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ABSTRACT
Maintaining memory access locality is continuing to be a chal-
lenge for parallel applications and their runtime environments. By
exploiting locality, application performance, resource usage, and
performance portability can be improved. The main challenge is
to detect and �x memory locality issues for applications that use
shared-memory programmingmodels for intra-node parallelization.
In this paper, we investigate improving memory access locality of
a hybrid MPI+OpenMP application in two di�erent ways, by man-
ually �xing locality issues in its source code and by employing
the Adaptive MPI (AMPI) runtime environment. Results show that
AMPI can result in similar locality improvements as manual source
code changes, leading to substantial performance and scalability
gains compared to the unoptimized version and to a pure MPI
runtime. Compared to the hybrid MPI+OpenMP baseline, our opti-
mizations improved performance by 1.8x on a single cluster node,
and by 1.4x on 32 nodes, with a speedup of 2.4x compared to a pure
MPI execution on 32 nodes. In addition to performance, we also
evaluate the impact of memory locality on the load balance within
a node.
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1 INTRODUCTION
In recent years, many applications for supercomputers have em-
ployed a hybrid parallel programming approach, by using di�erent
parallel APIs for inter-node and intra-node parallelism. The goals
of such a hybrid parallelization are often to eliminate the need
for explicit communication between processes in the same node,
to decrease the memory footprint on each core, and to be able to
balance load across the cores in the node. This approach, when
based on using MPI for internode communication, is often referred
to as MPI+X, where MPI is paired with a shared-memory API such
as OpenMP for intra-node parallelization [34, 36, 40].

Compared to distributed memory APIs, such as MPI, OpenMP
has a potentially more e�cient way to share data between tasks,
as those tasks can access shared memory directly without the need
for explicit communication via function calls, as well as avoiding
copying data unnecessarily on the same node. In fact, MPI has itself
evolved to include support for shared memory parallelism in the
MPI-3.0 standard [30].

However, parallel shared memory APIs introduce unique chal-
lenges in memory management regarding the locality of data ac-
cesses that are not present in MPI. For optimal performance, data
accesses should be performed to caches and memory controllers on
NUMA architectures that are close to where the task that performs
the accesses is running, as these accesses have a lower overhead
than those to remote caches or memory controllers. As memory is
shared between all threads on the same node in an OpenMP envi-
ronment, care must be taken to place data close to the threads that
use it. This can result in signi�cantly faster data accesses in shared
memory architectures [3, 7, 9, 11, 16, 33]. On the other hand, data
used by each MPI rank is generally private to the rank [14], such
that locality issues have a much lower impact on a single cluster
node in general.

This paper describes the analysis and changes made to PlasCom2,
a multiphysics simulation application based on MPI+OpenMP, to
improve its memory locality and discusses the impact of these
changes on load balance. We begin with a brief overview of modern
shared memory architectures and the main concepts of memory
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locality, followed by a locality analysis of the PlasCom2 baseline.
We then propose improvements to the memory access behavior
of PlasCom2 and evaluate their impact on locality, load balance,
and performance. We compare the optimized version of PlasCom2
against the baseline version built on Adaptive MPI (AMPI) [24], an
implementation of MPI with support for shared memory between
ranks.

Our main contributions are the following:
• We extend a tool, numalize, to help with �nding and analyz-
ing memory locality issues in shared memory, adding information
about allocation and �rst-touch locations, as well as physical mem-
ory addresses.
•We evaluate locality improvements via changes in the application
source code and via the AMPI runtime environment.
• We measure the impact of locality on load balance and perfor-
mance of a hybrid MPI application.

2 MEMORY ACCESS LOCALITY:
BACKGROUND AND MAIN CONCEPTS

This section brie�y discusses the main concepts of locality and
load balance in shared-memory systems. We also introduce the
application that we analyze in this paper, as well as the Charm++
and AMPI runtime systems.

2.1 Overview of modern shared memory
architectures

Figure 1 shows an example memory hierarchy of a modern shared
memory machine. The example contains four memory controllers,
each forming a NUMA node, which can access a part of the system
memory. Several processing cores are attached to each NUMA node.
Furthermore, each core has a private cache, and shares another
cache with other cores. In this system, a memory access performed
by a core can be serviced by a local cache or memory controller, or
a remote one.

In such a NUMA machine, the physical address space is divided
among the memory controllers. Decisions have to be made to de-
termine the NUMA node on which to place each memory page,
by choosing the physical address for the page. Currently, the most
common way this placement is performed is via a �rst-touch policy,
where the operating system will place each memory page on the
NUMA node from which it was �rst accessed. Such a �rst-touch

policy is currently the default policy in most modern operating sys-
tems, including Linux, Solaris, and Windows. Parallel applications
need to take this policy into account when aiming to improve local-
ity. By making sure that the �rst access to each page is performed
by the "correct" thread, an application can cause a placement of
pages to NUMA nodes that optimizes locality.

2.2 Memory access locality
To evaluate the memory access locality of a parallel application un-
der a �rst-touch policy, we can measure the percentage of threads
that performed the �rst access to a page and have the most accesses
to that page [12]. When scaling this number with the total number
of accesses, we can calculate the per-page and overall locality. Val-
ues for locality can vary between 0% (when all accesses are remote)
and 100% (when all accesses are local).

Related to locality is the �rst-touch correctness, which indicates
the percentage of pages that were accessed �rst by the thread that
performs most accesses to it, which we call the correct thread in
this context. As locality, �rst-touch correctness can vary between
0% and 100%.

Table 1 contains an example of these metrics for an application
that consists of three threads and that accesses two pages, A and B.
Page A receives multiple accesses from several threads, but is ac-
cessed �rst by thread 1, which performs most accesses to the page.
This page has therefore a medium locality of 57%. Page B, on the
other hand, is accessed mostly by thread 3, but is accessed �rst by
thread 2, and therefore has a low locality.

2.3 Load balance
Apart from memory locality, load balance also is an important as-
pect of parallel application performance [31]. In order to maximize
utilization of all computational resources, the amount of work by
each core in the system should be approximately equal, such that no
core is overloaded. Load balance is commonly measured by compar-
ing the number of instructions executed by each core. The amount
of load imbalance (�) can be measured with Equation 1 [31], where
L is a vector in which each element contains the load of a task of
the application. Load imbalance varies between 0% (no imbalance)
and1, with higher values indicating higher imbalance.

Load imbalance � =

✓
max(L)
a��(L) � 1

◆
⇥ 100% (1)
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Figure 1: Overview of a parallel shared-memory architecture with four NUMA nodes. Each node consists of a memory con-
troller to which several cores are attached.
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Table 1: Example of memory access locality for an application that consists of three threads and accesses two pages.

Page First touch by thread Thread 1 Thread 2 Thread 3 Locality First touch correctness
A Thread 1 20 accesses 5 accesses 10 accesses 20/(20+5+10) = 57.1% Correct
B Thread 2 0 accesses 1 access 10 accesses 1/(0+1+10) = 9.1% Incorrect

Overall — — — — (20+1)/(35+11) = 45.7% (1/2) = 50%

Load balance is not the main focus of the analysis in this paper,
but we will discuss the impact of locality on the load distribution,
and, by extension, the performance.

2.4 PlasCom2
PlasCom2 is a next-generation multiphysics simulation application.
It is built up from a substrate of modular, reusable components
designed to be adapted to modern, heterogeneous architectures.
PlasCom2 supports uncertainty quanti�cation, optimization and
control, and repeatability through provenance. The parallelization
model of PlasCom2 uses domain decomposition with hybrid MPI+X,
with X currently as OpenMP. PlasCom2 is written mostly in C++,
only the computational kernels are written in Fortran 90 for per-
formance reasons.

The advect1d development and testing code exercises several of
the key software constructs and features of PlasCom2. It is used to
demonstrate PlasCom2 capabilities, and test experimental develop-
ments as well as performance. Advect1d solves the one-dimensional
advection equation

@u

@t
+
@u

@x
= 0, on the domain Æx 2 [0, 1]3, t > 0 (2)

subject to the initial and boundary conditions

u(Æx , 0) = u0(x), u(0, t) = 0. (3)

The general solution is u(Æx , t) = u0(x � t) where we assume that
the initial and boundary data are consistent, u0(0) = 0.

2.5 Charm++ and AMPI
Charm++ [1] is an object-oriented parallel programming system
based on an asynchronous message driven execution model. Users
encapsulate their application’s data and computations in entities
called chares, which are C++ objects. An application written in
Charm++ is over-decomposed into these objects so that there are
many more objects than physical cores. Chares communicate and
synchronize with each other via asynchronous method invocations.
Chare objects are assigned to a core by the runtime system, and
the user can tell the runtime system to monitor execution and
periodically load balance chares by remapping them to cores based
on characteristics such as idle time and the communication graph.

Adaptive MPI (AMPI) [24] is an implementation of MPI on top
of Charm++ and its adaptive runtime system. It enables use of the
main features of Charm++, such as virtualization, load balancing,
and online fault tolerance, in MPI codes. AMPI implements MPI
ranks as lightweight threads that are migratable among the cores
and nodes of a system.

All AMPI programs are MPI programs, the only exception being
the use of AMPI’s extensions for load balancing and other features.

The only restriction on MPI programs being run as AMPI programs
is that if they contain mutable global or static variables, those
variables must be privatized to the threads. PlasCom2 has been
written from the start to avoid use of mutable global and static
variables, and so it runs on AMPI unchanged.

AMPI programs can be executed in Charm++’s SMP mode as
well, providing shared memory between not only the multiple
ranks on a core but across the cores of a NUMA domain. This also
allows the runtime to avoid trips through the network for messages
sent within a process. By using the SMP mode, AMPI can bene�t
from the private data semantics of MPI, while allowing the use of
shared memory for more e�cient operation. In this work, we utilize
AMPI in SMP mode to compare its performance in terms of locality
and load balance to the hybrid version of the same code and to a
traditional MPI runtime environment.

3 ANALYSIS OF THE BASELINE PLASCOM2
VERSION

This section presents the locality analysis of the baseline version
of PlasCom2, focusing on the OpenMP runtime.

3.1 The numalize tool
Analysis of the memory access locality of PlasCom2 was performed
with the numalize tool1 [12]. Numalize is based on the Intel Pin
Dynamic Binary Instrumentation tool2 [28].

For the analysis presented in this paper, numalize was extended
in three major ways. First, numalize was ported from Pin 2 to
Pin 3, which required rewriting numalize to not require C++11
features anymore, since Pin 3 requires using its own STL that does
not support C++11. This mostly required replacing std::array
with traditional C-style arrays.

Second, numalize was extended to show data structure names,
the source locationwhere they are allocated, and the source location
where the �rst touch is performed. Location information (that is,
�le name and line number) is determined via Pin’s location API,
while data structure names are extracted automatically from the
application’s source code using the location of allocation. All of
this information, together with memory addresses, is presented at
the granularity of memory pages (4 KByte by default). By default,
only data structures that have a size of at least a memory page are
considered in order to focus on structures that have a larger impact
on the overall memory usage.

Third, numalize now optionally works with physical addresses,
obtained from the Linux /proc �le system, instead of virtual ones.
This has the advantage of supporting runtime environments (such

1https://github.com/matthiasdiener/numalize
2http://pintool.org

https://github.com/matthiasdiener/numalize
http://pintool.org
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Table 2: Example output of the numalize tool, showing statistics for two pages of PlasCom2.

address alloc.thread alloc.location �rsttouch.thread �rsttouch.location struct.name T0 T1 T2 T3
4324 0 advect.C:387 0 advect.C:555 uBu�er 368,128 0 0 0
4325 0 advect.C:387 0 advect.C:555 uBu�er 26,462 341,870 202 202

as MPI) that are not based on shared memory, but can share data
via explicit allocation of shared memory areas. Such areas can be
used for optimized communication in a single cluster node, for
example [5, 13, 19].

Numalize traces all memory accesses of all tasks at the page
granularity, providing information about which part of which data
structure was accessed by each thread, and how and where these
parts are allocated and accessed for the �rst time. It creates a csv
�le as output, in which a line per page contains this information.
For a typical application, the output �le has a compressed size of
less than 10 MB.

3.2 Locality analysis with numalize
Table 2 shows a small part of the output of numalize for four Plas-
Com2 OpenMP threads that access two pages. The table shows the
page address, thread ID that allocated the page, source location
of the allocation, ID of the thread that performed the �rst touch,
source location of the �rst touch, data structure name, and number
of memory accesses to the page from threads T0–T3. All other sta-
tistics, such as locality and �rst-touch correctness, can be inferred
from the values displayed in the table.

In the example, it can be seen that the domain decomposition
causes a change in the access behavior, since page 4324 is accessed
exclusively by thread 0, while page 4325 is accessed mostly by
thread 1. However, both pages are accessed �rst by thread 0, which
determines on which NUMA node both pages are located. Locality
is 100% for page 4324, and 7.2% for page 4325.

We measured the overall locality of the baseline version of Plas-
Com2 for an execution with 1 MPI rank and 8 OpenMP threads.
The results indicate a very low locality, with only 31.6% of memory
accesses going to local NUMA nodes. 29.9% of the memory pages
have a �rst-touch by the wrong thread. These values show that
there is a large potential for locality improvements in the baseline
hybrid version of PlasCom2.

4 IMPROVEMENTS TO THE BASELINE
VERSION OF PLASCOM2

Analysis of the numalize results revealed a major issue in how most
data structures are allocated in the baseline version of PlasCom2.
Since the front-end code of PlasCom2 is written in C++, PlasCom2
makes heavy use of std::vector to allocate memory. An ex-
ample of the allocation is shown in Figure 2 for the uBu�er data
structure. Importantly, the resize() function in line 3 accesses
all items in uBu�er, initializing them to 0. As resize() is exe-
cuted by a single thread, the master thread in this example, the
complete structure will therefore be �rst accessed by that thread
and placed on the NUMA node where the thread is executing. In
this section, we discuss two possible solutions to this issue that are
based on parallel initialization of data structures.

4.1 Parallel initialization with manual �rst
touch

Several options to improve this behavior were tested with numalize.
Allocating the vector with
std::vector<double> myBuffer(numPoints); also re-
sults in an initialization to 0. A possible solution to this issue is
presented in Figure 3. In this manual parallel initialization, �rst
memory for the vector is allocated with the reserve() func-
tion, which allocates memory, but does not initialize it and which
does not update internal vector data structures (such as its size).
This newly allocated memory is then initialized in parallel, by each
thread, in the parallel loops in lines 5–17. These loops use the same
structure in which points will be updated in the normal computa-
tion.

Finally, in line 18, the resize() function is called to update
the vector’s internal data structures. Since the vector is resized
to the same size that memory was allocated in the reserve()
function, no new memory will be allocated in this call, and the
existing allocation will be reused. Furthermore, since the �rst ac-
cess was already performed in the parallel initialization loop, the
subsequent initialization in the resize() function does not a�ect
the placement of pages to NUMA nodes anymore.

This initialization method does not conform to the C++ stan-
dard, as vector elements beyond its current size() are accessed.
In tests with major C++ compilers (GCC’s g++, Intel’s icpc, and
LLVM clang++), no problem was detected, and the code behaves
as expected. However, such a method can be a source of hard-
to-debug errors in other compilers or runtime environments. In
comparison to manual C-style memory allocation with functions
such as malloc(), this code has the advantage of maintaining
the convenience of using C++ style classes that support STL, as
well as removing the need for manual memory management with
malloc() and free().

4.2 Parallel initialization with a custom C++
memory allocator

Another alternative is to use a custom C++memory allocator to per-
form a similar �rst-touch behavior. For instance, the NUMA-aware
memory allocator [21] for the task-based HPX parallel API [25] pro-
vides such an allocator, in which each task performs a �rst-touch

1 std::vector<double> uBuffer;

2 // [...]

3 uBuffer.resize(numPoints);

Figure 2: Memory allocation in the baseline hybrid version
of PlasCom2.
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1 std::vector<double> uBuffer;

2 // [...]

3 uBuffer.reserve(numPoints); // allocate memory, but do not initialize it

4 // [...]

5 #pragma omp parallel // perform parallel initialization

6 {

7 for(size_t iZ = iStartZ; iZ <= iEndZ; iZ++){

8 size_t zIndex = iZ

*

xyPlane;

9 for(size_t iY = iStartY; iY <= iEndY; iY++){

10 size_t yzIndex = zIndex + iY

*

numX;

11 for(size_t iX = iStartX; iX <= iEndX; iX++){

12 size_t xyzIndex = yzIndex + iX;

13 uBuffer[xyzIndex] = xyzIndex; // perform first touch

14 }

15 }

16 }

17 }

18 uBuffer.resize(numPoints); // clear buffer again and set its size()

Figure 3: Manual memory allocation in optimized version of PlasCom2.

1 std::vector<double, numa_allocator>

2 uBuffer(numPoints);

3 // [...]

4 class numa_allocator {

5 // [...]

6 double

*

allocate(size_type n, void

*

hint=0)

7 {

8 double

*

m = std::allocator<double>::

9 allocate(n, hint);

10

11 #pragma omp parallel

12 {

13 // same code as in Figure 3

14 }

15

16 return m;

17 }

18 // [...]

19 }

Figure 4: C++ allocator-based memory allocation in opti-
mized version of PlasCom2.

to the data it will access. However, such allocators are rare in the
case of OpenMP, as care must be taken that the correct parallel
�rst-touch is applied to each vector.

Figure 4 shows such an implementation for PlasCom2. Here, each
vector is allocated with a custom numa_allocator, which �rst
allocates memory using C++ standard allocation (without touch-
ing the allocated memory), and then performing a similar parallel
initialization as presented for the manual allocation in Figure 3
(lines 7–16). As mentioned, the main challenge for such a solution
is the need to adapt the allocation strategy for di�erent vectors, if

they do not have the same access pattern. For example, the vec-
tor indices that each thread accesses might be di�erent. In these
cases, it may be necessary to provide di�erent allocator classes for
di�erent vectors or specialize them in another way.

4.3 Summary
We presented two ways to improve the �rst-touch behavior of
hybrid applications based on the parallel initialization paradigm.
As a side e�ect of these methods, the allocation of data structures
itself is now faster since it is executed in parallel. All the main
data structures of PlasCom2 were treated with the two methods
described in this section, and we will compare their impact on
locality in the next section.

5 ANALYSIS OF IMPROVED VERSIONS
This section presents the locality and load balance gains of the
improved versions of PlasCom2, as well as the AMPI version.

5.1 Memory locality
The locality results of the optimized version of PlasCom2 measured
with numalize are shown in Figures 5 and 6, as well as Table 3. The
results indicate a signi�cant improvement of locality in our two
optimized versions. Only 1.2%–1.4% of pages are accessed �rst by
an incorrect thread, while access locality is improved from 32% to
83%. The incorrectly touched pages mostly correspond to shared
libraries and communication bu�ers, on which applications have
little in�uence. As expected, both optimized versions have almost
identical locality results.

The AMPI version of PlasCom2 shows a locality and correctness
of the �rst-touch behavior that is comparable to our optimized
hybrid versions. This indicates that the MPI semantics of private
data translate well to AMPI, even when using its SMP mode. As
expected, the MPI runtime (mpich 3.1.3) results also show a high
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Figure 5: Number of remote vs. number of local accesses of
PlasCom2 using di�erent runtimes.

locality of 85%, with shared pages mostly related to libraries and
communication bu�ers.

5.2 Load balance
The impact of the locality improvements on the load balance is illus-
trated in Figure 7. In the �gure, we show the number of instructions
each of the 8 tasks executed during a complete run of the PlasCom2
versions, measured with the perf tool [10]. Table 4 shows the
values of the load imbalance metric, calculated with Equation 1. We
only show the load imbalance of the manually optimized hybrid
version, not the one using the C++ allocator, since results were al-
most identical. The load imbalance was reduced from 20.6% to 6.7%
between the baseline and optimized hybrid versions. The variance
in the number of executed instructions per thread was reduced by
a factor of 10. The AMPI and MPI versions are the least and most
imbalanced, respectively.

The results for the hybrid versions indicate that improving lo-
cality can also improve load balance of a parallel application. The

Table 3: Overall locality for PlasCom2 with 8 threads.

Version Locality %pages w/
incorr. �rst t.

Baseline MPI+OpenMP 31.6% 29.9%
Optimized MPI+OpenMP (manual) 82.8% 1.4%
Optimized MPI+OpenMP (allocator) 83.1% 1.2%
AMPI 78.7% 2.0%
MPI 85.1% 0.9%
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Figure 6: Correct vs. incorrect �rst touch of PlasCom2 using
di�erent runtimes.

Table 4: Load balance metrics for PlasCom2 with 8 tasks.

Version Load imbalance � Variance
Baseline MPI+OpenMP 20.6% 4.2 ⇥ 1018
Optimized MPI+OpenMP 6.7% 2.9 ⇥ 1017
AMPI 3.4% 1.2 ⇥ 1017
MPI 38.2% 1.5 ⇥ 1019

reason for this improvement is that tasks are (busy-) waiting for
less time, and they are less starving for data.

6 PERFORMANCE EVALUATION
To evaluate the performance impact of our locality and load balance
improvements in PlasCom2, we perform a series of experiments
with single and multiple nodes in a cluster system.

Table 5: Con�guration of a single cluster node.

Property Value
Processor 2⇥ Intel Xeon E5-2680 v3 (Haswell), 12 cores, 2.5 GHz
Caches 32 KByte+32 KByte L1, 256 KByte L2 per core,

30 MByte L3 per processor
Memory 2 NUMA nodes, 64 GByte DDR4-1600 main memory,

4 KByte page size
Software CentOS 6.8, Linux 2.6.32, gcc 4.9.2, MPICH 3.1.3,

Charm++/AMPI 6.7.1
Network In�niband interconnection
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6.1 Methodology of the performance
experiments

The con�guration of the cluster nodes is shown in Table 5. Each
cluster node consists of two Intel Xeon Haswell processors, forming
a NUMA node each, with 12 cores on each processor. SMT was
disabled for the experiments. As each cluster node has 24 cores in
total, we run with 24 tasks (MPI ranks or threads) on each node. For
the hybrid MPI+OpenMP versions, we execute one MPI rank per
cluster node, and 24 threads on each node. Nodes are interconnected
with In�niband.

Four versions of PlasCom2 were compared in the experiments:
hybrid (MPI+OpenMP) baseline and manually optimized, MPI-only
executed with AMPI 6.7.1 [24] in SMPmode, andMPI-only executed
with MPICH 3.1.3 [20]. Results of the hybrid version optimized us-
ing the C++ allocator are not shown, since they are almost identical
to the manually optimized version. All versions were compiled with
gcc 4.9.2 with the -O2 optimization level.

The input problem for each version of PlasCom2 was the same.
Our problem size consists of 40 million points per cluster node,
resulting in a memory usage of approximately 8 GByte per node.
For the experiments with multiple cluster nodes, we perform a weak
scaling experiment, in order to maintain a signi�cant main memory
usage on each node. We executed each experiment 10 times, and
show the average execution time.

6.2 Single cluster node results
Figure 8 shows the execution time results of PlasCom2 running on
a single cluster node with two NUMA nodes. We can see a speedup
of 1.7⇥ for the optimized hybrid version compared to the baseline,
showing the high impact locality and load balance have on the
overall application performance. Running with AMPI results in a
comparable but slightly faster execution compared to the optimized
implementation, with a speedup of 1.8⇥. Even the pure MPI version
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Figure 8: Performance results of PlasCom2 on a single clus-
ter node.

is substantially faster than the hybrid baseline, with a speedup of
1.5⇥, as it does not su�er from locality issues. This result indicates
that locality is more important for performance than load balance
in this instance.

6.3 Results on multiple cluster nodes
For the experiments with multiple cluster nodes, we increase the
number of cluster nodes from 1 to 32, maintaining 24 tasks (MPI ranks
or OpenMP/AMPI threads) per node, with the same con�guration
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Figure 9: Weak scaling performance results of PlasCom2. The x-axis shows the number of cluster nodes and total number of
tasks (MPI ranks or threads).

as before. We perform a weak scaling experiment, that is, the input
size is increased linearly with the number of nodes, in order to
ensure that the main memory gets used on all nodes. Ideally, the
total execution time would remain constant in this experiment for
all node counts.

Figure 9 shows the results of this experiment. All implemen-
tations that use shared memory scale well up to 32 nodes, only
MPI results in increasing execution times with higher node counts,
which shows the importance of using shared memory for scaling.
Even when running with only 2 nodes, the hybrid baseline is faster
then the pure MPI version, reversing the result from the single-
node case. The performance di�erence between the baseline and
optimized MPI+OpenMP implementation remains comparable to
the single node case, with a speedup of 1.4⇥ on 32 nodes. For 32
nodes, AMPI and the optimized hybrid version show speedups of
2.4⇥ compared to the pure MPI execution. Similarly as in the single-
node experiment, the AMPI runtime results in an execution time
that is slightly better than our manually optimized version in all
cases.

6.4 Summary of performance results
This section has shown that improved memory access locality and
load balance can substantially improve performance even in a clus-
ter system. Our manually optimized hybrid version, as well as run-
ning with the AMPI runtime environment, are the fastest versions
of PlasCom2, showing a signi�cantly better scaling than the pure
MPI version, and a lower absolute execution time than the base-
line hybrid version. By initializing data structures in parallel, we
were able to improve locality and load balance signi�cantly, result-
ing in substantial performance improvements on shared memory
machines.

7 RELATEDWORK
The architectural trend toward greater numbers of cores per shared-
memory node has exposed greater opportunities for light-weight
parallelism within a process. This has led to a rise in hybrid ‘MPI+X’
programming, where the X is a shared-memory programming
model such as OpenMP [36]. There has been extensive work on
the interoperation of MPI libraries with shared-memory runtimes
and their use in hybrid applications [4, 6, 39, 42]. The MPI stan-
dard has also grown to include shared memory programming it-
self [22, 23, 30].

In this work we focus on locality as it relates to load balance, and
on the work required to maintain locality in a hybrid model. We use
AMPI [24] as our MPI implementation, but others such as MPC [32,
35] and HMPI [15] have similar support for shared memory. Other
programming models for cluster architectures, such as those based
on the Partitioned Global Address Space (PGAS) model, can also
bene�t from optimizations to memory access locality, resulting in
signi�cant performance gains [3, 21].

Several prior tools can help with detecting and �xing memory
access issues on NUMAmachines. Generic tools to evaluate parallel
application performance, such as Intel’s VTune [37], provide sum-
mary statistics about the memory access behavior, without clearly
identifying sources of potential ine�ciencies. More speci�c tools
are therefore required to improve memory locality. Previous propos-
als that target NUMA architectures, such as MemProf [26], Mem-
phis [29], Liu et al.’s NUMA extension [27] to the HPCToolkit [2],
and MemAxes [18], only provide incomplete information that is
based on sampling of memory accesses. Sampling can help to under-
stand hot spots in the code, but might lead to incorrect conclusions
if it misses important events, such as long-latency loads. Most im-
portantly, sampling usually can not detect the �rst access to data
structures or memory pages, leading to a lack of information re-
garding the �rst-touch behavior of an application. The numalize
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tool [12] discussed in Section 3 has a high one-time overhead, but
presents detailed results and detects which thread performs the
�rst access to each page.

Recently, migrating memory pages to improve memory locality
during the execution of a parallel application has received renewed
attention. Several such mechanisms have been proposed, operating
on the hardware level [7, 8, 41], compiler-level [33, 38], or OS-
level [9, 11, 17]. These mechanisms do not require changes to the
application to improve locality, but can cause a signi�cant runtime
overhead that limits their gains compared to the manual changes
applied in this paper.

8 CONCLUSIONS
The locality of memory accesses has a high impact on the per-
formance of parallel applications even when executing on cluster
systems. For this reason, application developers and users need to
be aware of locality issues in their chosen parallel APIs in order
to maximize resource utilization. In this paper, we analyze locality
issues in a common hybrid parallelization model consisting of MPI
and OpenMP. Optimizing the memory locality, via manual changes
in the way memory is allocated and accessed �rst, or by using the
AMPI runtime for MPI, results in signi�cant locality and perfor-
mance improvements, even in a multi-node execution. Compared to
the baseline, performance was increased by 1.7⇥ on a single node,
and 1.4⇥ on 32 nodes.

Results from the manual improvements and AMPI were very sim-
ilar, however, both solutions have di�erent tradeo�s. With AMPI,
there is no need for hybrid parallelization to achieve the resource
utilization of MPI+OpenMP, but users are required to use AMPI and
forgo the use of global variables. A custom C++ memory allocator
provides the most portable solution, but demands signi�cant devel-
oper e�ort for the implementation. In both cases, scaling was much
better than when running a pure MPI implementation, indicating
that using shared memory is a key to improving performance of
MPI applications. In addition to the performance improvements,
we have shown the impact of memory locality on load balance. A
higher locality resulted in a lower stall time due tomemory accesses,
leading to a fairer resource usage.

For the future, we intend to analyze di�erent applications and
other parallelization APIs, including those based on PGAS. Further-
more, we will evaluate the impact of di�erent page sizes on locality
and performance.
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