing
• Latency tolerance
• Hard fault resilienceOnline Fault Tolerance

Ongoing work
• Automatic global/static variable privatization via

Process-in-Process library or icc –fmpc-privatize
• Further shared-memory awareness
• Compliance with the latest MPI-3.1 standard
This work was funded by US DOE Award Number DE-NA0002374 and US NSF Award
Number OCI 07-25070.

Harm3D
Solves the magnetohydrodynamics equations of motion in curved
spacetime. Developed by Scott Noble at the University of Tulsa.
• Existing C & MPI code uses domain decomposition, no prior

support for dynamic load balancing
• Future challenge: simulation of multiple accreting black holes

suffers from load imbalance across ranks, varying over time
• Buffer zone computations cost 3-4x more FLOPs than far

zone, black holes move through the domain

Load Balancing

Shared Memory Messaging
AMPI optimizes for messages sent
within the same process.
• Zero copy messaging: low latency,

reduced memory footprint
• No NIC traffic for in-process sends
• Comm-aware load balancers try to

co-locate ranks that communicate

8 ZS/core

• Isomalloc reserves virtual memory
space for each rank on every core

• Users just call AMPI_Migrate()
• AMPI collects load statistics
• LB strategies are runtime options
• Users can write custom strategies

AMPI’s Isomalloc memory allocator enables transparent
migration of AMPI ranks and all their data.

1 ZS/core

text

data
bss

thread 3 stack
thread 2 stack

thread 0 stack

text

data
bss

thread 4 stack

thread 1 stack

0xFFFFFFFF 0xFFFFFFFF

0x00000000 0x00000000

thread 0 heap

thread 2 heap
thread 3 heap

thread 1 heap

thread 4 heap

In AMPI, a checkpoint is simply a migration to storage.

• Storage can be parallel file system,
SSDs, remote RAM, NVRAM, etc.

• AMPI automatically detects failures
and restarts all ranks from last
checkpoint online (no job restart)

• With Isomalloc, only user code
needed: one call to AMPI_Migrate()

Execution Model
In AMPI, the ranks of MPI_COMM_WORLD are
implemented as user-level threads (not OS processes):

AMPI overlaps communication of one rank with
computation of other ranks on the same core.
• Communication is spread over the timestep
• For LULESH, 8 ranks/core provides a 4x reduction in

the peak network bandwidth needed

1 rank/core 8 ranks/core

PlasComCM
Main simulation code for the PSAAPII Center for Exascale
Simulation of Plasma-Coupled Combustion (XPACC).
• Challenge: multi-rate time

integration needed to deal with
multiple timescales (ns/us/ms)

• “Golden copy” approach:
computationalists add new physics to
the Fortran90 & MPI code, software tools
can transform it but:
• No new programming languages
• Minimal changes to existing code

Above: PlasComCM simulation on 1024 cores of Quartz (LLNL) with different load
balancing strategies. Speedups are normalized to 1 rank per core, no load balancer.

0.25

1

4

16

64

256

1024

4096

1 32 1024 32768 1.04858x106

1-
w
ay
La
te
nc
y
(u
s)

Message Size (Bytes)

OSU MPI Latency Benchmark on Quartz (LLNL)

MVAPICH 2.2
AMPI 6.8
AMPI 6.9

0

0.5

1

1.5

2

2.5

2048 4096 8192 16384 32768

T
im
e
(s
)

Number of Cores

PlasComCM Checkpoint/Restart Times on Cab (LLNL)

In-memory checkpoint

Online restart

0.11

0.115

0.12

0.125

0.13

0.135

1 2 3 4 5 6 7 8 9 10

T
im
es
te
ps
pe
r
Se
co
nd

Ranks per Core

Harm3D Performance on 32 Nodes of Blue Waters (NCSA)

Cray MPICH
AMPI NoLB

AMPI RefneLB
AMPI HybridLB

