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Abstract
Adaptive MPI (AMPI) is an implementation of the MPI 
standard written on top of Charm++ and its adaptive 
runtime system. AMPI provides application-independent 
support for overdecomposition, dynamic load balancing, 
communication/computation overlap, and online fault 
tolerance.
AMPI programs are MPI programs without mutable 
global/static variables, or with them properly handled.

• Can have multiple per core
• Fast to context switch
• Scheduled based on message 

delivery
• Migratable between address 

spaces at runtime

Applications

Conclusions
Performance
• AMPI optimizes communication based on locality
• Users can tune the number of ranks per core based on 

cache sizes, communication overlap, etc.
• Plug-in interface for dynamic load balancing strategies
• Checkpoint/restart-based fault tolerance schemes

Productivity
• No need to rewrite existing MPI applications for:

• Dynamic load balancing
• Latency tolerance
• Hard fault resilienceOnline Fault Tolerance

Ongoing work
• Automatic global/static variable privatization via 

Process-in-Process library or icc –fmpc-privatize
• Further shared-memory awareness
• Compliance with the latest MPI-3.1 standard
This work was funded by US DOE Award Number DE-NA0002374 and US NSF Award 
Number OCI 07-25070.

Harm3D
Solves the magnetohydrodynamics equations of motion in curved 
spacetime. Developed by Scott Noble at the University of Tulsa.
• Existing C & MPI code uses domain decomposition, no prior 

support for dynamic load balancing
• Future challenge: simulation of multiple accreting black holes 

suffers from load imbalance across ranks, varying over time
• Buffer zone computations cost 3-4x more FLOPs than far 

zone, black holes move through the domain

Load Balancing

Shared Memory Messaging
AMPI optimizes for messages sent 
within the same process.
• Zero copy messaging: low latency, 

reduced memory footprint
• No NIC traffic for in-process sends
• Comm-aware load balancers try to 

co-locate ranks that communicate

8 ZS/core

• Isomalloc reserves virtual memory 
space for each rank on every core

• Users just call AMPI_Migrate()
• AMPI collects load statistics
• LB strategies are runtime options
• Users can write custom strategies

AMPI’s Isomalloc memory allocator enables transparent 
migration of AMPI ranks and all their data.
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In AMPI, a checkpoint is simply a migration to storage.

• Storage can be parallel file system, 
SSDs, remote RAM, NVRAM, etc.

• AMPI automatically detects failures 
and restarts all ranks from last 
checkpoint online (no job restart)

• With Isomalloc, only user code 
needed: one call to AMPI_Migrate()

Execution Model
In AMPI, the ranks of MPI_COMM_WORLD are 
implemented as user-level threads (not OS processes):

AMPI overlaps communication of one rank with 
computation of other ranks on the same core.
• Communication is spread over the timestep
• For LULESH, 8 ranks/core provides a 4x reduction in 

the peak network bandwidth needed

1 rank/core 8 ranks/core

PlasComCM
Main simulation code for the PSAAPII Center for Exascale 
Simulation of Plasma-Coupled Combustion (XPACC).
• Challenge: multi-rate time 

integration needed to deal with 
multiple timescales (ns/us/ms)

• “Golden copy” approach:    
computationalists add new physics to        
the Fortran90 & MPI code, software tools 
can transform it but:
• No new programming languages
• Minimal changes to existing code

Above: PlasComCM simulation on 1024 cores of Quartz (LLNL) with different load 
balancing strategies. Speedups are normalized to 1 rank per core, no load balancer.
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