
FlipBack: Automatic Targeted Protection Against
Silent Data Corruption

Xiang Ni†, Laxmikant V. Kale?

†IBM T.J. Watson Research Center, Yorktown Heights, New York 10598
?Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

E-mail: †xiang.ni@ibm.com, ?kale@illinois.edu

Abstract— The decreasing size of transistors has been critical
to the increase in capacity of supercomputers. The smaller the
transistors are, less energy is required to flip a bit, and thus silent
data corruptions (SDCs) become more common. In this paper,
we present FlipBack, an automatic software-based approach that
protects applications from SDCs. FlipBack provides targeted
protection for different types of data and calculations based
on their characteristics. It leverages compile-time analysis and
program markup to identify data critical for control flow and
enables selective replication of computation by the runtime sys-
tem. We evaluate FlipBack with various HPC mini-applications
that capture the behavior of real scientific applications and show
that FlipBack is able to protect applications from most silent
data corruptions with only 6− 20% performance degradation.

Index Terms—Software reliability, Fault detection, Computer
errors, Redundancy

I. INTRODUCTION

Reliability is one of the most important characteristics
expected from computer systems. Effectively utilizing hard-
ware resources is difficult if faults are frequently encountered.
In high performance computing (HPC), where the system
comprises hundreds of thousands of components, even making
sure that all components are functional at all the times is
a daunting task. This is because although the mean time
to failure (MTTF) of individual components is high, the
aggregate MTTF of the full system is low due to the large
number of system components. As a result, hardware vendors
and software designers have made a significant effort to enable
a smooth user experience even in the presence of fail-stop
failures [18].

Besides fail-stop failures, the major deterrent to achieving
reliability is presence of soft errors. A soft error typically
results from transient faults caused by electronic noise or high-
energy particle strikes. For example, silent data corruption
(SDC) may occur due to transient bit-flips [21]. SDCs are
becoming more prevalent in HPC as lower power chips with
smaller feature sizes are being developed. Research has shown
that there exists a strong correlation between an increase in
soft error rate and a decrease in device sizes and operating
voltages [10]. Even recent and current systems face a modest
number of soft errors. For example, ASC Q system at Los
Alamos National Laboratory experienced on average 26.1
CPU failures induced by cosmic rays per week [20]. On

Jaguar, double-bit errors were observed once every 24 hours
in Jaguar’s 360TB memory [1].

In HPC, redundancy and duplication are being proposed
and explored to tolerate SDCs [9], [12], [13], [22]. With these
approaches, correctness is guaranteed by repeating application
execution using methods such as instruction-level duplication
and replica creation. However, due to duplication, the max-
imum efficiency achievable in most of these approaches in
comparison to the base version is 50%. This paper aims at
addressing this limitation of duplication-based approaches by
exploiting datatype-specific methods for addressing SDCs.

Our work is motivated by the following observation made
in [11]: an application execution on a system is reliable if it
satisfies two conditions – 1) it computes the data correctly,
i.e. the execution performs all the work in the right order
and 2) it computes the correct data, i.e. when the expected
work is performed, no errors are made. For example, results of
branch instructions determine the program flow and hence any
miscalculation in computing the result of a branch instruction
leads to the first condition not being fulfilled. Data corruptions
in any other part of the execution prevent the second condition
from being satisfied.

In a typical HPC application, different types of data may be
critical for carrying out these two steps and for determining
their correctness. Additionally, different methods may be more
effective and efficient for protecting different types of data. We
explore these possibilities and show that significant reliability
and performance improvements can be obtained by using
datatype-specific methods.

Process View

wrong
destination

Field data
computation

Control
data

Field
data

Control flow
computation

Communication
with others

Possible crash or
incorrect output

Fig. 1: Different types of data and their effect on reliability.

†This work was done when Xiang Ni was at University of Illinois.
SC16; Salt Lake City, Utah, USA; November 2016
978-1-4673-8815-3/16/$31.00 c©2016 IEEE

Broadly speaking, as shown in Fig. 1, we divide the data
of an application into two categories: control data and field
data. Control data, as its name suggests, is used to determine
the flow of a program, e.g. an iteration counter, number of
message receives, or rank of neighboring process. A corruption
in control data can make the program perform incorrect
computation, communicate with wrong processes, or even
crash. Hence, SDCs in them should be detected and corrected
as soon as possible. On the other hand, field data is used in
most of the computation work and typically leads to incorrect
output. Application-specific methods for ensuring reliability of
field data may be sufficient and faster.

Building upon the distinction between the control data
and the field data, we have developed a framework, called
FlipBack, that provides automated targeted protection against
SDC. The main contributions of our work that are described
in detail in the rest of this paper are:
• We present the design of a novel framework that auto-

matically adjusts the protection mechanism based on the
data and calculation types (§ III, § IV, § V).

• We demonstrate the role of compiler in automatic iden-
tification of data critical for control flow and of runtime
system in selectively replicating computation to improve
application reliability (§ III, § IV).

• We evaluate FLIPBACK with two proxy applications and
show that 80% to 100% soft error coverage can be
provided by the framework with additional 6% to 20%
performance overhead.

II. BACKGROUND AND RELATED WORK

The key ideas on which FLIPBACK is based are broadly
applicable. However, as a proof of concept, we have imple-
mented FLIPBACK in the CHARM++ runtime system [2]. The
reasons for choosing CHARM++ as our test bed are explained
at the end of Section II-A.

A. CHARM++
CHARM++ is a general purpose parallel programming

framework based on the concept of overdecomposed units
created by programmers [2]. Control flow in a CHARM++
program is written in terms of these units and the user-
level communication is also directed at these units. Under the
hood, a runtime system (RTS) manages the placement of the
units on processes and redirects communication based on it.
The execution order of the units is based on availability of
messages for them and is guided by the RTS. Several large
applications take advantage of the CHARM++ methodology
and scale to very large HPC systems [2], [24], [15], [19]. Here,
we briefly describe a few key concepts related to CHARM++
that are relevant to this paper.

Chares: C++ objects are used to represent work and data units
in CHARM++ and are referred to as chares. For different types
of work and data units, different C++ classes, i.e. chares,
should be defined by the programmers. The decomposition
granularity is typically chosen such that the number of chares
is much larger than the number of cores (e.g. 8×). Fig. 2

m3 m4 m5 m1 m2

A1 A2

B1

A3
B2

A1 A2 A3 B2B1

Application View

RTS RTS

m1

m2

m3

m4
m5

m1 m2 m3 m4
m5

System View

Fig. 2: Charm++ execution model. Applications define work
units and their interactions. The runtime system manages
execution and communication of these work units by mapping
them onto processes.

(left) shows an example in which from an application’s point
of view, two types of work units exist with five objects in
total (named A1, A2, A3, B1, B2). These C++ objects remain
inactive till messages arrive for them and are then scheduled
for execution by the RTS.

Entry methods: Specially designated member functions,
called entry methods, form the basic unit of execution of
chares. They also provide the mechanism for communication
defined in terms of destination chares and designated entry
methods. For example, in Fig. 2 (left), when chare A1 is
executed, it invokes entry methods (m1, m2) on other chares
(A3, B2). These possibly remote invocations lead to execution
of these chares on the processes at which they reside.

CHARM++ RTS: The RTS is responsible for following key
tasks in CHARM++ among others: 1) mapping and remapping
chares to processes, 2) transforming communication defined
by programmers among chares to communication among pro-
cesses, 3) executing entry methods on chares. On the right side
of Fig. 2, the corresponding RTS view of the application view
(shown on left) is presented assuming only two processes.
Chares A1, A2, B1 are mapped to the first process, while chares
A3, B2 are on the second process. When chare A1 invokes
entry method m1 on chare A3, the RTS records the request
and returns the control to chare A1. After the execution of
A1’s entry method is completed, the RTS finds the process on
which chare A3 resides and forwards a message that requests
execution of entry method m1 on chare A3 to that process.
At the destination process, the message is enqueued into
a message queue and eventually leads to execution of the
member function m1 on the chare A3.

We have chosen CHARM++ to implement a proof-of-
concept of our ideas for two reasons. First, the notion of chares
is highly suitable for containing faults. Since a chare only
modifies the data that it owns, if the silent data corruptions can
be detected and corrected within a chare, their propagation to
the rest of the application data can be avoided. Second, since
the runtime system manages what work is executed on which
chares at what time, it provides opportunities to insert hooks
for FLIPBACK to detect and correct SDCs.

B. Related work

Software instruction duplication: SWIFT [25] is a fully
software-based instruction duplication technique that leverages
unused instruction level parallelism to schedule duplicated
computation. SWIFT provides good failure coverage except
when bit flips occur between verification and actual use of data
or when bit flips change the opcode of non-store instructions to
store. However, it doubles the number of dynamic instructions
and thus leads to significant cost in terms of performance and
power. Shoestring [11] enhances SWIFT with symptom-based
detection and only applies instruction duplication to the code
segments that are more vulnerable to silent data corruptions.
Compared to FLIPBACK which is a more generic approach
based on the characteristics of HPC applications, Shoestring
relies on hardware-specific knowledge. HAUBERK-NL [30]
duplicates the non-loop computation in GPU programs and
applies value-ranging check to protect the loop portions.
IPAS [16] uses machine learning techniques to find the in-
structions that are more likely to cause silent data corruptions
and only protect those instructions by duplication. However,
it requires extra training time that can be substantially more
costly than a compiler and runtime-based approach.

Redundancy techniques: Redundancy techniques have
been deployed in both hardware and software. IBM S/360 [27]
and HP NonStop systems [3] use large scale modular re-
dundancy to provide fault tolerance. Watchdog [5] uses an
extra processor to detect errors by monitoring the behavior
of the main processor. ACR [22] enhances the traditional
checkpointing scheme with replication to detect and correct
both hard failures and silent data corruptions. RedMPI [13]
compares messages received by the original and replicated
MPI processors in order to detect silent data corruptions.

Anomaly based detection: Based on the characteristics of
application data, different techniques have been proposed to
compare the application data with expected values in order to
detect silent data corruptions. Detection based on temporal and
spatial similarity of application data has been proposed and
explored in various ways. Yim et al. [29] computes a histogram
of application data to detect outliers in conjunction with
temporal and spatial similarity. Sheng et al. [7] have designed
a detector that can select the best-fit prediction method during
execution and automatically adjust the detection range accord-
ing to the false-positive events observed. Bautista-Gomez et
al. [4] use multivariate interpolation to detect and correct silent
data corruptions in stencil applications. All these different
anomaly based detection techniques can be easily plugged into
FLIPBACK to improve its failure coverage.

Algorithm based fault tolerance: Specially designed algo-
rithms can protect different computation kernels with low cost
and high detection coverage. Examples of such algorithms are
[26] for sparse linear algebra, [23] for iterative solvers and [8]
for LU factorization. However, this approach is not applicable
to every application and requires significant development time.
In comparison, FLIPBACK is a generic approach that can be
used for a wide variety of of HPC applications.

III. RUNTIME GUIDED REPLICATION

FLIPBACK is built upon the concept of datatype specific
protection from silent data corruptions. It views the application
data as a collection of control data and field data. For each
of these data types, it deploys different mechanisms to protect
them against silent data corruptions. In this section, we de-
scribe how runtime guided replication can protect the data and
computation related to program control flow. In Section IV,
we discuss the method that is used to protect transient data
followed by Section V in which techniques to protect field
data are introduced.

A. Motivating Examples

Fig. 3 shows two code snippets written in CHARM++
that represent common use cases for HPC programs. Fig. 3a
consists of a stencil computation in which relaxation-updates
are applied on grid-based data. The control flow of this
program is as follows: at the beginning of every iteration
(beginNextIter), each chare (C++ object) checks if the iteration
count (iterCount) has reached the total iterations desired (to-
talIter) and if the program should exit. If not, each chare sends
the boundary data to its neighbors to begin the next iteration.
At this point, all chares wait to receive messages from their
neighbors. When a message arrives, the ghost data received is
processed (receiveMessage). When all the ghost messages are
received, computation is triggered (invokeComputation) and
the control is passed to the beginNextIter function.

In stencil computation described above, certain pieces of
data used for calculation play an important role to ensure
that the program flow is correct. For example, if the value of
msgCount is modified due to bit flips, the program may hang.
This is because some processors may now expect to receive
more number of ghost messages than they should, and thus
lead to a logical error. Similarly, if a bit flip happens during
the computation of iterCount, the program may either execute
fewer or more iterations than originally specified. Finally, if
the calculation of the message destination is corrupted, the
program may either compute using the wrong ghost data or
may hang because of the incorrect delivery of messages. We
refer to variables like msgCount and iterCount as control
variables since their correctness affects the program’s control
flow significantly.

Although the molecular dynamics simulation program
shown in Fig. 3b has a different control flow structure in
comparison to stencil computation, we still observe that certain
calculations are more vulnerable than others. For example,
the calculation of the destination where each particle should
migrate to (id) is essential for correctness. If corruption affects
such calculations, particles may move to the wrong chare and
soon silent data corruptions will propagate through the entire
system.

What we learn from these code examples is that protection
of the computation involving control variables and message
destinations is necessary to ensure that the program executes
the right computation. Hence, to protect these code regions
from silent data corruptions, we conduct recomputation using

1 void Stencil::beginNextIter()
2 {
3 iterCount++;
4 if(iterCount >= totalIter){
5 mainProxy.done(); //program exits
6 }else{
7 for(int i = 0; i < totalDirections; i++)
8 {
9 ghostMsg * m1 = createGhostMsg(dirs[i]);

10 copy(m1->data, boundary[i]);
11 int sendTo = myIdx+dirs[i];
12 stencilProxy(sendTo).receiveMessage(m1);
13 }
14 }
15 }
16 void Stencil::receiveMessage(ghostMsg * m)
17 {
18 msgCount++;
19 processGhostMsg(m);
20 if(msgCount == numMsgExpected){
21 msgCount = 0;
22 thisProxy(self).invokeCompute();
23 }
24 }
25 void Stencil:invokeCompution()
26 {
27 //computation routine
28 for(int i = 0; i < size; ++i){
29 temperature[i] = ...
30 }
31 thisProxy(self).beginNextIter();
32 }

(a) Stencil computation

1 void Cell::compute()
2 {
3 for(each p in particles){
4 computeTotalForce(p);
5 }
6 cell(self).startMigration();
7 }
8 void Cell::startMigration()
9 {

10 for(each p in particles){
11 int id = findOwner(p);
12 if(id != myID){
13 cell(id).migrateParticl(p);
14 }
15 deletedParticles.push_back(p);
16 }
17 }

(b) Molecular dynamics simulation

Fig. 3: Code snippets from scientific applications.

the same inputs. The results thus obtained are compared with
the control variables and message destinations obtained from
the original computation. If there is a mismatch, we detect that
silent data corruption has happened.

B. Compiler Slicing Pass

Re-executing all the computation is very expensive since
it doubles the execution time of the program and potentially
doubles the memory requirement as well. In order to reduce
the recomputation time and memory overhead, FLIPBACK
introduces a slicing pass into the standard compiler backend

Input:
f: the targeted function to perform slicing on
c: set of control variables
Output: slices: the program slice for recomputation
// search for slicing criterions

1 foreach Instruction I in f do
2 if Defs(I) ⊂ c or I sends messages then
3 criterions.push(I);
4 end
5 end
6 while !criterions.empty() do
7 I←criterions.top(); criterions.pop();
8 if !I.processed() then
9 slices.push(I);

// data flow analysis
10 foreach Values I ′ in Uses(I) do
11 foreach Instruction I ′′ in Defs(I ′) do
12 if I ′′ may lead to I then
13 criterions.push(I ′′);
14 end
15 end
16 end

// control flow analysis
17 foreach BasicBlock B that may lead to I do
18 criterions.push(B.getTerminator());
19 end
20 end
21 end

Algorithm 1: Slicing pass to find recomputation region.

to limit the recomputation scope. A program slice is part of
the program that affects the values computed at some points
of interest. In the slicing pass, FLIPBACK first identifies the
instructions that modify the value of either a control variable
or variables that affect communication. We refer to those
instructions as critical instructions. Next, FLIPBACK finds all
other instructions that directly or indirectly affect the critical
instructions. In this way, all the instructions whose execution
can potentially affect the computation of control variables are
discovered.

Having identified the program slice for control variables
and message destinations, recomputation is performed only
on those instructions. We have found that this reduces the
overheads of recomputation significantly. Moreover, only con-
trol data and messages need to be duplicated for recomputa-
tion. Typically, the memory space used by control data and
messages is much less than the other data used in scientific
computation. Thus, the slicing pass not only reduces the
computation time but also relieves memory pressure.

Algorithm 1 shows how the slicing pass works. First the
slicing pass finds the slicing criterions: instructions that either
assign values to control variables or sends messages (line
1−5). Using the example shown in Fig. 3a, the code on lines
3, 5, 12, 18, 21, 22, and 31 will be selected as slicing criterions
after this step. Next, in order to find all the instructions that

1 //mark control and field data
2 addControl(&msgCount);
3 addControl(&iterCount);
4 addField(&particles);
5 ------------------------------
6 //annotate important members in messages
7 class ghostMsg
8 {
9 control int direction;

10 double * data;
11 }

Fig. 4: Annotations of the control and field variables.

Input: o: the original full fledged chare
s: the shadow chare
// RTS receives a message M for o

1 checkpointControl(o);
2 checkpointControl(s);
3 restart←true;
4 while restart do

// buffering outgoing messages
5 o.invoke(M); s.invoke(M);
6 if compareControl(o, s) and compareMsgs(o, s) then
7 restart←false;
8 sendMsgs(o); deleteMsgs(s);
9 end

10 else
11 restartControl(o); restartControl(s);
12 end
13 end

Algorithm 2: Workflow in RTS.

may affect the instructions in the slicing criterions, we conduct
backward data flow analysis and control flow analysis. To
better understand the process of data flow analysis, let us look
at line 12 in Fig. 3a. According to Algorithm 1, first we need
to find the values used in that instruction (line 10), which are
sendTo and m1. The definitions of sendTo and m1 are at line
11 and 9 in Fig. 3a. Since line 12 is in the execution path
from either line 11 or 9 to the end of the function, those two
new lines are added to the criterions and slicing set. Similarly,
the definition of i in line 7 is also be included in the slicing
set due to the data flow analysis. Control flow analysis can be
illustrated using line 21 in Fig. 3a. Since branch instruction at
line 20 acts as the terminator instructions of the basic blocks
that lead to the execution of line 21, it is also included in the
slicing set.

Note that although line 10 in Fig. 3a should be part of the
slice according to Algorithm 1, we prune it since the content
of the message depends on non-control variables that can be
protected using other methods. One limitation of the presented
slicing tool is that inter-procedure and pointer analysis is not
supported but we plan to address that in the future.

C. Runtime Support

The runtime system (RTS) component of FLIPBACK has
multiple roles. It is responsible for local checkpoint/recovery,
recomputation and verification. When a chare is created, FLIP-
BACK automatically creates a corresponding “shadow” chare
that is invisible to users for recomputation. Shadow chares only
execute the program slice obtained from the compiler pass.
Thus, another compiler pass is needed after the original slicing
pass to prevent shadow chares from executing instructions that
do not belong to the slice by adding conditional instructions.
FLIPBACK allows users to mark control and field data using
a simple API as shown in Fig. 4. The RTS creates shadow
chares using default constructors and then copies the value of
control variables from the original chare. As for the field data,
RTS ensures that shadow chares and the original chares point
to a common copy of the variables.

Algorithm 2 shows the interaction between the original and
shadow chares in the runtime system. Broadly speaking, the
execution model is transaction based at the level of entry
method executions. Actions that affect other chares can only
be committed once it is confirmed that there are no silent
data corruptions. As shown in Algorithm 2, when a message
M targeted at the original chare is received, the RTS first
checkpoints the control variables in both the original chare
and the shadow chare (line 1− 2). Next, the RTS invokes the
entry method associated with M on the original chare. During
the execution of the original chare, all the outgoing messages
are buffered. Then, the RTS invokes the same entry method
on the shadow chare and buffers all the outgoing messages as
well. As mentioned earlier, when the entry method is invoked
on the shadow chares, only the instructions that are part of the
sliced set will be executed.

In the end, control variables and buffered messages obtained
from the original chare and the shadow chare are compared
(line 6). If there is mismatch between the data from the two
sources, the RTS rollbacks both the shadow chare and the
original chare to the beginning of the entry method execution
using the checkpoints of the control variables, and then repeats
the executions. The buffered messages are not sent out until
the control variables and buffered messages from the original
and shadow chares match with each other.

To enable faster comparison of messages, the RTS also
allows users to annotate important members in each message.
As shown in Fig. 4, users can annotate members, such as the
integer data direction, as a control variable. This results in
creation of a customized function that is used by the RTS
to only compare the direction from the two messages. This
scheme is coherent with the slicing pass methodology where
the shadow chares do not execute line 10 in Fig. 3a since it is
not needed for comparison. Data corruptions in the data field
of the ghostMsg are protected using techniques for field data
described in a later section.

We find that the message driven execution model like
CHARM++ greatly eases the process of local recovery by sep-
arating the control and computation flow into different entry

methods. As can be seen in Fig. 3a, actions before and after
the computation routine invokeComputation are encapsulated
in entry methods receiveMessage and beginNextIter. Hence,
there is no need to checkpoint the field data temperature for
the local recovery of computations in receiveMessage and
beginNextIter. As for the entry method invokeComputation,
we protect it using the techniques described in Section IV-V.

IV. SELECTIVE INSTRUCTION DUPLICATION

Runtime guided replication is not adequate for dealing with
certain categories of SDCs. In particular, since the comparison
is made only after the entry method finishes execution, errors
that are “felt” only during the execution are left unprotected.
For example, it is difficult to protect loop variable i in the
entry method invokeCompution shown in Fig. 3a using runtime
guided replication since its lifetime ends before the completion
of the entry method. However, bit flips in i can lead to severe
consequences: the program may either crash due to out-of-
bound access or cause SDCs because incorrect data is used.
FLIPBACK uses selective instruction duplication to protect
such transient calculations. More specifically, FLIPBACK se-
lectively duplicates the integer arithmetic instructions in the
code region that are not part of the sliced set to be replicated
by shadow chares.

To enable duplication of integer arithmetic instructions,
we perform another compiler pass in FLIPBACK, primarily
to protect address calculations used for memory access. In
this pass, we first identify all the instructions that calculate
the addresses used in load and store instructions. Next, we
find the duplication path for those instructions using use-
def and def-use chains, and duplicate every instruction in
this path. This step is similar to what has been shown in
the previous work [25], [11]. Our current implementation
limits duplication path to be within a basic block. Finally,
comparison instructions are added at synchronization points,
i.e. before store and branch instructions to check for SDCs.

1 ;label 0
2 %1 = add i, 1
3 %2 = add i, 1
4 %3 = icmp eq %1, %2
5 br %3, label %4, label %6
6 ;label 4
7 5 = add i, 1
8 br label %6
9 ;label 6

10 %7 = phi [%1, label %0], [%5, label %4]

Fig. 5: Illustration of the LLVM IR code after selective
instruction duplication pass.

Our approach for instruction level duplication is different
from the previous work [25], [11] in that FLIPBACK performs
local recovery immediately if SDC is detected. Fig. 5 shows a
simplified version of the LLVM IR code after the selective
instruction duplication pass. Line 3 duplicates the original
instruction in line 2. Line 4 compares the two execution paths.
If there is mismatch, we perform recomputation again in line

7. At line 10, we decide which computation result should be
used based on whether SDC has occurred or not. Afterwards,
we replace all the future uses of instruction 1 with instruction
7. Note that the underlying assumption we make is that the
probability of bit flips occurring at the same place in a short
duration is very low.

V. ADAPTIVE PROTECTION FOR FIELD DATA

FLIPBACK provides several detection routines to protect
field data that are typically computed using floating point
calculations against SDCs. In general, scientific HPC applica-
tions simulate phenomena that occur in the real world, such as
particle motion, heat-propogation, climate changes, and fluid
dynamics. As a result, the continuity of data found in nature
is also observed in a correctly executing scientific program
unless bit flips silently change its output. For example, Fig. 6
shows a heat map for data values arranged as a 2D grid in
two applications that perform stencil-based property update
and molecular dynamics based on Car-Parrinello method [15].
It is easy to see that gradual changes are observed in data
values as a sweep is made through the grid.

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60
 0

 50

 100

 150

 200

 250

 300

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Fig. 6: Continuity in scientific data: gradual changes are
observed in data values arranged as a 2D grid in a property-
relaxation (left) and a molecular dynamics (right) application.

FLIPBACK leverages the aforementioned continuity in the
data values and reports anomalies when such a continuity is
not observed. Currently, we provide different detectors that
exploit different types of data similarity as discussed below.
At the beginning of each run, FLIPBACK tests the application
data with all the detectors and selects the one that predicts
values most accurately. We refer to this initial stage as the
testing phase in the rest of this section.

Spatial data similarity: This detector predicts the data
value at each point based on the value at its neighbor points.
This predicted value is compared with the real value to check
if the difference between the real value and the predicted value
is within a user-defined range. If the difference is out of the
range, FLIPBACK reports the anomaly to users. In a typical
HPC application, data is arranged as a multi-dimensional
structured or unstructured mesh. Depending on the application,
data values may show higher similarity or better correlation
along a dimension in comparison to other dimensions. Thus,
in the testing phase, FLIPBACK first finds the best dimension
to use for prediction and then predicts the data values along
that dimension.

In order to combine the information from multiple di-
mensions for better prediction, FLIPBACK utilizes a method

d(i,j)d(i,j-1) d(i,j+1)

d(i-1,j+1)

d(i+1,j+1)d(i+1,j-1)

d(i-1,j-1) d(i-1,j)

d(i+1,j)

Fig. 7: Representation of data in 2D grid.

that explores the relationship between neighbors points in
one dimension through an orthogonal dimension. In the data
grid shown in Figure 7, to predict the value at point (i, j),
FLIPBACK first studies the relationship of each jth data point
with its left (j−1) and right (j+1) neighbors in rows i−1 to
i + 1. More specifically, FLIPBACK first calculates ri−1 and
ri+1 using the following formula:

ri−1 =
di−1,j−1−di−1,j

di−1,j−1−di−1,j+1
, ri+1 =

di+1,j−1−di+1,j

di+1,j−1−di+1,j+1

Then it uses ri−1 and ri+1 to interpolate the corresponding
ri in row i. Next, FLIPBACK predicts the value at point (i,j)
as pi,j = di,j−1 − (di,j−1 − di,j+1) ∗ ri. Finally, it compares
pi,j with di,j to detect if an anomaly has been found.

Temporal data similarity: This detector studies the tempo-
ral evolution of the application data. Assume that the current
detection time step is t and data from previous two detection
steps is stored (steps t−k and t−2k where detection is done
every k time steps). First, FLIPBACK computes and records
δ as the data difference from time step t − 2k to t − k.
Next, FLIPBACK uses δ and dt−k (the data value at time step
t−k) to predict the data value at time step t. If the difference
between the predicted value and the real value (dt) is beyond
a predefined range, FLIPBACK reports the anomaly to users.

Spatial & temporal data similarity: For certain applica-
tions, it is hard to predict the expected data values by use
of either spatial or temporal locality only. In such scenarios,
FLIPBACK attempts to use both spatially and temporally close
data to detect anomalies.

In this method, for each data point d, the first step is to
compute if spatial or temporal similarity exists. If neither
spatial or temporal similarity exists, the method checks if there
is a similarity between the temporal updates made to spatially
neighboring data values, i.e. if the update to the value of d
since the last time step is similar to the change in the value(s)
of the neighboring point(s) of d. For example, in a 1D grid,
this step checks if the difference dt(i)− dt−k(i) is similar to
either dt(i−1)−dt−k(i−1) or dt(i+1)−dt−k(i+1). Next, if
needed, we check if there is a temporal similarity between the
difference in the neighboring values: if the difference between

the value of d and its neighbor is similar at time step t and
t − k. If none of these steps find the data to be as expected,
an anomaly is reported to the user.

VI. EVALUATION

We use LLFI [28], a fault injection tool based on
LLVM [17], to inject bit flip induced soft errors. LLFI works
at the level of LLVM intermediate representation code and
injects failure into live registers. The original version of LLFI
developed by Wei et al. is for injecting faults into sequential
programs only. In order to use it for our experiments, we
extend LLFI to work with parallel programs. The parallel
version of LLFI randomly selects a processor and injects
failure to it during the execution. In this way, we mimic the
occurrence of a bit flip on arbitrary processors.

All experiments presented in this section were conducted on
Catalyst, a cluster at Lawrence Livermore National Laboratory.
It consists of Intel E5-2695 processors with two sockets per
node and 12 cores per socket. We use two proxy applications to
evaluate the failure coverage and performance of FLIPBACK:
Miniaero and Particle-in-cell (PIC). Miniaero [14] is a proxy
application from Sandia National Laboratory which solves
the compressible Navier-Stokes equations using explicit RK4
method. Particle-in-cell (PIC) is a proxy application from the
PRK benchmark suite [6], in which particles are distributed
within a fixed grid of charges. In each time step, PIC cal-
culates the impact of the Coulomb potential at neighboring
grid points on the motion of every particle. We also use a
micro-benchmark, Stencil3D, that performs 7-point stencil-
based computation on a 3D-structured mesh to further evaluate
FLIPBACK.

Both Miniaero and PIC provide verification routines that
we use to determine if an execution generates correct output
at the end of the run. For Stencil3d, output of a given run is
compared with the output generated from the failure-free run.
If the maximum difference between the two sets of outputs is
less than 1%, we deem the execution to be correct.

Silent data corruptions in different parts of the programs
manifest themselves in different ways, thus we categorize the
failure injection experiments into four sets and study them
one by one. The first set impacts communication routines
in which message creation and reception occurs. The second
set corresponds to the integer calculations in the computation
routine. The third one relates to floating point calculations in
the computation routine. The last set includes all the remaining
code regions which we refer to as the control set since the
computation in this set can easily affect the program flow.
For every bit position that can be flipped, we run the proxy
application 100 times, and in each run LLFI selects when and
to which register a fault is injected. As a result, we perform
3, 200 to 6, 400 failure injection experiments in total for each
set that contains either 32-bit data or 64-bit data.

A. Miniaero

Fig. 8 shows how Miniaero reacts to bit flips with and
without the protection provided by FLIPBACK using the 3d-

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(a) Original: control

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit

Hang Crash Masked SOC

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit

Detected Detected & Masked Detected & Corrected

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(b) Protected: control

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(c) Original: communication

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(d) Protected: communication

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(e) Original: computation (integer)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(f) Protected: computation (integer)

 40

 50

 60

 70

 80

 90

 100

 20 25 30 35 40 45 50 55 60

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(g) Original: computation (floating point)

 40

 50

 60

 70

 80

 90

 100

 20 25 30 35 40 45 50 55 60

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(h) Protected: computation (floating point)

Fig. 8: Effect of bit flips on Miniaero: 3d-sod dataset with and without FLIPBACK protection.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(a) Original: control

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit

Hang Crash Masked SOC

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit

Detected Detected & Masked Detected & Corrected

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(b) Protected: control

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(c) Original: communication

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(d) Protected: communication

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(e) Original: computation (integer)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(f) Protected: computation (integer)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(g) Original: computation (floating point)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60
Fa

ilu
re

 T
yp

e
(%

)
Corrupted Bit

(h) Protected: computation (floating point)

Fig. 9: Effect of bit flips on Particle-in-cell with and without FLIPBACK protection.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(a) Original: control

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit

Hang Crash Masked SOC

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit

Detected Detected & Masked Detected & Corrected

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(b) Protected: control

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(c) Original: communication

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(d) Protected: communication

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(e) Original: computation (integer)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(f) Protected: computation (integer)

 0

 20

 40

 60

 80

 100

 20 25 30 35 40 45 50 55 60

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(g) Original: computation (floating point)

 0

 20

 40

 60

 80

 100

 20 25 30 35 40 45 50 55 60

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(h) Protected: computation (floating point)

Fig. 10: Effect of bit flips on Stencil3d with and without FLIPBACK protection.

	16

	32

	64

	128

	256

base +rts-dupe
+inst-dupe

+field-protection

Ti
m
e	
(s
)

(a)	Miniaero

16	cores 32	cores 64	cores 128	cores 256	cores

2.6% 5.3% 5.7%

3.9% 6.8% 6.9%

4.1% 9.0% 9.7%

2.6% 5.3% 5.6%

3.6% 5.5% 6.0%

	1

	2

	4

	8

	16

base +rts-dupe
+inst-dupe

+field-protection

(b)	PIC

10.7% 16.2% 18.4%

12.0% 14.9% 17.3%

11.0% 13.8% 15.6%

12.5% 15.2% 17.0%

5.5% 7.1% 8.9%

	8

	16

	32

	64

	128

base +rts-dupe
+inst-dupe

+field-protection

(c)	Stencil3d

17.6%
32.6% 41.5%

29.4% 45.5% 52.0%

16.1% 29.7% 34.4%

12.6% 23.8% 29.1%

25.0% 30.1% 32.5%

Fig. 11: Performance with different levels of protection: x-axis is functionality aggregated from left to right.

sod data set distributed with MiniAero. As can be seen
in Fig. 8(a), the program hangs in more than 80% of the
cases when failures are injected to the control data related to
computation routines and if there is no soft error protection.
The primary for the hang is the incoherent behavior of different
processors caused by the bit flips. When bit flips happen in
the higher bits, Miniaero crashes most of the time. This occurs
when control data is used to calculate the array access indices
and a out-of-bound access causes the crash. Fig. 8(b) shows
the program behavior when the same bit flip pattern is injected
into executions protected by FLIPBACK. It can be seen that
with the runtime guided replication and selective instruction
duplication in FLIPBACK, all the bit flips are captured as soon
as they occur and automatic local recovery is performed. As a
result, the program runs smoothly without any crash or hang.

Fig. 8(c) shows the results of the runs in which bit flips
are injected into the communication routines. The main work
performed in the communication routines of Miniaero is
sending and receiving of messages that contain the ghost
region. For 10% to 15% cases in which bit flips happen in the
communication routines, silent output corruptions (SOC) occur
due to sending of wrong data to the neighbors. Silent output
corruptions (SOC) means that the output obtained is incorrect.
Also, when a large fraction of bit flips happen on higher bits,
the execution crashes because of out-of-bound access to the
data. Most of remaining executions are not affected by bit
flips, i.e. the bit flip is masked. This can happen if the value
of the corrupted data is similar to the value of the correct
data, and thus the final result is still within the acceptable
error tolerance. In Figure 8(d) with FLIPBACK, we are able to
detect and correct all the bit flips in communication routines.

Fig. 8(e) shows the behavior of Miniaero when failures are
injected into the integer calculations in computation routines.
In majority of these cases, the program crashes due to out-of-
bound accesses. Incorrect results are observed due to use of
corrupted data for around 10% cases. As before, when used,
FLIPBACK detects and corrects all such corruptions.

In Fig. 8(g,h), we inject bit flips to floating point calcula-
tions of the computation routines in Miniaero. In these plots,
note that x-axis, which represents the position of corrupted
bit, starts from 20 while y-axis starts from 40. The bit flip
injections not shown in Fig. 8(g,h) are masked, i.e. all bit flips

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(a) Original: computation (floating point)

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit

Masked SOC Detected Detected & Masked

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60

Fa
ilu

re
 T

yp
e

(%
)

Corrupted Bit
(b) Protected: computation (floating point)

Fig. 12: Effects of bit flips on miniaero: flat-plate dataset
with and without FLIPBACK protection.

inserted to bits in position 0 to 20 are masked. According to
Fig. 8(g), the higher the position of bit that gets flipped, the
higher the chances that silent output corruptions is observed.
The most accurate detector for the 3d-sod data set found
by FLIPBACK during the test phase is the spatial similarity
detector using the y dimension. With that detector, FLIPBACK
is able to detect all the anomalies that lead to incorrect
output as shown in Fig. 8(h). However, in a few experiments,
FLIPBACK detects anomaly but the final result satisfies the
verification test shown as detected & masked in Fig. 8(h).
This is because over time, the corrupted data slowly converges
to a reasonable value using the uncorrupted data from the
neighboring points in the data grid.

Although the spatial similarity detector works well with the
3d-sod data set, FLIPBACK fount it unsuitable for another data
set distributed with Miniaero, the flat-plate data set. The best
detector for the flat-plate data set is the one that combines
both spatial and temporal similarity. Fig. 12 shows the effect
of bit flips on the floating point calculations of the computation
routines when Miniaero is executed with the flat-plate data set.
It can be seen in Fig. 12(b) that FLIPBACK is able to detect
more than 80% of the bit flips that lead to incorrect results.

B. Particle-in-cell

Fig. 9 shows the behavior of the Particle-in-cell proxy
application when bit flips are inserted with and without pro-
tection provided by FLIPBACK. Fig. 9(a,c,e) shows that PIC’s
execution behavior is similar to Miniaero when FLIPBACK is
not used. The only major deviation from the behavior shown
by Miniaero is when bit flips are inserted to communication

routines. In this case, the bit flips are mostly masked. FLIP-
BACK is able to detect and correct all bit flips in the control
and communication routines, and in the integer calculations
performed in computation routine as shown in Fig. 9(b,d,f).

For the field data in PIC, the temporal similarity detector
provides the best results. Fig. 9(g) shows that PIC is much
more sensitive to bit flips in the field data in comparison to
Miniaero: more than 70% bit flips lead to incorrect output
and 2% of bit flips cause the program execution to crash.
The crashes happen because in PIC, each particle uses its
position to calculate the grid indices it should interact with.
If the position data is corrupted, the calculation of the grid
indices is wrong and thus out-of-bound accesses occur and
cause crashes. FLIPBACK detects all the bit flips that lead to
SOC as well as bit flips that temporarily cause anomalies but
are eventually masked as the simulation continues.

C. Stencil3d

Fig. 10 compares how Stencil3d reacts to bit flips with and
without using FLIPBACK. The program behavior is similar to
the previous two application with two exceptions. First, bit
flips in Stencil’s communication routines are more likely to
lead to crashes. Second, bit flips during integer calculations
of the computation routine causes fewer crashes. Nonetheless,
FLIPBACK is able to detect and correct all the bit flips in the
control routine, communication routine and integer calcula-
tions part in computation routine as shown in Fig. 9(b,d,f).

The spatial similarity detector along both x and y dimen-
sions works the best with the field data in Stencil3d. Fig. 10(g)
shows that bit flips injected into higher bits of the floating point
data are much more likely to induce incorrect results. Among
all these bit flips that lead to incorrect results, FLIPBACK is
unable to catch only 1.8% bit flips as shown in Fig. 10(h).

D. Performance

Fig. 11 shows the performance overhead of using FLIP-
BACK to protect Miniaero, PIC and Stencil3d from silent
data corruptions. Both the proxy applications and the micro-
benchmark are strong scaled from 16 cores to 256 cores in
these experiments to evaluate FLIPBACK’s performance. Since
we are interested in studying the impact of each protection
mechanism provided by FLIPBACK on the application per-
formance, the presented result aggregates the overheads as
we move from left to right and add different features. As
can be seen from Fig. 11(a), for Miniaero proxy application,
the overhead added by runtime guided replication ranges only
from 2.6% to 4.1% as the application is scaled from running
from 16 to 256 cores. Adding selective instruction duplication
incurs an additional 2% to 4% overhead. The performance
degradation caused by field data detector is negligible: less
than 1%. Overall on 256 cores, FLIPBACK increases the
execution time of Miniaero by 6% even when all the protection
mechanisms enabled.

For PIC, runtime guided replication increases the execution
time by around 10% when compared to the baseline case in
which no protection mechanism is used as shown in Fig. 11(b).

Selective instruction duplication introduces an additional 2−
5% overhead. Adding a detector to protect field data increases
the total overhead of FLIPBACK to 9 − 18%. An interesting
observation for PIC is that as the parallel efficiency of the
program drops from 128 cores to 256 cores, the performance
overhead introduced by FLIPBACK decreases. This is because
FLIPBACK utilizes the idle time such as the time spent on
communication to perform the replicated work.

Fig. 11(c) shows the performance of Stencil3d when ex-
ecuted with FLIPBACK. Similar trends as the two proxy
applications are observed for Stencil3d. However, the absolute
amount of overhead due to FLIPBACK is higher for Stencil3d.
The higher overhead is because Stencil3d is a synthetic micro-
benchmark that performs much less floating point computation
in comparison to the other applications. As a result, the ratio
of the computation that is replicated to the total work is high.

VII. DISCUSSION

Comparison with traditional checkpoint/restart strategy:
In the previous section, we showed that when bit flips that
definitely cause programs to crash or hang occur, FLIPBACK
can detect them and perform local recovery with 100% cov-
erage. Hence, such failures are completely hidden from users.
Although use of FLIPBACK results in an increase in the
total execution time when there are no failures, the recovery
overhead using FLIPBACK is almost minimal. It only needs to
either re-execute an entry method or re-run a few instructions
for recovery.

Alternatively, one may choose to use traditional checkpoint
restart in which if the program crashes or does not make
progress for a long period of time, the application state is
rolled back to the last checkpoint and restarted from there. This
scheme may work if the bit flips induced soft errors are rare,
though it will be difficult to be certain if the results are correct.
Nevertheless, as the soft error rate increases, the recovery
overhead with the checkpoint restart strategy will be very high
and prevent applications from achieving sustainable scalable
performance. Moreover, as applications scale, the increase in
checkpoint time will also reduce performance further.

	0.1

	1

	10

	100

	1000

10 100 1K 10K 100K

O
ve
rh
ea
d	
(%

)

FIT	(number	of	crashes/hangs	in	1	billion	seconds)

60s
300s
600s

1800s
3600s

Fig. 13: Modeling the overhead of checkpoint/restart strategy
for different crash/hang rates and time to checkpoint.

Figure 13 shows the expected overhead of using check-
point/restart strategy for various soft-error induced crash/hang
rates and time to checkpoint. It can be seen that the overhead
increases linearly as the soft error rate increases. An increase
in time to checkpoint also leads to a significant increase in
the total checkpoint/restart overhead. With the worst failure
rate (100K crashes/hangs in 1 billion seconds), even if one
checkpoint takes only 300s, the total overhead is almost 30%.

In contrast to the overhead of checkpoint restart, the over-
head of using runtime guided replication and selective instruc-
tion duplication provided by FLIPBACK has been observed
to be less than 10% for applications that we have tested,
e.g. Miniaero and PIC. Besides, FLIPBACK can also protect
applications from bit flips that cause incorrect results which
is not possible with the checkpoint restart strategy. Moreover,
FLIPBACK is a much more scalable solution. The overheads
introduced by FLIPBACK do not scale with the number of
cores; additionally, FLIPBACK leads to very low overhead
during bit flip recovery that may lead to crashes or hangs.

Advantage of runtime guided replication: Both the tech-
niques of runtime guided replication and selective instruction
duplication are able to detect and correct bit flips that happen
in the functional units and registers including bit flips in ALU,
registers, branch instructions and instructions that calculate the
addresses used in load/store instructions. In addition, runtime
guided replication in FLIPBACK improves fault coverage in
two ways over the software based instruction duplication
approach.

First, runtime guided replication approach is able to detect
SDCs that occur in memory by comparing the control variables
and messages between the original and shadow chares. In con-
trast, with instruction duplication technique, incorrect values
will be loaded from the memory for both the original and
duplicated instruction. Second, store instructions is a single
point-of-failure for the software based instruction duplication
approach. Even if store instructions are duplicated, the second
one will overwrite the previous store instruction. In contrast,
for runtime guided replication, the values being stored are
compared at the end of entry method between the original
and shadow chares, and thus bit flips in store instruction can
be detected.

VIII. CONCLUSION

As the rate of bit flips increase due to decreasing feature
size and lower operating voltage, efficient methods to protect
HPC applications from SDCs will be needed. As a step
towards achieving this goal, this paper introduced FLIPBACK,
a framework that self adapts the protection mechanism based
on the data and computation characteristics. We have shown
that combined use of compiler techniques and runtime system
can significantly improve applications reliability by detecting
and correcting SDCs. We evaluated FLIPBACK with two
proxy applications and a micro-benchmark and showed that
FLIPBACK can achieve high soft error coverage with only
6− 20% performance overhead for the proxy applications.

ACKNOWLEDGMENT

This research is part of the Blue Waters sustained-petascale
computing project, which is supported by the National Science
Foundation (award number OCI 07-25070) and the state of
Illinois. This research used computer time on Livermore
Computing’s high performance computing resources, provided
under the M&IC Program.

REFERENCES

[1] How To Kill A Supercomputer. http://www.hpcwire.com/2016/02/24/
how-to-kill-a-supercomputer-tips-from-an-expert, 2016.

[2] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni,
M. Robson, Y. Sun, E. Totoni, L. Wesolowski, and L. Kale. Paral-
lel Programming with Migratable Objects: Charm++ in Practice. In
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’14, New York, NY,
USA, 2014. ACM.

[3] W. Bartlett and L. Spainhower. Commercial fault tolerance: A tale of
two systems. Dependable and Secure Computing, IEEE Transactions
on, 1(1):87–96, 2004.

[4] L. Bautista-Gomez and F. Cappello. Detecting and correcting data
corruption in stencil applications through multivariate interpolation. In
Cluster Computing (CLUSTER), 2015 IEEE International Conference
on, pages 595–602. IEEE, 2015.

[5] A. Benso, S. Di Carlo, G. Di Natale, and P. Prinetto. A watchdog
processor to detect data and control flow errors. In On-Line Testing
Symposium, 2003. IOLTS 2003. 9th IEEE, pages 144–148. IEEE, 2003.

[6] R. V. der Wijngaart, A. Kayi, J. Hammond, G. Jost, T. John, S. Sridharan,
T. G. Mattson, J. Abercrombie, and J. Nelson. Comparing runtime
systems with exascale ambitions using the parallel research kernels.
International Supercomputing Conference ISC, 2016.

[7] S. Di and F. Cappello. Adaptive impact-driven detection of silent data
corruption for hpc applications.

[8] P. Du, P. Luszczek, and J. Dongarra. Algorithm-based fault tolerance
method for soft error resilience in high-performance linpack. In IEEE
Cluster, 2011.

[9] C. Engelmann, H. H. Ong, and S. L. Scott. The Case for Modular
Redundancy in Large-Scale High Performance Computing Systems. In
International Conference on Parallel and Distributed Computing and
Networks (PDCN) 2009, pages 189–194. ACTA Press, Calgary, AB,
Canada, Feb. 2009.

[10] S. Feng, S. Gupta, A. Ansari, and S. Mahlke. Shoestring: probabilistic
soft error reliability on the cheap. In Architectural support for program-
ming languages and operating systems, ASPLOS XV, pages 385–396,
New York, NY, USA, 2010. ACM.

[11] S. Feng, S. Gupta, A. Ansari, and S. Mahlke. Shoestring: probabilistic
soft error reliability on the cheap. In ACM SIGARCH Computer
Architecture News, volume 38, pages 385–396. ACM, 2010.

[12] K. Ferreira, J. Stearley, J. H. Laros, III, R. Oldfield, K. Pedretti,
R. Brightwell, R. Riesen, P. G. Bridges, and D. Arnold. Evaluating
the viability of process replication reliability for exascale systems. In
Supercomputing, pages 44:1–44:12, New York, NY, USA, 2011. ACM.

[13] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and
R. Brightwell. Detection and correction of silent data corruption for
large-scale high-performance computing. In Supercomputing, SC ’12,
pages 78:1–78:12, Los Alamitos, CA, USA, 2012. IEEE Computer
Society Press.

[14] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist,
and R. W. Numrich. Improving Performance via Mini-applications.
Technical Report SAND2009-5574, Sandia National Laboratories, 2009.

[15] N. Jain, E. Bohm, E. Mikida, S. Mandal, M. Kim, P. Jindal, Q. Li,
S. Ismail-Beigi, G. Martyna, and L. Kale. Openatom: Scalable ab-
initio molecular dynamics with diverse capabilities. In International
Supercomputing Conference, ISC HPC ’16 (to appear), june 2016.

[16] I. Laguna, M. Schulz, D. F. Richards, J. Calhoun, and L. Olson.
Ipas: intelligent protection against silent output corruption in scientific
applications. In Proceedings of the 2016 International Symposium on
Code Generation and Optimization, pages 227–238. ACM, 2016.

[17] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

[18] E. Meneses, X. Ni, G. Zheng, C. L. Mendes, and L. V. Kale. Using mi-
gratable objects to enhance fault tolerance schemes in supercomputers.
In IEEE Transactions on Parallel and Distributed Systems, 2014.

[19] H. Menon, L. Wesolowski, G. Zheng, P. Jetley, L. Kale, T. Quinn, and
F. Governato. Adaptive techniques for clustered n-body cosmological
simulations. Computational Astrophysics and Cosmology, 2(1):1–16,
2015.

[20] S. Michalak, K. Harris, N. Hengartner, B. Takala, and S. Wender.
Predicting the number of fatal soft errors in los alamos national
laboratory’s asc q supercomputer. Device and Materials Reliability,
IEEE Transactions on, 5(3):329 – 335, sept. 2005.

[21] S. S. Mukherjee, J. Emer, and S. K. Reinhardt. The soft error
problem: An architectural perspective. In High-Performance Computer
Architecture, 2005. HPCA-11. 11th International Symposium on, pages
243–247. IEEE, 2005.

[22] X. Ni, E. Meneses, N. Jain, and L. V. Kale. ACR: Automatic
checkpoint/restart for soft and hard error protection. In ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’13. IEEE Computer Society, Nov. 2013.

[23] F. Oboril, M. B. Tahoori, V. Heuveline, D. Lukarski, and J.-P. Weiss.
Numerical defect correction as an algorithm-based fault tolerance tech-
nique for iterative solvers. In Dependable Computing (PRDC), 2011
IEEE 17th Pacific Rim International Symposium on, pages 144–153.
IEEE, 2011.

[24] J. Phillips, G. Zheng, and L. V. Kalé. Namd: Biomolecular simulation
on thousands of processors. In Workshop: Scaling to New Heights,
Pittsburgh, PA, May 2002.

[25] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August.
Swift: Software implemented fault tolerance. In Proceedings of the
international symposium on Code generation and optimization, pages
243–254. IEEE Computer Society, 2005.

[26] J. Sloan, R. Kumar, and G. Bronevetsky. Algorithmic approaches to low
overhead fault detection for sparse linear algebra. In Dependable Sys-
tems and Networks (DSN), 2012 42nd Annual IEEE/IFIP International
Conference on, pages 1–12. IEEE, 2012.

[27] L. Spainhower and T. A. Gregg. Ibm s/390 parallel enterprise server g5
fault tolerance: A historical perspective. IBM Journal of Research and
Development, 43(5.6):863–873, 1999.

[28] J. Wei, A. Thomas, G. Li, and K. Pattabiraman. Quantifying the
accuracy of high-level fault injection techniques for hardware faults. In
Dependable Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP
International Conference on, pages 375–382. IEEE, 2014.

[29] K. S. Yim. Characterization of impact of transient faults and detection
of data corruption errors in large-scale n-body programs using graphics
processing units. In Parallel and Distributed Processing Symposium,
2014 IEEE 28th International, pages 458–467. IEEE, 2014.

[30] K. S. Yim, C. Pham, M. Saleheen, Z. Kalbarczyk, and R. Iyer. Hauberk:
Lightweight silent data corruption error detector for gpgpu. In Parallel &
Distributed Processing Symposium (IPDPS), 2011 IEEE International,
pages 287–300. IEEE, 2011.

