
c© 2016 by Nikhil Jain. All rights reserved.

OPTIMIZATION OF COMMUNICATION INTENSIVE APPLICATIONS
ON HPC NETWORKS

BY

NIKHIL JAIN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Doctoral Committee:

Professor Laxmikant V. Kalé, Chair
Professor William D. Gropp
Professor Josep Torrellas
Professor D. K. Panda, The Ohio State University

Abstract

Communication is a necessary but overhead inducing component of parallel programming.

Its impact on application design and performance is due to several related aspects of a parallel

job execution: network topology, routing protocol, suitability of algorithm being used to the

network, job placement, etc. This thesis is aimed at developing an understanding of how

communication plays out on networks of high performance computing systems and exploring

methods that can be used to improve communication performance of large scale applications.

Broadly speaking, three topics have been studied in detail in this thesis. The first of these

topics is task mapping and job placement on practical installations of torus and dragonfly

networks. Next, use of supervised learning algorithms for conducting diagnostic studies

of how communication evolves on networks is explored. Finally, efficacy of packet-level

simulations for prediction-based studies of communication performance on different networks

using different network parameters is analyzed.

The primary contribution of this thesis is development of scalable diagnostic and predic-

tion methods that can assist in the process of network designing, adapting applications to

future systems, and optimizing execution of applications on existing systems. These meth-

ods include a supervised learning approach, a functional modeling tool (called Damselfly),

and a PDES-based packet level simulator (called TraceR), all of which are described in this

thesis.

ii

Acknowledgments

First and foremost, I would like to thank my labmates and colleagues without whom it

would have been impossible to keep my sanity while working for all these years. Xiang and

Jonathan have played an incredibly important role in my life in last four years. All my

co-authors, Bilge, Ehsan, Eric B, Eric M, Harshitha, Michael, and Ronak have helped me in

more ways than I can count. Words of wisdom from the more experienced Esteban, Osman,

Phil, Gengbin, Celso, Lukasz, and Abhishek have guided me well through uncertain times.

Interaction with all other PPLers, Akhil, Chao, Pritish, Ram, Sam, and Yanhua has left me

with a positive frame of mind more often than not.

Next, I have no words to express my gratitude towards my mentors. Prof. Kale is an

amazing person, probably the most kind and positive person I have met. This thesis, and

my impending research career, would not exist if not for his supervision and guidance.

Abhinav’s role in my growth as a researcher and in completion of this thesis is critical. He

has spent countless hours discussing and developing ideas that are at the heart of this thesis.

Todd has always been approachable and provided extremely valuable suggestions/feedback.

Finally, I thank Yogish Sabharwal and Manish Gupta - my mentors at IBM Research India

- if not for their nurturing and guidance, I may have never pursued higher studies in the US.

I would like to thank the members of my thesis committee - Prof Gropp, Prof Panda,

and Prof Torrellas - for their time and feedback. I would also like to thank many other

researchers who have helped me in one way or another during my thesis - Jim Phillips, Glenn

Martyna, Sohrab Ismail-Beigi, Minjung Kim, Subashish Mandal, Fabrizio Petrini, Nicholas

J. Wright, Kalyan Kumaran, Francesco Miniati, Mark F. Adams, Timo Bremer, Jayaraman

Thiagarajan, Yarden Livnat, Misbah Mubarak, Chris Carothers, Jae-Seung Yeom, Andrew

Titus, and Steven H. Langer.

Last, but not the least, I am forever indebted to my family in India for their unconditional

love and encouragement.

iii

Grants

This work was partially supported by many funding sources and made use of resources from

several supercomputing centers and projection allocations. I would like to thank all of the

following sources that contributed towards completion of this work:

Fellowship sources: Department of Computer Science, UIUC (Andrew and Shana Laursen

Fellowship, 2011-2012); IBM (IBM Ph.D. Fellowship, 2014-2015).

Assistantship sources: NSF Award 1339715; NSF Award OCI 07-25070; NSF Award OCI-

0832673; Project tracking code 13-ERD-055 under US DOE Contract DE-AC52-07NA27344.

Supercomputing centers: Argonne Leadership Computing Facility, Argonne National

Laboratory; CSCS, Swiss National Supercomputing Centre, ETH Zurich; Livermore Com-

puting Center, Lawrence Livermore National Laboratory; National Center for Supercom-

puting Applications, University of Illinois at Urbana-Champaign; National Energy Research

Scientific Computing Center, Lawrence Berkeley National Laboratory; Oak Ridge Leader-

ship Computing Facility, Oak Ridge National Laboratory; Pittsburg Supercomputing Cen-

ter, Carnegie Mellon University and University of Pittsburgh; Texas Advanced Computing

Center, University of Texas at Austin.

Machine allocations: PEACEndStation, PARTS, HPC PAMS, CharmRTS (ALCF, ANL

systems); PEACEndStation, ALCC (ORNL systems); DD jtg, ILL jrc, namd, PRAC jnk

(Blue Waters, NCSA); XSEDE (PSC and TACC systems).

iv

Table of Contents

List of Figures . vii

List of Tables . xiii

CHAPTER 1 Overview . 1
1.1 Thesis organization . 3

CHAPTER 2 Background and Related Work . 5
2.1 Topologies in HPC networks . 5
2.2 Interaction patterns . 7
2.3 Task mapping and job placement . 9
2.4 Indicators of performance . 11
2.5 Offline performance prediction . 13
2.6 Communication algorithms . 13

CHAPTER 3 Job Placement and Task Mapping . 15
3.1 Task mapping on torus . 16
3.2 Job placement on the dragonfly network . 33

CHAPTER 4 Causes of Network Congestion . 55
4.1 Contention on torus networks . 57
4.2 Experimental setup . 60
4.3 Performance prediction of communication kernels 67
4.4 GBRT and production applications . 73
4.5 Identifying relevant feature subsets . 75
4.6 Summary . 80

CHAPTER 5 TraceR: PDES Simulator . 81
5.1 Background . 82
5.2 Design and implementation of TraceR . 83
5.3 Network models in CODES . 86
5.4 Simulation configuration . 91
5.5 Impact of simulation configuration . 93

v

5.6 Performance comparison . 97
5.7 Summary . 99

CHAPTER 6 Comparison of Networks . 100
6.1 Network prototypes . 100
6.2 Communication performance comparison . 104
6.3 Network cost comparison . 111
6.4 Performance Per Dollar . 116
6.5 Summary . 119

CHAPTER 7 Impact of Configuration on Performance 121
7.1 Stencil with unbounded resources . 121
7.2 Stencil with practical resources . 125
7.3 Spread with unbounded resources . 129
7.4 Spread with practical resources . 132
7.5 Summary and discussion . 136

CHAPTER 8 Communication Algorithms . 137
8.1 Analysis of collectives on dragonfly networks 137
8.2 Charm-FFT . 145
8.3 Summary . 151

CHAPTER 9 Conclusion . 152

REFERENCES . 154

vi

List of Figures

1.1 Motivating examples for research on communication optimization. 2

2.1 Example hypercubes of various dimensions: note the recursive construc-
tion of an n-dimensional hypercube using two n− 1-dimensional hypercubes. 6

2.2 Variations of fat-tree/folded Clos topology. 6
2.3 Torus are constructed by wrapping the corresponding grids at all boundaries. 7
2.4 Dragonfly: A two-tier network with dense all-to-all connections among

logical routers at each level. 8
2.5 Mapping of a 6×5 grid to a 10×3 mesh using different mapping strategies.

(source [34]) . 10
2.6 Two stages of recursive bisection topology-adapted partition mapping.

The dark lines represent the sorted node traversal order for bisection. Grid
element color represents recursive bisection domains after each stage. 11

3.1 Mapping 2D sub-partitions to 3D shapes in Rubik. 17
3.2 Average, minimum, and maximum time spent in communication by pF3D

for weak scaling. 21
3.3 Average time spent in different MPI routines by pF3D for weak scaling. . . . 21
3.4 A Rubik script to generate tiled mappings for pF3D. 22
3.5 Reduction of time spent in different MPI routines by using various task

mappings for pF3D running on 1,024, 2,048 and 4,096 nodes of Blue
Gene/Q (Note: y-axis has a different range in each plot). 23

3.6 pF3D plots comparing the time spent in point-to-point operations to av-
erage and maximum hops (top) and comparing the MPI time to average
and maximum load on network links (bottom) (Note: y-axis has a different
range in each plot). 24

3.7 Average time spent by pF3D in different MPI routines on 4096 nodes
(includes MPI Isend optimization). 25

3.8 Evaluation of the baseline performance of MILC with the default mapping. . 27
3.9 Reduction of time spent in different MPI routines by using various task

mappings for MILC running on 1024, 2048 and 4096 nodes of BG/Q (Note:
y-axis has a different range in each plot). 27

vii

3.10 MILC plots comparing the time spent in point-to-point operations with
average and maximum hops (top) and the MPI time with average and
maximum load on network links (bottom) (Note: y-axis has a different
range in each plot). 28

3.11 Four sub-tori showing the D (blue), C (red, long), and B (red, short,
diagonal) links for the same E. The colors represent the number of packets
passing through individual links. 30

3.12 Minimaps showing aggregated network traffic along various directions for
the TABCDE (left) and the Tile3 mappings (right). 31

3.13 pF3D: A scaling comparison of the time spent in different MPI routines
with the default mapping (top-left), best mapping discovered, and with
the best mapping using the Isend optimization. A scaling comparison of
the benefits of task mapping for MILC is also shown (bottom-right). The
percentage values shown are improvement over the default mapping. 32

3.14 The structure of a dragonfly network. 34
3.15 Comparison of the predictions by the presented model with predictions

by SST/macro, a packet-level simulator, for a 4D Stencil simulated on a
36, 864 router system. 41

3.16 Example to explain the data displayed in the plots. 42
3.17 Unstructured Mesh Pattern (UMesh): blocking helps in improving the

traffic distribution. 43
3.18 Structured Grid Pattern (4D Stencil) and Random Neighbors Pattern (Spread). 45
3.19 4D Stencil: distribution of traffic on L2 links for RDG. 46
3.20 Many to many pattern (M2M): direct routing with randomized placement

has lower average and maximum traffic. 47
3.21 Traffic distribution for M2M on 66% and 33% cores. 49
3.22 Parallel workloads traffic distribution. 51
3.23 Job-specific routing traffic distribution (All Links). 53

4.1 Performance variation with prior metrics for five-point halo exchange on
16,384 cores of Blue Gene/Q. Points represent observed performance with
various task mappings. A large variation in performance is observed for
the same value of the metric in all three cases. 56

4.2 Message flow on Blue Gene/Q - a task initiates a message send by putting a
descriptor in one of its memory injection FIFOs; the messaging unit (MU)
processes these descriptors and injects packets into the injection network
FIFOs from which the packets leave the node via links. On intermedi-
ate switches, the next link is decided based on the destination and the
routing protocol; if the forward path is blocked, the message is stored in
buffers. Finally on reaching the destination, packets are placed in network
reception FIFOs from where the MU copies them to either the application
memory or memory reception FIFOs. 57

4.3 Example decision tree and random forests generated using scikit. 63

viii

4.4 Parameterized loss functions for gradient tree boosting: Huber loss func-
tion with the cutting-edge parameter δ (left), quantile loss function (right). . 65

4.5 Performance variations with different task mappings on 16,384 cores of
BG/Q. As benchmarks become more communication intensive, even for
small message sizes, mapping impacts performance. 67

4.6 Prediction success based on prior features on 16,384 cores of BG/Q. The
best RCC score is 0.91 for most cases - 38 mispredictions out of 378. 68

4.7 Prediction success based on new features on 16,384 cores of BG/Q. We
observe a general increase in RCC, but R2 values are low in most cases
resulting in empty columns. 69

4.8 Prediction success based on hybrid features from Table 4.5 on 16,384 cores
of BG/Q. We obtain RCC and R2 values exceeding 0.99 for 3D Halo and
Sub A2A. Prediction success improves significantly for 2D Halo also. 71

4.9 Prediction success: summary for all benchmarks on 65,536 cores of BG/Q.
Hybrid metrics show high correlation with application performance. 72

4.10 Summary of prediction results on 65,536 cores using 4 MB messages. For
all benchmarks, prediction is highly accurate both in terms of ordering
and absolute values. 73

4.11 Highest prediction scores obtained for the individual datasets using Ex-
tremely Randomized Trees (left) and Gradient Boosted Regression Tree
(right). Adjoining pairs of vertical bars represent the RCC and R2 values
for each of the sixteen datasets. 73

4.12 Ranks of different features in the models that yield the highest RCC (left
plot) and R2 scores (right plot) for individual datasets using Gradient Tree
Boosting (loss function = ‘Huber’). Each stacked bar represents the ranks
of the nineteen features (colored by categories) for one of the sixteen datasets. 74

4.13 GBRT regression on the Apps dataset using different quantile loss func-
tions. The lower quantile regression function underpredicts for those sam-
ples with high execution time, while predicting effectively for those with
low execution times. 75

4.14 Ranks of different features obtained using GBRT with quantile loss func-
tions at α = 0.1 and α = 0.9 respectively: left plot is for a combined set
of the three communication kernels (twelve datasets) and the right plot is
for a combined set of the two applications (four datasets). 76

4.15 Comparison of the feature ranks obtained using the feature selection tech-
nique applied to the eight larger datasets. Note that the marker colors for
each row/dataset are scaled independently (red is high and blue is low). . . . 78

4.16 Prediction performance of the features selected using the proposed quantile
analysis on different datasets. 79

5.1 Integration of TraceR with BigSim emulation and CODES (left). For-
ward path control flow of trace-driven simulation (right). 84

5.2 Fat-tree construction using switches of same radix. 88
5.3 Optimistic vs. conservative DES . 94

ix

5.4 Effect of batch size and GVT interval on performance: 8K simulated nodes
are simulated using 8 cores (top 2 plots), and 512K using 256 cores (bottom
2 plots). 95

5.5 Impact of #LPs per KP. 96
5.6 Sequential simulation time. 97
5.7 Scalability of TraceR when simulating networks of various sizes. 98

6.1 Communication performance of different networks for 4D Stencil. Torus
outperforms dragonfly, which in turn performs better than fat-tree for
large message sizes. For smallest message size, all networks show similar
performance. 107

6.2 Communication performance of different networks for Near-Neighbor (NN).
Irrespective of the message size, torus is faster by 2x in comparison to
dragonfly and fat-tree. 108

6.3 Communication performance of different networks for Subset All-to-All
(A2A). With careful mapping, the execution time is similar for all the net-
works, with dragonfly being marginally better and fat-tree being marginally
worse than torus. 108

6.4 Communication performance of different networks for Perm. Fat-tree pro-
vides the best performance for all message sizes, followed by dragonfly
which is better than torus by ∼ 25%. 109

6.5 Communication performance of different networks for Spread. Fat-tree
outperforms dragonfly by a small margin, while both of them are signifi-
cantly faster than torus for all message sizes. 110

6.6 Cost model for copper and optical cables. 111
6.7 Cost model for routers. 113
6.8 Estimated router cost for building networks for prototype systems based

on different interconnect topologies. 114
6.9 Estimated cable cost for building networks for prototype systems based on

different interconnect topologies. 114
6.10 Comparison of estimated cost for building different networks for a given

node count. Only router and cable cost are considered. 116
6.11 Although torus provides the best performance, its performance per dollar

is worst among the three networks. As the message size increases, the
superior performance of dragonfly leads to a better performance per dollar. . 117

6.12 Fat-tree shows the best performance per dollar due to its low cost, although
its performance is similar to dragonfly. Due to its superior performance,
torus’ performance per dollar is only 10% lower than the dragonfly. 117

6.13 Given the similar performance of all networks, performance per dollar is
significantly impacted by the cost of the networks. 118

6.14 The performance difference among the three network is further enhanced
by the cost difference. As a result, fat-tree show very high performance
per dollar in comparison to the dragonfly, which in turn is much higher
than the performance per dollar of torus. 119

x

6.15 Summary of the communication rate and performance per dollar for large
message sizes. Plotted values are normalized using the values for the fat-tree. 120

7.1 (left) When all other resources are practically unlimited, the communi-
cation performance is directly proportional to the router delay/latency.
(right) Size of router buffer has no effect on the performance of the drag-
onfly network. Its impact on the torus network can be significant, but is
hard to model. 122

7.2 As the link or injection bandwidth is increased, the execution time drops
linearly. While the dragonfly network saturates at the link bandwidth of
400 GBps, the torus network shows performance improvement till 1000
GBps. In contrast, the dragonfly network provides performance improve-
ment till 1000 GBps when injection bandwidth is increased, but the torus
network saturates at 400 GBps. 123

7.3 (left) Impact of changing both link and injection bandwidth on execution
time. For both the networks, significant improvement in performance are
observed; for dragonfly, the relative improvement reduces as the band-
widths are increased to very large values. (right) Impact of routing policy
and injection policy. When other configuration parameters are not the
bottleneck, both policies impact the observed performance on torus; in
contrast, on a dragonfly, good choice of one makes the other irrelevant. . . . 124

7.4 (left) For torus, link bandwidth acts as a primary bottleneck, with injection
bandwidth requirement saturating at large values. (right) For dragonfly,
both link and injection bandwidth are critical, with link bandwidth being
more important at lower bandwidth and injection bandwidth being the
bottleneck at larger values. 125

7.5 (left) For torus, the impact of routing is minimal for FCFS injection policy,
when resources are limited. Adaptive routing improve performance for
dragonfly, especially for large bandwidth. (right) With RR injection policy,
Adaptive routing provides significant performance improvement for both
torus and dragonfly networks. 125

7.6 (left) On torus, using RR injection policy is highly beneficial when Adap-
tive routing is used. (right) When the link and the injection bandwidths
are the primary bottlenecks, RR provide significant performance improve-
ment on a dragonfly. 126

7.7 As the router delay increases, the bottleneck changes from link and injec-
tion bandwidth to the fixed delays. Conversely, for a fixed router delay,
as the link/injection bandwidth decreases, the fixed delays cease to be the
performance bottleneck. 127

7.8 Effect of variations in the link bandwidth, injection bandwidth, and la-
tency on execution time of 4D Stencil on torus. Increasing link bandwidth
reduces the execution time, but if injection bandwidth is much lower, it
limits the performance. When both link and injection bandwidth are high,
very high latency can be the performance bottleneck. 128

xi

7.9 Unlike torus, an increasing injection bandwidth impacts the execution time
both positively and negatively, even when link bandwidth is low. Similarly,
the router latency has impact on the performance even when the link and
injection bandwidth are relatively low. 129

7.10 (left) The execution time increases as the router latency is increased; per-
formance of the torus is similar to the dragonfly. (right) As for 4D Stencil,
size of router buffer has no effect on the performance of the dragonfly net-
work. Its impact on the torus network is significant, but does not follow a
pattern. 130

7.11 The execution drops almost linearly as the link or injection bandwidth
is increased. The dragonfly network saturates at link bandwidth of 400
GBps, but the torus network observes good performance improvement till
1000 GBps. The reverse is true for injection bandwidth. 131

7.12 (left) For both torus and dragonfly, significant improvement in perfor-
mance is observed, even for very large bandwidth. (right) Impact of rout-
ing policy and the injection policy: RR + Adaptive provides the best
performance on torus, while only FCFS + Static performs badly on drag-
onfly. 131

7.13 (left) Adaptive routing provides significant improvement for torus, but
has minimal impact on the dragonfly network . (right) With RR injection
policy, Adaptive routing provides significant performance improvement for
both torus and dragonfly networks. 132

7.14 (left) The RR injection policy provides better performance when Adaptive
routing is used, but FCFS shows similar performance for Static routing.
(right) On the dragonfly network, performance improvements are high for
Adaptive routing and for Static routing if the bandwidth is high. 133

7.15 For low bandwidth, the router delay does not impact the execution time,
but as the router delay increases, it becomes the performance bottleneck. . . 134

7.16 Performance improves with increasing link bandwidth, but saturates quickly
when injection bandwidth is increased. Impact of latency is less prominent
in comparison to 4D Stencil. 135

7.17 An increasing injection bandwidth impacts the execution time positively,
even beyond the link bandwidth value. The impact of the router latency
is prominent and proportional to the delay. 135

8.1 Phase 1 and 2 of Charm-FFT. 147
8.2 Phase 3 and 4 of Charm-FFT. 148
8.3 Performance of Charm-FFT. 150

xii

List of Tables

3.1 Shape and connectivity of the partitions allocated on Vulcan (Blue Gene/Q)
for different node counts. 20

3.2 Tile sizes used for the Blue Gene/Q 5D torus and pF3D in different mappings. 23
3.3 Details of communication patterns. 40
3.4 Percentage cores allocated to patterns in workloads. 51

4.1 ?Prior and †new metrics that indicate contention for network resources. . . . 61
4.2 List of communication metrics (features) used as inputs to the machine

learning model. The colors in this table correspond to different hardware
components in Table 4.1 . 61

4.3 Dimensions of the allocated job partitions on BG/Q. 61
4.4 Sizes of the input datasets in terms of the number of executions or samples

for the different codes. 62
4.5 List of hybrid features that achieve strong correlations. 70

6.1 Design choices for prototype systems. Specific values shown are for the
systems compared in the next section. The job placement choices have
been made after comparing different types of placement schemes for each
of the network. 104

8.1 Commonly used algorithms. 139
8.2 Cost model based comparison. 143
8.3 Link usage comparison for Scatter and Broadcast. 144
8.4 Link usage comparison for Allgather. 145
8.5 Link usage comparison for Reduce-scatter and Reduce. 145
8.6 Effect of decomposition on time to perform FFT on a 300×300×300 grid.

Representative best values are shown for each of the object counts. 149

xiii

CHAPTER 1
Overview

Efficient communication is a must for completing successful projects, even more

so for parallel projects.

Communication is a necessary but overhead inducing component of high performance

computing (HPC). It is imperative that it is optimized when parallel applications are im-

plemented and executed in order to make the best use of large scale systems. The challenge

of optimizing communication in parallel applications is analogous to the challenge of com-

pleting a multi-person project in several ways. A successful project requires many things

to be done right: creation of a capable team, availability of a suitable work environment,

distribution of work among the team members, coordination within the team, etc. Obtain-

ing scalable communication performance requires similar tasks at multiple levels described

in this section. Here, we use the term communication performance loosely to represent the

impact of communication on application execution time.

The communication performance of an application is impacted by several related aspects

of a parallel job execution: the network topology of the system used for the job execution,

the placement of the job within the system, the message injection and reception mechanism,

the routing protocol, suitability of the interaction pattern of the application executed to the

network, etc. The multiplicity of these factors provides a challenge as well as an opportunity

to study them and optimize performance by exploiting them; this forms a generic theme of

this thesis.

As an application developer and user, optimizing for communication is also challenging

due to the limited control over the system environment. Unlike the computation resources

that are typically known apriori and are fully under the control of an executing application,

the availability of network resources may neither be predictable nor be completely under the

control of an executing application. For example, the placement of a job and the topology of

1

(a) Fraction of time spent in communi-
cation by scientific applications.

(b) Trend shown by bytes to flops ratio
for HPC systems.

Figure 1.1: Motivating examples for research on communication optimization.

allocated nodes is decided by the scheduler based on the availability of resources. In many

systems, the network resources may also be shared by multiple jobs.

As a system administrator, the goal is to make the best use of the system. Dependence

of application performance on communication make this goal hard to achieve. How should

the jobs be placed in the system? What parameters of the network should be universally

fixed across jobs, and which should be decided by the users? Questions such as these require

significant research to be answered correctly.

The diversity of the applications that are typically executed on large systems adds an-

other level of complexity to the task of optimizing communication. Several studies, such as

Kamil et al. [1], show that the communication requirements of various application classes

are significantly different. Figure 1.1a shows that many of these diverse applications spend

a significant fraction of time in performing communication. As a result, many types of

communication optimization techniques are required to improve performance of common

applications.

Finally, what makes studying communication performance more important than ever is

the increasing scarcity of network resources. In Figure 1.1b, the x-axis represents the com-

putation capability of a node in a given system, while the y-axis shows the bytes (injection

bandwidth) to flops ratio (B/F ratio). This ratio, which represents the communication capa-

bility vis-a-vis the computation capability, is computed by dividing the injection bandwidth

of a node with its computation capability. The trend is easy to notice in Figure 1.1b: as

the capability of nodes have increased, the B/F ratio has gone down. In other words, as

nodes have become computationally more capable in last 10 years (256× increase from Blue

2

Gene/L to Xeon Phi), the B/F ratio has gone down from 0.18 to 0.005.

In summary, optimization of communication for parallel application is a multi-facet chal-

lenge, in part due to the multitude of the factors that impact communication performance,

and in part due to the diversity of the use cases. As a result, this thesis consists of efforts

that have been directed towards developing a better understanding (and associated tools)

of different aspects of communication on HPC networks. Broadly speaking, the presented

work aims at achieving the following three goals: improve runtime configuration and envi-

ronment to facilitate communication, propose prediction tools and explore their applications

in understanding and optimizing communication performance, and develop software that

uses communication-aware algorithms.

A recurring theme in many of the chapters in this thesis is the use of prediction method-

ologies. As supercomputers continue to become larger and more complex, the prevalent

practice of customized hand-tuning of applications and testing on production systems is no

longer sufficient for efficient parallel executions. This is because such optimizations may

take a significant fraction of the available life time of an expensive machine. Additionally,

one will have to wait to start doing the tuning until the machine is available. Thus, pre-

diction tools based on data analytics, functional modeling, and detailed simulation are a

must to make the best use of systems we have today. Moreover, these tools are required in

various ways at different stages of system and application development: during the design of

machines with targeted applications being brought into the fold, during offline analysis and

optimization of applications, and finally when the applications are launched and executed.

Different chapters in this thesis present few such tools, and demonstrate their efficacy for

the aforementioned use cases.

1.1 Thesis organization

Chapter 2 presents background and related work on six sub-topics that are closely related

to communication and are repeatedly visited in the following chapters. These sub-topics

are: common topologies in HPC networks, prevalent interaction or communication patterns,

task mapping and job placement, metrics for modeling performance, simulation tools, and

communication-centric algorithms.

Chapter 3 is focused on the problem of task mapping and job placement on the torus

and dragonfly networks. For the torus network, which has been studied extensively in the

past, this chapter suggests a three-step methodology to prepare applications for efficient

3

production runs. A modeling-based prediction tool, Damselfly, and job placement studies

based on it are the primary contributions of this chapter for the dragonfly network.

Chapter 4 proposes use of machine learning to correlate observed communication perfor-

mance with various measured and estimated metrics. For many communication kernels and

production applications, this chapter shows that the execution time is strongly correlated to

a small set of metrics, and fast prediction models can be built using large training sets.

Chapter 5 presents a packet-level network simulator, TraceR, which is a successor to

BigSim. By combining BigSim, CODES, and ROSS, TraceR provides a scalable way of

simulating large scale networks for real applications accurately. Additionally, it can be used

to generate input data for machine learning based methods in a fast manner when its fidelity

is reduced.

Chapter 6 makes use of TraceR to compare three commonly used network topologies at

the scale of the next generation supercomputers: torus, fat-tree, dragonfly. Using a set of

benchmarks and cost prediction models, this chapter provides insights about performance

capabilities and cost efficiency of these networks. Such studies can be important when

networks are being compared for building future systems.

Chapter 7 also uses TraceR to study the impact of various network configuration parame-

ters, such as link bandwidth, router delay, etc., on the performance of two mini-applications.

Via these case studies, this chapter proposes a generic methodology that can be used to

study network designs and understand the changes in network behavior because of individ-

ual configurations. Using this method, optimal network configuration parameters can be

obtained in an efficient manner.

Chapter 8 is dedicated to communication-centric algorithms and software. The first part of

this chapter discusses topology-aware algorithms for performing collectives on the dragonfly

network. The second part of this chapter presents a 2D-decomposition based FFT library,

which provides high performance by utilizing the network better.

Finally, Chapter 9 summarizes the presented work and suggests possible directions for

future work.

4

CHAPTER 2
Background and Related Work

Significant amount of research has been done on communication and networks for parallel

computing in general, and for HPC in particular. This chapter provides a background and

summarizes the past work relevant to various topics that this thesis is closely associated with.

These topics are divided among the following sections: Topologies in HPC networks 2.1,

Interaction patterns 2.2, Task mapping and job placement 2.3, Indicators of performance 2.4,

Offline performance prediction 2.5, and Communication algorithms 2.6.

2.1 Topologies in HPC networks

Parallel computers have been built upon many types of interconnection topologies in the

last three decades or so. At the one end of spectrum are the linear topologies where n − 1

links are used for connecting n routers (or nodes). A star or a linear chain are examples

of this type. The other extreme is the full topology in which every router is connected to

every other router. As expected, most of the real systems deploy network topologies that

are between these extremes. In this thesis, we pay attention to four of these topologies that

have commonly been used in large scale supercomputers: hypercube, fat-tree, torus, and

dragonfly.

Hypercube: Geometrically speaking, hypercubes are n-dimensional analog of squares and

cubes wherein each dimension is of length two. An n-dimensional hypercube consists of

2n nodes (or vertices) with log n neighbors per node. A hypercube of n dimensions can

be defined recursively in terms of two (n − 1)-dimensional hypercubes: take two (n − 1)-

dimensional hypercubes and connect the corresponding nodes. Many large supercomputers

in the late eighties and nineties, such as nCUBE [2], used hypercubes as their network’s

5

Figure 2.1: Example hypercubes of various dimensions: note the recursive construction of
an n-dimensional hypercube using two n− 1-dimensional hypercubes.

(a) Fat-tree as proposed by Leiserson. (b) Fat-tree or folded-Clos as widely
used in infiniband-based networks.

Figure 2.2: Variations of fat-tree/folded Clos topology.

topology. Figure 2.1 shows hypercubes of up to four dimensions and highlights the recursive

construction of hypercubes.

Fat-tree, Folded-Clos and variations: Fat-tree topology was proposed by Leiserson as a

network with provably efficient communication [3]. The key idea behind the fat-tree network

is the following: in a tree topology, the loads on the links increase as we approach the root;

thus link bandwidth should be higher for the links closer to the root (Figure 2.2a). The

Connection Machine [4] was based on this topology. In terms of practical deployment, fat-

tree requires the switches closer to the root to have more ports to support more links. This

makes the construction more expensive as building switches with large number of ports is

costly. Figure 2.2b shows a variation of fat-tree (which can also be viewed as a folded-

Clos [5]) that builds a fat-tree using switches with smaller radix. The key idea here is to

replace the fat switches near the root with many smaller switches that logically behave as

one big switch. This topology has been widely adopted for deployment of infiniband-based

supercomputers [6, 7].

6

(a) A 2× 2× 2 3D torus (source: [13]) (b) IBM’s construction of 5-D torus (source:
[14])

Figure 2.3: Torus are constructed by wrapping the corresponding grids at all boundaries.

Torus: In geometry, a torus is 3-dimensional structure generated by revolving a circle about

an axis coplanar with the circle [8]. A generic n-dimensional torus can be viewed as an

extension of a n-dimensional grid where the edges are wrapped around to form rings. It can

also be viewed as a k-ary n-cube. Figure 2.3 shows two tori - one of dimension 3 and other of

dimension 5. Torus of various dimension (two to six) have been used in many supercomputers

in the last decade [9–12]. Note that commonly deployed torus are asymmetric form of k-ary

n-cube, where the length of each dimension (the k′s) can be different.

Dragonfly: Invented by Kim et al. [15], dragonfly is a multi-level dense topology aimed at

making use of high-radix router. A typical dragonfly consists of two levels of connections. At

the first level, routers are connected via a dense topology, e.g. an all-to-all, to form groups.

The groups behave as virtual routers which are then again connected in an all-to-all manner

(Figure 2.4). Dragonfly and its variations have been used in recent supercomputer networks

such as Cray’s XC30 [16], IBM PERCS [17], etc.

2.2 Interaction patterns

Communication patterns of various HPC applications can be significantly different. In their

survey of many common applications, Kamil et al. [1] found that the average number of

communicating neighbors per core can range from 6 to 256 for different applications executed

on 256 cores. In addition to the variation in the number of communicating neighbors, the

7

One supernode in the PERCS topology

LL
LR
D

Figure 2.4: Dragonfly: A two-tier network with dense all-to-all connections among logical
routers at each level.

choice of neighbors has also been shown to be significantly different. As a result, at one end

of the spectrum, processes (or nodes) in HPC applications can have less than 10 neighbors

all of which are close to them in terms of the given rank space (and topology). On the

other hand, many applications, including the ones that perform parallel FFTs, have all-to-

all communication pattern within large subsets of processors that may be far away from each

other. To account for these variations, most studies in this thesis have been performed on a

set of benchmarks and applications that are representative of distinct communication sets.

Here, we provide generic descriptions of these representative patterns:

Permutation/Transpose: In this pattern, each process communicates with only one other

process in a given phase of application. The selection of paired processes is often dependent

on the input to the application, and may change as the application’s phase changes. For

example, in a multi-phase transpose of matrix distributed among a 2D grid of processes,

every process interacts with a different process in each of the phase of the transpose oper-

ation. Given the data-dependent nature and presence of multiple permutations during an

application execution, topology aware mapping of communicating processes is difficult to

achieve. Thus, this operation often leads to large hop-counts for each message transferred

and stresses the bisection bandwidth of the network.

nD-Stencil: Structured grid based near neighbor communication is one of the most com-

monly found communication pattern in parallel applications. A nD-Stencil pattern overlays

the processes onto a nD-grid. Every process in the grid communicate with 2n nearest-

neighbor, two in each dimension. Example applications with such patterns include WRF [18]

8

(2D-Stencil), MILC [19] (4D-Stencil), pF3D [20] (1D- and 3D-Stencil), etc.

Unstructured Near-neighbor: This pattern is the unstructured form of nD-Stencil. A

typical formulation consists of an unstructured mesh divided among processes along the

mesh edges. As a result, processes have different number of neighbors with whom they may

communicate different amount of data. Another scenario which results in this pattern is

when certain processes multicast their data to a small subset of processes that are mapped

close to them. Example applications with such patterns include material modeling, Cloth

Simulation [21], OpenAtom [22], etc.

Many-to-Many/A2A: When a subset of processes communicate among themselves in an

all-to-all manner, we obtain the many-to-many communication pattern. Presence of parallel

FFT operation often leads to such a pattern in many application such as NAMD [23],

pF3D [20], Qbox [24], OpenAtom [22], etc. Parallel IO, parallel sorting, and other similar

operations also result in many-to-many communication pattern.

Uniform Spread: In this pattern, every process communicates with a few other processes

that are selected randomly from the remaining set of processes. One can also view this pat-

tern as multiple permutation patterns communicating simultaneously. While less commonly

induced by application requirement, the uniform spread is commonly observed due to the

way jobs are placed by the job scheduler. For example, consider an application with nD-

Stencil pattern placed alongside other jobs running on a large system in a non-contiguous

manner. Due to this placement, the nD-Stencil pattern manifests itself as a uniform spread

pattern.

2.3 Task mapping and job placement

In parallel computing, several techniques have been developed to map communication graphs

to hypercubes in the 1980s [25–27] and to torus networks in the early 2000s [28, 29]. More

recently, several application and runtime system developers have studied techniques for map-

ping [30–33] to three-dimensional torus topologies with the emergence of supercomputers like

the IBM Blue Gene and Cray XT/XE series. Bhatele et al. [34] explored use of informa-

tion about application’s communication patterns, such as structured grid and unstructured

mesh, and network’s topology (e.g. 3D torus) to create automated tools for generating better

mappings. In [34], several methods such as affine mapping, corner to center mapping, step

embedding, etc. are described. Most of these schemes are designed to minimize hop-bytes:

the total number of hops all the messages will take during the application execution. Fig-

9

Figure 2.5: Mapping of a 6 × 5 grid to a 10 × 3 mesh using different mapping strategies.
(source [34])

ure 2.5 demonstrates how these different methods map a 2D-grid of size 6× 5 to a 2D-mesh

of size 10× 3, in order to obtain better performance.

Hoefler et al. [35] discuss generic mapping algorithms to minimize contention and demon-

strate their applicability to torus, PERCS, and fat-tree networks through mapping simula-

tions of sparse matrix-vector multiplication on up to 1, 792 nodes. The algorithms compared

in [35] includes a greedy heuristic, recursive bisection, and mapping based on graph simi-

larity. In addition to reducing hop-bytes, these schemes also try to minimize the maximum

load on any link in the network.

Fiedler et al. [36] have proposed methods for mapping applications with 2D, 3D, and

4D Cartesian topologies onto Cray systems with 3D torus networks and service nodes. This

scheme considers the scenario where nearby nodes are allocated to jobs, preferably as prisms.

Phillips et al. [37] have proposed space filling curved based mapping approaches for a even

more generic case - mapping of unstructured communication patterns onto an arbitrary

allocation. The key idea in the scheme proposed in [37] is to create an ordering of nodes

using a topology aware space filling curve, and then deploy recursive bisection method on

both network and application topologies. Figure 2.6 shows two stages of recursive bisection

onto an ordered list of processes as proposed in [37].

Practical use of task mapping of an HPC application requires generation of an assignment

of process task IDs or ranks to the cores and nodes in the network. Traditionally, program-

mers have written custom scripts to generate such assignments from scratch. This process is

tedious and error-prone, especially with many tasks and high-dimensional networks. Bhatele

et al. developed Rubik [38], a tool that abstracts several common mapping operations into

10

Figure 2.6: Two stages of recursive bisection topology-adapted partition mapping. The dark
lines represent the sorted node traversal order for bisection. Grid element color represents
recursive bisection domains after each stage.

a concise syntax. Rubik allows complex mappings to be generated using only a few lines of

Python code. It supports a wide range of permutation operations for optimizing latency or

bandwidth. The full range of transformations possible with Rubik is covered in [38]. Bhatele

et al. also developed Chizu, a mapping tool based on graph partitioning. Chizu lets user

choose different graph algorithms for recursively partitioning the application and network

graphs. Once the partitioning is complete using the selected algorithms, Chizu maps them

in a one-to-one manner, and generates the corresponding mapping file.

2.4 Indicators of performance

Let us assume a guest graph, G = (Vg, Eg) (communication graph between tasks) and a host

graph, H = (Vh, Eh) (network topology of the parallel machine). M defines a mapping of

the guest graph on the host graph (G on H). Several metrics have been proposed in the

literature to evaluate communication performance offline by finding the suitability of the

mapping M . To the best of our knowledge, the earliest metric that was used to compare the

effectiveness of task mappings is dilation [39, 40]. Dilation for a mapping M can be defined

as,

dilation(M) = max
ei∈Eg

di(M) (2.1)

11

where di is the dilation of the edge ei for a mapping M . Dilation of an edge ei is the number

of hops between the end-points of the edge when mapped to the host graph. This metric aims

at minimizing the length of the longest wire in a circuit [39]. We refer to this as maximum

dilation to avoid any confusion. We can also calculate the average dilation per edge for a

mapping as,

average dilation-per-edge(M) =

∑
ei∈Eg

di(M)

|Eg|
(2.2)

Hoefler et al. overload dilation to describe the “expected” dilation for an edge and “average”

dilation for a mapping [35]. Their definition of expected dilation for an edge can be reduced

to equation 2.1 above by assuming that messages are only routed on shortest paths, which

is true for the IBM Blue Gene and Cray XT/XE family (if all nodes are in a healthy state).

The average dilation metric, as coined by Hoefler and Snir, is a weighted dilation and has

been previously referred to as the hop-bytes metric by Sadayappan [25] in 1988 and Agarwal

in 2006 [30]. Hop-bytes is the weighted sum of the edge dilations where the weights are the

message sizes. Hop-bytes can be calculated by the equation,

hop-bytes(M) =
∑
ei∈Eg

di(M)× wi (2.3)

where di is the dilation of edge ei and wi is the weight (message size in bytes) of edge ei.

Hop-bytes gives an indication of the overall communication traffic being injected on to

the network. We can derive two metrics based on hop-bytes: the average number of hops

traveled by each byte on the network,

average hops-per-byte(M) =

∑
ei∈Eg

di(M)× wi∑
ei∈Eg

wi

(2.4)

and the average number of bytes that pass through a hardware link,

average bytes-per-link(M) =

∑
ei∈Eg

di(M)× wi

|Eh|
(2.5)

The former gives an indication of how far each byte has to travel on average. The latter gives

an indication of the average load or congestion on a hardware link on the network. They

are derived metrics (from hop-bytes) and all three are practically equivalent when used for

prediction.

Another metric that indicates congestion on network links is the maximum number of

12

bytes that pass through any link on the network,

maximum bytes(M) = max
li∈Eh

(
∑

ej∈Eg |ej=⇒li

wj) (2.6)

where ej =⇒ li represents that edge ej in the guest graph goes through edge (link) li in the

host graph (network). Hoefler and Snir use a second metric in their paper [35], worst case

congestion, which is the same as equation 2.6 above.

2.5 Offline performance prediction

Formal models such as LogP [41] and LogGP [42] have been used to analyze the communica-

tion in parallel applications for a long time. Subsequently, based on the LogP model, models

such as LoPC [43], LoGPC [44], LoGPG [45], LogGPO [46], and LoOgGP [47] were developed

to account for network congestion. Simulators based on these models, e.g. LogGOPSim [48],

simulate application traces and predict communication performance.

Discrete event simulation has also been extensively deployed to predict communication

performance and study communication. BigSim is one of the earliest simulators that sup-

ports packet-level simulations [49]. Structural Simulation Toolkit(SST) [50] provides online

(skeleton application based) and offline (DUMPI [51] trace based) modes for simulation.

Booksim [52] and IBM’s Mambo [53] are sequential cycle accurate simulator that supports

several topologies, but are extremely slow for simulating networks of size 10K and higher.

There are several other network simulators that are either sequential and/or do not pro-

vide detailed packet-level (or flit-level) network simulation. These include the Extreme-scale

Simulator(xSim) [54], DIMEMAS [55], PSINS [56], MPI-Netsim [57], OMNet++ [58], and

SimGrid [59].

2.6 Communication algorithms

Application-level task-aware mapping has been shown to reduce the communication time for

point-to-point communication operations (Section 2.3). However, typically, a good mapping

has much less impact on collective operations. This is because in collective operations, the

interaction among a large set of processes requires carefully designed algorithms for obtain-

ing good performance. As a result, optimizing collectives via algorithmic design has been an

important topic of interest in high performance computing [60]. Most of the existing algo-

13

rithms can be grouped into two classes. The first class comprises of generic algorithms such

as the binomial algorithm and recursive doubling/halving [61], which work well for many

network topologies and a wide range of message sizes. Due to their simplicity and broad

applicability, these algorithms are part of many MPI implementations including MPICH [62]

and IBM’s MPI. The second class of algorithms are specifically tailored for a given network

topology. These algorithms outperform the generic algorithms for the specific target topolo-

gies and message sizes. For example, Van de Geijn et al. [63] proposed an algorithm for large

message broadcast that has been shown to outperform the binomial algorithm [61]. Jain et

al. [64] demonstrate that the bucket algorithm [65] can be generalized optimally, both for

communication and computation, for an n-dimensional torus.

Optimization schemes for 3D torus networks have been presented in [66] and [64]. Faraj et

al. [66] show how to carefully overlay six spanning trees over a 3-dimensional torus without

contention. The algorithms in [66] can also be extended to rectangular sub-communicators.

In general, when multiple spanning trees are directed towards or away from the root, per-

formance improves for Broadcast, Scatter, Gather and Reduce because of increased link

throughput utilization by multiple trees. Derived collectives, such as Allreduce that is per-

formed by pipelining Reduce with Broadcast, benefit from two edge-disjoint trees, one in each

direction towards and away from the root.

Unlike the collective operations discussed above, an all-to-all operation is extremely diffi-

cult to optimize. However, it is a critical operation since it is needed for widely used parallel

algorithms such as 2D/3D-FFT. Hence, research has focused on improving its performance

for specific cases. Kumar et al. [67] have explored Blue Gene system specific heuristics to im-

prove the performance of all-to-all communication. FFTW [68] provides a generic implemen-

tation for 1D-decomposition based parallel nD-FFT, which relies on efficient implementation

of MPI’s all-to-all collective for performance. Various efforts have been made to improve the

performance of 2D/3D-FFT on specific topologies. For Blue Gene systems, IBM provides a

customized implementation of 3D-FFT, which takes advantage of the machine topology [69].

Anthony et al. [70] also did an in depth analysis of parallel 3D-FFT on Blue Gene style mesh

topologies. They show that remapping processes on nodes and rotating the mesh by con-

sidering the communication properties of specific applications, such as P3DFFT, can reduce

the communication time significantly. Special hardware based solutions for achieving fast

3D-FFT have also been explored [71].

14

CHAPTER 3
Job Placement and Task Mapping

Job placement and task mapping are techniques to optimize communication of parallel ap-

plications on the interconnection network without having to modify the source code [34].

These techniques place tasks or processes on compute nodes based on a careful considera-

tion of the interconnection topology between the nodes and the communication behavior of

the application. As discussed in Section 2.3, several researchers have studied and exploited

job placement and task mapping for improving the performance of their applications.

Topology aware placement of tasks is especially important on torus networks because

their large diameters can require messages to travel multiple hops to reach their destination,

thereby increasing the burden on the shared links. A torus or mesh network topology has

been commonly used to connect compute nodes since the Cray T3D machine was developed

twenty years ago. Six of the ten fastest supercomputers in 2014 used a torus network for

message passing between compute nodes. At the same time, understanding the tradeoffs of

various job placement policies and task mapping algorithms for new networks such as the

dragonfly is a must to make the best use of the system. The dragonfly networks also support

many routing policies, whose impact on system performance is unknown.

In this chapter, our focus is on exploring answers to the open questions related to torus

and dragonfly networks. This research agenda has been decided based on the state-of-the-art

of the mapping research, and by anticipating the issues that may be important in coming

years.

1. For torus-based systems, it is now accepted that convex or isolated cuboidal allocations

are optimal for communication performance [72]. Given a compact allocation, what

methods can be used to find good mappings for applications executing on n-dimensional

logical grid? To answer this question, we present a step-by-step approach for analyzing

communication-intensive applications and finding good topology-aware mappings for

15

them on torus-based networks.

2. In our past work, we have established that for single job runs on dragonfly networks

with near-neighbor communication pattern, randomized placement and/or indirect

routing is required for good performance [73]. However, many issues remain unsolved

in relation to job placement and routing policies for various communication patterns.

In this chapter, we present a performance comparison of mapping and routing schemes

when a job that requires n cores is executed on a n-core dragonfly system. Further,

we study parallel workloads, in which different jobs (each of size ni cores) is to be

executed on a m core dragonfly system (m >> ni).

3.1 Task mapping on torus 1

Traditionally, programmers have written custom scripts to generate assignments of MPI

ranks to network nodes. This process is tedious and error-prone, especially with many

tasks and high-dimensional networks. We developed Rubik [38], a tool that abstracts several

common mapping operations into a concise syntax. Rubik allows complex mappings to be

generated using only a few lines of Python code. It supports a wide range of permutation

operations for optimizing latency or bandwidth, of which we describe a subset here. The

full range of transformations possible with Rubik is covered in [38].

Partitioning: Figure 3.1 shows a Rubik script that describes the application’s process grid

(a 9×3×8 cuboid) and a Cartesian network (a 6×6×6 cube) by creating a “box” for each.

Each box is divided into sub-partitions using the tile function, resulting in eight 9× 3× 1

planes in the application and eight 3×3×3 sub-cubes in the network. Rubik provides many

operations like tile for partitioning boxes, allowing users to group communicating tasks.

These partitioning operations can also be applied hierarchically.

Mapping: The map operation assigns tasks from each sub-partition in the application box to

corresponding sub-partitions in the network box. Partitions can be mapped to one another

if they have the same size, regardless of their dimensions. This means we can easily map

low-dimensional planes to high-dimensional cuboids, changing the way in which communi-

cating tasks use the network. Thus, the user is able to convert high-diameter shapes of the

application, like planes, into compact, high-bandwidth shapes on the network, like boxes.

Permutation: In addition to partitioning and mapping operations, Rubik supports permu-

1Based on [74]

16

map()

=

app network

network with mapped
application ranks

216 216

27 27 27 27 27 27 27 2727 27 27 27 27 27 27 27

map()

=

app network

network with mapped
application ranks

216 216

27 27 27 27 27 27 27 2727 27 27 27 27 27 27 27

Application 3D Torus
Application ranks mapped

to the 3D torus

app = box([9,3,8]) # Create application grid

app.tile([9,3,1]) # Create eight sub-planes

network = box([6,6,6]) # Create network topology

network.tile([3,3,3]) # Create eight sub-cubes

network.map(app) # Map app. planes to proc. cubes

Figure 3.1: Mapping 2D sub-partitions to 3D shapes in Rubik.

tation operations that reorder ranks within partitions. The tilt operation takes hyperplanes

in a Cartesian partition and maps them to diagonals. Tilting is a bandwidth-optimizing op-

eration – if tasks are laid out initially so that neighbors communicate with one another (e.g.,

in a stencil or halo), tilting increases the number of routes between communicating peers.

Successive tilting in multiple directions adds routes in additional dimensions. Tilting can

be applied at any level of the partition hierarchy – to specific partitions or to an entire

application grid.

3.1.1 Mapping, congestion and performance

We present a step-by-step methodology to improve application performance using task map-

ping, developed based on our experience with optimizing production applications on the IBM

Blue Gene/Q architecture. There are three steps involved in this process: 1) Performance

debugging via profiling, 2) Performance optimization via task mapping, and 3) Performance

analysis via profiling and visualization. Each of these steps is broken down further and

explained in detail below.

17

Performance debugging

Application scientists are often unaware of the reason(s) for performance issues with their

codes. It is important to determine if communication between parallel tasks is a scaling

bottleneck. Performance analysis tools such as mpiP [75], HPCToolkit [76], and IBM’s

MPI trace library [77] can provide a breakdown of the time spent in computation and

in communication. They also output times spent, message counts and sizes for different

MPI routines invoked in the code. Some advanced tools can also calculate the number of

network hops traveled by messages between different pairs of tasks. The first step is to

collect performance data for representative input problems (weak or strong scaling) on the

architecture in question.

Performance data obtained from profiling tools can be used to determine if communication

is a scaling bottleneck. As a rule of thumb, if an application spends less than 5% of its time

in communication when using a large number of tasks, there is little room for improving the

messaging performance. If this is not the case, we can attempt to use topology-aware task

mapping to improve performance and the scaling behavior. As we will see in the application

examples, task mapping can even be used to reduce the time spent in collective operations

over all processes.

Performance optimization

There are several tools and libraries that provide utilities for mapping an application to

torus and other networks [29, 35, 38, 78–80]. We use Rubik, described earlier, to generate

mappings for two production applications we have used, pF3D [20] and MILC [81]. Since

the solution space for mappings is so large, there are several factors to consider when trying

out different mappings:

• Are there multiple phases in the application with conflicting communication patterns?

• Is the goal to optimize point-to-point operations or collectives or both?

• Is the goal to optimize network latency or bandwidth?

• Is it beneficial to consolidate communication on-node or spread communication on the

network?

The previous performance debugging step can provide answers to the questions above

and guide us in pruning the space of all possible mappings. Once we have identified a few

18

mappings that lead to significant improvements, it is crucial to understand the cause of the

performance improvements, which is the next step in the process.

Performance analysis

Performance analysis tools can also be used to dissect the communication behavior of the ap-

plication under different mapping scenarios. Several metrics have been used in the literature

to evaluate task mappings and correlate them with the network behavior – dilation [39,40],

hop-bytes [25, 30] and maximum load or congestion on the network [35]. A more detailed

analysis on correlating different task mappings with different metrics can be found here [82].

Comparing the communication and network behavior under different mappings can enable

us to understand the root cause of performance benefits and help us in finding near-optimal

mappings. In this work, we explore three different metrics that influence communication

performance:

• Time spent in different MPI routines

• The average and maximum number of hops traveled over the network

• The average and maximum number of packets passing through different links on the

network

All three metrics reflect the state of the network and congestion to different extents and

correlate, to differing degrees, with the messaging performance of the application. An itera-

tive process of trying different mappings and analyzing the resulting performance can bring

us closer to the optimal performance attainable on a given architecture.

3.1.2 Experimental setup

We use Vulcan, a 24,576-node, five Petaflop/s IBM Blue Gene/Q installation on the un-

classified (OCF) Collaboration Zone network at Lawrence Livermore National Laboratory

(LLNL) for all the runs in this section. The BG/Q architecture uses 1.6 GHz IBM PowerPC

A2 processors with 16 cores each, 1 GB of memory per core, and the option to run 1 to 4

hardware threads per core. The nodes are connected by a proprietary 5D torus interconnect

with latencies of less than a microsecond and unidirectional link bandwidth of 2 GB/s. Ten

links, two in each direction (A, B, C, D, and E), connect a node to ten other nodes on the

system. The E dimension has length two, so the bandwidth between a pair of nodes in E is

twice the bandwidth available in other directions. When running on Vulcan, the shape of

19

the torus and the connectivity for a given node count can change from one job allocation

to another. The jobs shapes that were allocated for most of the runs in this section are

summarized in Table 3.1.

#nodes A B C D E Torus or Mesh

128 1 4 4 4 2 Torus in all directions
256 4 4 4 4 1 Torus in all directions
512 4 4 4 4 2 Torus in all directions

1024 4 4 4 8 2 Mesh in D, Torus in rest
2048 4 4 4 16 2 Torus in all directions
4096 4 8 4 16 2 Torus in all directions

Table 3.1: Shape and connectivity of the partitions allocated on Vulcan (Blue Gene/Q) for
different node counts.

Both pF3D and MILC were run on 128 to 4096 nodes. Based on our previous experience

with the two applications, the performance sweet spot for hardware threads is at 2 threads

per core for pF3D and 4 threads per core for MILC. Both applications were run in an MPI-

only weak scaling mode, keeping the problem size per MPI task constant. We used mpiP [75]

to obtain the times spent in computation and communication in different MPI routines. We

used a tracing library by IBM designed specifically for the BG/Q to obtain the average

and maximum number of hops traveled by all messages. An in-house library for accessing

network hardware counters was used to collect the packet counts for different torus links.

We compare different partitioning and permutation operations from Rubik with two sys-

tem provided mappings on BG/Q. ABCDET is the default mapping on BG/Q in which MPI

ranks are placed along T (hardware thread ID) first, then E, D, and so on. This mapping

fills the cores on a node first before moving on to the next node. In the TABCDE mapping,

T grows slowest which is similar to a round-robin mapping. MPI ranks are assigned to a

single core of each node before moving onto the next core of each node.

3.1.3 Mapping study of pF3D

pF3D [20] is a scalable multi-physics code used for simulating laser-plasma interactions in

experiments conducted at the National Ignition Facility (NIF) at LLNL. It solves wave

equations for laser light and backscattered light. With respect to communication, the two

main phases are: 1) wave propagation and coupling and 2) light propagation. The former

is solved using fast Fourier transforms (FFTs) and the latter is solved using a 6th order

advection scheme.

20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

128 256 512 1024 2048 4096

T
im

e
(s

)

Number of nodes

pF3D:Time spent in communication

12% 11% 13%

23%

36%

46%

Figure 3.2: Average, minimum, and maxi-
mum time spent in communication by pF3D
for weak scaling.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

128 256 512 1024 2048 4096

T
im

e
(s

)

Number of nodes

pF3D: Time spent in MPI calls

Recv
Barrier

Send
Alltoall

Figure 3.3: Average time spent in different
MPI routines by pF3D for weak scaling.

A 3D Cartesian grid is used for decomposing pF3D’s domain among MPI processes. For

the input problem that we used in this section, the X and Y dimensions of the process

grid are fixed at 32 and 16, respectively. As we scale the application from 4,096 to 131,072

processes, the number of planes in Z increases from 8 to 256. In the wave propagation and

coupling phase, the 2D FFT is broken down into several 1D FFTs, one set involving processes

with the same X and Z coordinate and another involving processes with the same Y and Z

coordinate. The advection messages are exchanged in the Z direction between corresponding

processes of the XY planes. MPI Alltoalls over sub-communicators of size 32 and 16 are

used for the FFT phase and MPI Send and MPI Recv are used for the advection phase.

Performance debugging: baseline performance

We start with profiling pF3D using mpiP to understand the relative importance of the

two phases described above and the contribution of communication to the overall time.

Figure 3.2 shows the average, minimum, and maximum time spent in messaging by MPI

processes on different node counts. The percentage labels on top of each vertical bar denote

the contribution of communication to the overall runtime of the application. For a weak

scaling study, we would expect the communication time to be constant, but it continues to

grow, especially beyond 1,024 nodes, and adds up to 46% of the total time at 4,096 nodes.

A careful look at the breakdown of this time into different MPI routines (Figure 3.3)

shows that the messaging performance is dominated by three MPI routines – MPI Alltoall

from the FFT phase, MPI Send from the advection phase and MPI Barrier. The all-to-alls

are over sub-communicators of size 32 and 16 and the message sizes between each pair of

processes are 4 and 8 KB, respectively. The advection send messages are of size 256 and 384

21

from rubik import *

processor topology -- A x B x C x D x E x T

torus = autobox(tasks_per_node=32)

numpes = torus.size

application topology -- mp_r x mp_q x mp_p

mp_r = torus.size / (16*32)

app = box([mp_r, 16, 32])

ttile = [int(sys.argv[i]) for i in range(1, 7)]

torus.tile(ttile) # tile the torus

atile = [int(sys.argv[i]) for i in range(7, 10)]

app.tile(atile) # tile the application

map MPI ranks to their destinations

torus.map(app)

f = open(’mapfile’, ’w’) # write out the mapfile

torus.write_map_file(f)

f.close()

Figure 3.4: A Rubik script to generate tiled mappings for pF3D.

KB. We spend ∼200 ms in each send, which is much higher than expected. At 4,096 nodes,

we also spend a significant amount of time in an MPI Barrier. We believe communication

imbalance due to network congestion manifests itself as processes waiting at the barrier. We

hope that an intelligent mapping can reduce this time as well.

Performance optimization: mapping techniques

We now know that for pF3D, the all-to-all and send messages are a scaling bottleneck and

any mappings that we develop should try to optimize these two operations. The first two

mappings that we tried are ABCDET and TABCDE. ABCDET keeps the all-to-alls in the

X direction within the node. However, this mapping is very inefficient for the Sends because

32 tasks on one node try to send messages to corresponding tasks on a neighboring node

over a single link. The TABCDE mapping spreads the pF3D XY planes on the torus thereby

reducing the congestion and time spent in both the all-to-all and the send. The first and

second bar in the plots of Figure 3.5 show the reduction in time of those two operations,

78% and 52% respectively on 4,096 nodes (ABCDET is referred to as Default and TABCDE

is referred to as RR for round-robin in all the figures).

The next mapping operation that we try with pF3D is tiling which can help group com-

22

 0

 10

 20

 30

 40

 50

 60

Default RR Tile1 Tile2 Tile3 Tile4 Tilt

T
im

e
(s

)

Different mappings

pF3D: Time spent in MPI calls on 1024 nodes

Recv
Barrier

Send
Alltoall

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Default RR Tile1 Tile2 Tile3 Tile4 Tilt

T
im

e
(s

)

Different mappings

pF3D: Time spent in MPI calls on 2048 nodes

Recv
Barrier

Send
Alltoall

 0
 20
 40
 60
 80

 100
 120
 140
 160

Default RR Tile1 Tile2 Tile3 Tile4 Tilt

T
im

e
(s

)

Different mappings

pF3D: Time spent in MPI calls on 4096 nodes

Recv
Barrier

Send
Alltoall

Figure 3.5: Reduction of time spent in different MPI routines by using various task mappings
for pF3D running on 1,024, 2,048 and 4,096 nodes of Blue Gene/Q (Note: y-axis has a
different range in each plot).

Mapping Torus tile (A×B × C ×D × E × T) pF3D tile

Tile1 Use fewest possible dimensions 8× 8× 8
Tile2 4× 4× 4× 4× 2× 1 8× 8× 8
Tile3 Use fewest possible dimensions 32× 16× 1
Tile4 4× 4× 4× 4× 2× 1 32× 16× 1

Table 3.2: Tile sizes used for the Blue Gene/Q 5D torus and pF3D in different mappings.

municating tasks together on the torus. The entire code for doing this is shown in Figure 3.4.

Rubik obtains the torus dimensions for the allocated partition automatically at runtime (we

only need to specify the number of MPI tasks per node). Then we tile the torus and the

application and finally call the map operation.

The various tile sizes that we tried for pF3D at different node counts can be handled as

inputs by the same script. We tried four different combinations of tile sizes for the torus and

the application which are listed in Table 3.2. Tile1 and Tile3 use as few dimensions of the

torus as possible. Tile2 and Tile4 use as many torus dimensions as possible which results in

a 4× 4× 4× 4× 2× 1 tile. In Tile1 and Tile2, we make cubic tiles out of the pF3D process

grid and in Tile3 and Tile4, we tile by XY planes in the application.

Performance analysis: Comparative evaluation

We now compare the performance of various mappings across different node counts with

respect to the reduction in time spent in MPI routines and the amount of network traffic

that they generate. Figure 3.5 shows the MPI time breakdown for seven different mappings

on 1,024, 2,048 and 4,096 nodes. The first six mappings have already been described above;

in the Tilt mapping, we create 3D tiles in the 5D torus partition and tilt BC planes in the 3D

sub-tori along B. This operation led to significant performance benefits on Blue Gene/P [38]

but does not seem to help on BG/Q.

23

 0

 2

 4

 6

 8

 10

 12

 14

Default RR Tile1 Tile2 Tile3 Tile4 Tilt
 0

 5

 10

 15

 20

M
PI

 S
en

d
tim

e(
s)

N
o.

 o
f h

op
s

Different mappings

pF3D: Network hops (1024 nodes)

Max. hops
Send time
Avg. hops

 0
 5

 10
 15
 20
 25
 30
 35
 40

Default RR Tile1 Tile2 Tile3 Tile4 Tilt
 0

 5

 10

 15

 20

M
PI

 S
en

d
tim

e(
s)

N
o.

 o
f h

op
s

Different mappings

pF3D: Network hops (2048 nodes)

Max. hops
Send time
Avg. hops

 0

 10

 20

 30

 40

 50

 60

 70

Default RR Tile1 Tile2 Tile3 Tile4 Tilt
 0

 5

 10

 15

 20

M
PI

 S
en

d
tim

e(
s)

N
o.

 o
f h

op
s

Different mappings

pF3D: Network hops (4096 nodes)

Max. hops
Send time
Avg. hops

 0

 10

 20

 30

 40

 50

 60

Default RR Tile1 Tile2 Tile3 Tile4 Tilt
 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4

M
PI

 t
im

e
(s

)

N
o.

 o
f p

ac
ke

ts
 (

in
 b

ill
io

ns
)

Different mappings

pF3D: Load on links (1024 nodes)

MPI time
Max. packets
Avg. packets

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Default RR Tile1 Tile2 Tile3 Tile4 Tilt
 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4

M
PI

 t
im

e
(s

)

N
o.

 o
f p

ac
ke

ts
 (

in
 b

ill
io

ns
)

Different mappings

pF3D: Load on links (2048 nodes)

MPI time
Max. packets
Avg. packets

 0
 20
 40
 60
 80

 100
 120
 140
 160

Default RR Tile1 Tile2 Tile3 Tile4 Tilt
 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4

M
PI

 t
im

e
(s

)

N
o.

 o
f p

ac
ke

ts
 (

in
 b

ill
io

ns
)

Different mappings

pF3D: Load on links (4096 nodes)

MPI time
Max. packets
Avg. packets

Figure 3.6: pF3D plots comparing the time spent in point-to-point operations to average
and maximum hops (top) and comparing the MPI time to average and maximum load on
network links (bottom) (Note: y-axis has a different range in each plot).

We can make several observations from these scaling plots. The first trend we notice is

that an intelligent tiling of the application on to the torus reduces the time in both the

all-to-all and the send operation. We also see a reduction in the time spent in the barrier

which suggests reduced congestion on the network and/or less communication imbalance. In

the case of pF3D, torus tiles that use all the dimensions of the torus perform better than

cubic tiles. This is because the messages, especially the all-to-alls, can use more directions

to send their traffic. Finally, the time for sends decreases with better mappings but levels

off after a certain point – more analysis on this is described in Section 3.1.3. Overall, Tile4

gives the best performance by reducing the time spent in communication by 52% on 1,024

nodes and 64% on 4,096 nodes as compared to the default ABCDET mapping.

In Figure 3.6, we use the output from the IBM MPI profiling tool and the network hardware

counters library to understand the traffic distribution on the network for different mappings.

In the top figures, we see that the maximum number of hops traveled is constant for different

mappings (it is also higher as compared to MILC as we will see in Figure 3.10). The time

spent in the MPI Send calls closely follows the average number of hops. This suggests that if

the application primarily does point-to-point messaging, then reducing the average number

of hops is a good idea. The bottom figures plot the average and maximum number of packets

passing through any link on the torus network. We notice that the trends for the total MPI

time and the maximum load are similar which suggests that it is important to minimize

hot-spots or links with heavy traffic on the network.

24

 0

 10

 20

 30

 40

 50

 60

 70

Default RR Tile1 Tile2 Tile3 Tile4 Tilt

T
im

e
(s

)

Different mappings

pF3D: MPI Isend optimization on 4096 nodes

Wait
Recv

Barrier
Alltoall

Figure 3.7: Average time spent by pF3D in different MPI routines on 4096 nodes (includes
MPI Isend optimization).

Performance refinement: Iterative process

The plateau in the MPI Send time reduction (Figure 3.5) prompted us to look further into

the problem. We looked at the stack trace to find the origin of these calls in the source code.

These calls are made in the syncforward and syncbackward functions which are a part of

the advection phase.

A closer look at the MPI standard and BG/Q’s implementation of large sends revealed

that the use of MPI Send followed by MPI Recv resulted in an unintended serialization of the

advection messages. For large messages, MPI Send uses a direct copy to the receive buffer and

returns after the data is transferred to the destination. However, the location of the receive

buffer is known only when an associated MPI Recv is posted. Hence, when the MPI processes

in the rightmost XY plane (which do not have to send any data) post their receives, actual

transfer of data begins from the MPI processes in the XY plane penultimate to it. When

this transfer is completed, the sends posted by the MPI processes in the penultimate plane

return and their receives are posted. At this point, the data transfer from the processes in

the plane to its left begins. Such inefficient serialized transfer of data continues till we reach

the leftmost XY plane.

25

The solution is simple – use a non-blocking send, post receives, and then wait on comple-

tion of posted sends. We replaced the MPI Send calls with MPI Isend and observed significant

improvement in the rates for advection messages. Figure 3.7 shows the new distribution of

the time spent in different MPI routines and we can see that most of the time spent in

MPI Send has been eliminated. This also has a positive effect on mapping – the same map-

pings now lead to higher performance benefits compared to the default. For example, Tile4

reduces the communication time by 77% w.r.t the default mapping as compared to 64%

before.

3.1.4 Mapping study of MILC

MILC [19], developed by the MIMD Lattice Computation collaboration, is a widely used

parallel application suite for studying quantum chromodynamics (QCD), the theory of strong

interactions of subatomic physics. It simulates four dimensional SU(3) lattice gauge theory

in which strong interactions are responsible for binding quarks into protons/neutrons and

holding them together in the atomic nucleus.

We use the MILC application su3 rmd distributed as part of the NERSC-8 Trinity Bench-

mark suite [83]. In su3 rmd, the quark fields are defined on a 4-dimensional grid of space

time points. The grid is mapped onto a four-dimensional (4D) grid of MPI processes. In ev-

ery simulation step, each MPI process exchanges information related to the quarks mapped

onto it with its nearest neighbors in all the dimensions. Thereafter, computation (primar-

ily a conjugate gradient solver) is performed to update the associated states of the quarks.

Global summations are also required by the conjugate gradient solver.

In order to obtain the best performance, MILC was executed on BG/Q with 4-way hyper-

threading per core. As a result, when running from 128 to 4,096 nodes, the number of MPI

processes ranges from 8,192 to 262,144 respectively. The grid size per MPI process is held

constant at 4× 4× 8× 8, which leads to a weak scaling of the global grid as the node count

increases. Determining the dimensions of the MPI process grid is left to the application

code.

Performance debugging: baseline performance

As stated in Section 3.1.1, the first step in our methodology is to evaluate the communication

characteristics of an application. Figure 3.8a shows that MILC spends between 20% and

30% of its execution time performing communication. As the node count is increased from

128 to 4,096, the overheads of communication increase by 80% (from 92 to 168 seconds).

26

0

50

100

150

200

128 256 512 1024 2048 4096

T
im

e
(s

)

Number of nodes

MILC: Time spent in communication

22% 22%

26%

29% 30% 30%

(a) Average time spent in com-
munication.

 0

 50

 100

 150

 200

128 256 512 1024 2048 4096

T
im

e
(s

)

Number of nodes

MILC: Time spent in MPI calls

Irecv
Isend

Allreduce
Wait

(b) Time spent in different MPI
routines.

 0

 50

 100

 150

 200

Default With Barrier

T
im

e
(s

)

MILC: Effect of adding a barrier on 1024 nodes

Irecv
Isend

Allreduce
Barrier

Wait

(c) Adding a barrier before the
all-reduce reduces its time sig-
nificantly.

Figure 3.8: Evaluation of the baseline performance of MILC with the default mapping.

 0

 50

 100

 150

 200

 250

 300

Default RR Node Tile1 Tile2 Tile3 Tile4

T
im

e
(s

)

Different mappings

MILC: Time spent in MPI calls on 1024 nodes

Irecv
Isend

Allreduce
Wait

 0

 50

 100

 150

 200

 250

 300

Default RR Node Tile1 Tile2 Tile3 Tile4

T
im

e
(s

)

Different mappings

MILC: Time spent in MPI calls on 2048 nodes

Irecv
Isend

Allreduce
Wait

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

Default RR Node Tile1 Tile2 Tile3 Tile4

T
im

e
(s

)

Different mappings

MILC: Time spent in MPI calls on 4096 nodes

Irecv
Isend

Allreduce
Wait

Figure 3.9: Reduction of time spent in different MPI routines by using various task mappings
for MILC running on 1024, 2048 and 4096 nodes of BG/Q (Note: y-axis has a different range
in each plot).

Given the weak-scaling nature of these experiments, this increase in the MPI time has a

negative impact on the overall performance.

The next step is to obtain a detailed profile of MILC to find the predominant MPI routines.

Figure 3.8b reveals that MPI Wait (following MPI Isend/MPI Irecv) and MPI Allreduce

over all processes are the key MPI calls. These results are not very encouraging w.r.t using

mapping for performance optimization. While mapping may help reduce the wait time, it is

typically not useful for improving performance of global collectives.

Reason for the apparently slow all-reduce: While the MPI profiles show significant

amounts of time spent in the all-reduce, the data exchanged per all-reduce per process is only

8 bytes. The long time spent in the all-reduce is puzzling because a typical 8-byte all-reduce

on 1, 024 nodes of BG/Q takes only 77 microseconds. A possible explanation of these results

is that MILC suffers from either computation or communication imbalance which leads to

increased time spent in all-reduce, an MPI routine that causes global synchronization as a

side effect. In order to verify this hypothesis, we did multiple runs in which an MPI Barrier

was invoked just before the all-reduce call.

Figure 3.8c compares the profile for the default case with an execution that has a barrier

27

 0

 50

 100

 150

 200

 250

Default RR Node Tile1 Tile2 Tile3 Tile4
 0
 2
 4
 6
 8
 10
 12
 14
 16

M
PI

 W
ai

t
tim

e
(s

)

N
o.

 o
f h

op
s

Different mappings

MILC: Network hops (1024 nodes)

Max. hops
Wait time
Avg. hops

 0

 50

 100

 150

 200

 250

Default RR Node Tile1 Tile2 Tile3 Tile4
 0
 2
 4
 6
 8
 10
 12
 14
 16

M
PI

 W
ai

t
tim

e
(s

)

N
o.

 o
f h

op
s

Different mappings

MILC: Network hops (2048 nodes)

 0

 50

 100

 150

 200

 250

 300

Default RR Node Tile1 Tile2 Tile3 Tile4
 0
 2
 4
 6
 8
 10
 12
 14
 16

M
PI

 W
ai

t
tim

e
(s

)

N
o.

 o
f h

op
s

Different mappings

MILC: Network hops (4096 nodes)

Max. hops
Wait time
Avg. hops

 0

 50

 100

 150

 200

 250

 300

Default RR Node Tile1 Tile2 Tile3 Tile4
 0

 5

 10

 15

 20

 25

M
PI

 t
im

e
(s

)

N
o.

 o
f p

ac
ke

ts
 (

in
 b

ill
io

ns
)

Different mappings

MILC: Counters on 1024 nodes

MPI time
Max. packets
Avg. packets

 0

 50

 100

 150

 200

 250

 300

Default RR Node Tile1 Tile2 Tile3 Tile4
 0

 5

 10

 15

 20

 25

M
PI

 t
im

e
(s

)

N
o.

 o
f p

ac
ke

ts
 (

in
 b

ill
io

ns
)

Different mappings

MILC: Counters on 2048 nodes

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

Default RR Node Tile1 Tile2 Tile3 Tile4
 0

 5

 10

 15

 20

 25

M
PI

 t
im

e
(s

)

N
o.

 o
f p

ac
ke

ts
 (

in
 b

ill
io

ns
)

Different mappings

MILC: Counters on 4096 nodes

MPI time
Max. packets
Avg. packets

Figure 3.10: MILC plots comparing the time spent in point-to-point operations with average
and maximum hops (top) and the MPI time with average and maximum load on network
links (bottom) (Note: y-axis has a different range in each plot).

inserted before the all-reduce on 1, 024 nodes. Most of the reported all-reduce time in

the former case shifts to the barrier time in the latter version. This is also observed on

other node counts, which supports our hypothesis. Further, since MILC does not have

dynamic computational load imbalance and the all-reduce time of all processes is very high

(as confirmed by per process profiling), we can confidently attribute the high all-reduce time

to communication-induced variations and imbalance. Hence, it appears that the all-reduce

time is a side-effect of the imbalanced or congested point-to-point communication, and can

possibly be reduced by using task mapping.

Performance optimization: mapping techniques

As described in the previous section, MILC spends a significant fraction of its execution

time in point-to-point communication which can possibly be reduced by mapping its tasks

carefully. The simplest variation to try is the TABCDE mapping. Figure 3.9 presents the

comparison of the communication time for the default ABCDET mapping (Default) and

TABCDE (RR). Depending on the node count, we observe contrasting effects — for 1,024

and 4,096 nodes, TABCDE reduces the communication time by 20%, whereas for 2,048 nodes,

it increases the communication time by 80%. The difference shows up in the time spent in

wait and all-reduce, both of which can be attributed to the point-to-point communication

(Section 3.1.4).

Another mapping which we called the Node mapping blocks communicating MPI processes

as a sub-grid and places them on hardware nodes (with 64 MPI processes) This is a natural

28

choice for mapping of structured applications such as MILC. Surprisingly though, such

blocking does not improve the performance; for most cases, Node mapping increases the

communication time. As a result, we avoid blocking and scatter nearby ranks instead (as in

TABCDE) when generating tile-based mappings with Rubik.

For the tile-based mappings, we attempt to map sub-grids from MILC to similar sub-

grids on the BG/Q torus. For example, Tile1 maps a 4 × 4 × 4 × 4 sub-grid of MILC to a

4× 4× 4× 4 sub-grid of BG/Q along its first four dimensions (A, B, C, D). Other mappings

(Tile2, Tile3, and Tile4) perform similar tilings on different symmetric and asymmetric sub-

grid sizes. Most of these choices were guided by the observed performance and profiling

information for these experiments that is summarized in Figure 3.9.

In a manner similar to RR and Node mappings, we observe significant variations in the

impact of tile-based mappings on the communication time. Tile1 and Tile2 reduce the

communication time significantly on 512 and 1,024 nodes, but increase the communication

time on other node counts. Similar observations about other mappings can be made. None

of the tile-based mapping we attempted were able to reduce communication time on 4,096

nodes.

Performance analysis: comparative evaluation

In this section, we attempt to find the cause for varying impact of different mappings on

various node counts presented in Section 3.1.4. Figure 3.10 (top) shows the time spent in

wait and the average and maximum hops traveled by point-to-point messages. The average

and maximum number of 512-byte packets on the network links and the total MPI time is

shown in Figure 3.10 (bottom). For MILC, since most of the communication volume is due

to the point-to-point communication, the average hop curves are very similar to the overall

average packet curves.

Overall, no correlation is observed between the wait times and maximum hops. This is

expected since the message sizes in MILC are a few kilobytes and thus not latency bound.

Moreover, per hop latency overhead on BG/Q is very low. However, the average hops and

the maximum packets follow trends similar to the wait time and the MPI time respectively,

with a few aberrations. These observations are in line with our previous results on correlating

performance and metrics [82].

For the default mapping, similar values for average hops and maximum packets are ob-

served on 1,024 and 2,048 nodes which translates into similar wait and MPI times. At 4,096

nodes, the average hops doubles which results in increased wait time. However, the MPI

time remains the same due to reduced all-reduce time, indicating a better communication

29

Figure 3.11: Four sub-tori showing the D (blue), C (red, long), and B (red, short, diagonal)
links for the same E. The colors represent the number of packets passing through individual
links.

balance. In contrast, for TABCDE, both the average hops and maximum packets are sig-

nificantly higher on 2,048 nodes. As a result, TABCDE has a very high wait time and MPI

time on 2,048 nodes. On other node counts, use of TABCDE halves the maximum packets

in comparison to the default mapping, and hence also reduces communication time.

On 2,048 and 4,096 nodes, the Node mapping provides higher average and maximum

packets in comparison to the default mapping. As a result, it also shows higher wait time

and MPI time. At 1,024 nodes, we do not see similar trends. This needs a more detailed

study (as is done by Jain et. al [82]). The four tile-based mappings follow similar trends:

a mapping that provides lower average hops and maximum packets on a node count shows

lower wait and MPI times.

Network visualization of packets

We explore network traffic in more detail using the BG/Q visualization module in Boxfish.

This module extends Boxfish’s 3D torus visualization [84] which projects the links of the

3D torus into two-dimensional planes. For the 5D torus of BG/Q, multiple such planes

are displayed to cover the two extra torus directions. By changing which torus directions

compose the planes, the links of different directions can be examined. Figure 3.11 shows an

example focusing on the C and D torus directions for the TABCDE mapping using 2, 048

30

Figure 3.12: Minimaps showing aggregated network traffic along various directions for the
TABCDE (left) and the Tile3 mappings (right).

nodes. The displayed traffic is the network hardware counters data obtained from MILC

runs.

We first look at previews of the planes (‘minimaps’) which are colored by aggregated

packets taken across all but two torus dimensions. This provides an overview of link behavior

in all directions. As each minimap shows two directions aggregated along a third (and

the short E direction), they are twelve in total. Figure 3.12 shows the minimaps for the

TABCDE and Tile3 mappings of MILC run on 2,048 nodes. Traffic in the D direction for

the TABCDE mapping is high while traffic in all other directions is low. This holds for

all minimaps showing the D direction, indicating that this is true for all D links and is not

affected by other directions. We also examined the individual links (Figure 3.11) and verified

that there is no significant variation. In comparison, while the Tile3 mapping has heavier

traffic in the D direction, it is still relatively low. These observations are consistent with

our findings in Figure 3.10, which shows higher maximum traffic for the TABCDE mapping

than the Tile3 mapping. Further, the visualization reveals that the maximum traffic is not

due to outliers, but is caused by uniformly heavy use of a single torus direction.

3.1.5 Discussion and summary

In this section, we have presented a step-by-step methodology to optimize application per-

formance through the technique of topology-aware task mapping. We have learned several

lessons in the process of performance analysis and optimization of the applications, pF3D

and MILC, on IBM Blue Gene/Q using this methodology. These are some interesting ob-

servations that might be useful to others optimizing their code on torus networks:

• The default mapping or blocking on the physical node may not yield the best perfor-

mance even for near-neighbor codes.

31

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

128 256 512 1024 2048 4096

T
im

e
(s

)

Number of nodes

pF3D: Time spent in MPI calls

Recv
Barrier

Send
Alltoall

 0
 20
 40
 60
 80

 100
 120
 140
 160

128 256 512 1024 2048 4096

T
im

e
(s

)

Number of nodes

pF3D: Time spent in MPI calls (Best mapping)

Recv
Barrier

Send
Alltoall

44% 45% 52% 61% 70%
64%

 0
 20
 40
 60
 80

 100
 120
 140
 160

128 256 512 1024 2048 4096

T
im

e
(s

)

Number of nodes

pF3D: Time spent in MPI calls (Using Isends)

Wait
Recv

Barrier
Alltoall

47% 53% 63% 77% 88% 90%

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

128 256 512 1024 2048 4096

T
im

e
(s

)

Number of nodes

MILC: Time spent in MPI calls for best mapping

Irecv
Isend

Allreduce
Wait

14% 7%
38% 47%

24% 21%

Figure 3.13: pF3D: A scaling comparison of the time spent in different MPI routines with
the default mapping (top-left), best mapping discovered, and with the best mapping using
the Isend optimization. A scaling comparison of the benefits of task mapping for MILC is
also shown (bottom-right). The percentage values shown are improvement over the default
mapping.

• Mappings that spread traffic all over the network may lead to better performance for

some parallel applications.

• For certain communication patterns, using all dimensions to distribute network traffic

may provide better performance rather than confining traffic to a few dimensions.

• Sometimes, computational or communication imbalance or delays due to network con-

gestion can manifest themselves as wait time or time spent in a collective. Careful

mappings can reduce this time.

• It takes several iterations to improve the performance of a parallel code. It may

appear that intuitive mappings are not leading to expected performance gains. This

can happen when the scaling bottleneck is elsewhere.

For the particular applications we study as part of this work, we were able to improve the

performance of pF3D and MILC significantly. Figure 3.13 shows the time spent by pF3D

in different MPI routines for the default mapping, the best mappings we found, and the

32

best mappings combined with the Isend optimization. The labels in the plots denote the

percentage reduction in communication time compared to the default ABCDET mapping.

The top right plot shows that the best mappings can reduce the time spent in all-to-all, while

the bottom left plot shows that using Isends instead of Sends can improve the performance

further. Tiled mappings improve the communication performance of pF3D by 2.8× on

131,072 processes and the Isend modification improves it further by 3.9×. Figure 3.13 also

shows the performance improvements obtained with the best mappings for a scaling run of

MILC (21% reduction in MPI time at 262,144 processes).

3.2 Job placement on the dragonfly network 2

In the dragonfly topology, high-radix routers are used to organize the network into a two-

level all-to-all or closely connected system. The presence of these multi-level hierarchies

connected through network links opens up the possibilities for different routing strategies

and job placement policies. Unlike the extensively studied torus network, the best choices

of message routing and job placement policies are not well understood for the dragonfly

topology. In this section, we propose a functional model and use it to compare various

routing strategies and job placement combinations for different communication patterns

executed on a dragonfly network. In particular, we attempt to find answers to the following

questions:

• What is the best combination for single jobs with communication patterns such as

unstructured mesh, 4D stencil, many-to-many, and random neighbors? These patterns

represent production scientific applications routinely run on NERSC machines [86,87].

• What is the best combination for parallel job workloads in which several applications

are using the network simultaneously?

• Is it beneficial for jobs in a workload to use different routing strategies that are more

suitable for them in isolation? What is the best placement policy in this situation?

Three things distinguish this work from the previous communication and congestion mod-

eling work on dragonfly networks. First, we consider different alternative routings with

adaptivity and study their impact on network throughput. Second, we consider representa-

tive job workloads at supercomputing sites and simulate different routings and job placement

2Based on [85]

33

All-to-all network
in columns: Level 1

Network Ports

Processor
Ports

Level-1 network

Level-2 network

A GROUP WITH 96 ROUTERS

Compute Nodes

A DRAGONFLY ROUTER

Chassis (All-to-all network
in rows: Level 1)

Level-2 all-to-all network
(not all groups or links are

shown)

THE DRAGONFLY TOPOLOGY

Figure 3.14: The structure of a dragonfly network.

strategies for these workloads. Third, we presents analysis for the dragonfly network at an

unprecedented scale (8.8 million cores).

3.2.1 The dragonfly network

Multi-level direct networks have been proposed recently by several researchers as a scalable

topology for connecting a large number of nodes together [15–17,88]. The basic idea behind

these networks is to have a topology that resembles an all-to-all at each level of the hierarchy

which gives the impression of a highly connected network. Further analysis would show

that the network is built using high-radix routers that only exist at the lowest level. The

connections between these routers create an appearance of several all-to-all connected direct

networks at multiple levels of the hierarchy.

Two prominent implementations of multi-level direct networks are the PERCS intercon-

nect by IBM [17] and the Cascade system by Cray [16]. We focus on the Cascade system

which is based on the dragonfly topology designed by Kim et al. [15]. The Cascade (Cray

XC30) system uses the Aries router as its building block and has been used in supercom-

puters such as Edison at NERSC, Lawrence Berkeley National Laboratory and Piz Daint at

the Swiss National Supercomputing Center.

We use the dragonfly topology to build a prospective 100+ Petaflop/s system. The pa-

rameters for this prototype machine are inspired by the Cray Cascade system. We have,

however, simplified the router and link bandwidths for ease of modeling. The building block

is a network router with 30 network ports and 4 processor ports (Figure 3.14). Each network

router is connected to four compute nodes (of 24 cores each) through the processor ports.

Sixteen such routers form a chassis and six chassis are combined together to form a group

(16 × 6 = 96 routers in total). Each network router is connected to all other routers in its

chassis (15 ports) and to the corresponding routers in five other chassis (5 ports). These

links along rows and columns in the group are called level 1 (L1) links in this section. The

remaining 10 ports are used to connect to network routers in other groups. These inter-group

34

links form the second level (L2) of the network. L1 and L2 links together form a two-level

direct network.

We take 960 such groups comprised of 96 routers (384 nodes) each to build a very large

dragonfly system. This machine has 8,847,360 cores (8.8 million) and extrapolating the

Edison system — a peak performance of 164.5 Petaflop/s. Two major differences between

the prototype machine used in the section and the Cray Cascade system are: 1. There is

only one L1 link between each pair of routers along the column whereas the Cascade machine

has three such links leading to three times the bandwidth in that dimension, 2. Cray only

allows for 240 groups which leads to 4 links connecting each pair of groups and hence much

higher bandwidth.

3.2.2 Prediction methodology for link utilization

In order to compare the relative benefits of different job placement policies and routing

strategies, we have developed a model that generates the traffic distribution for all network

links given a parallel communication trace. Our hypothesis is that the traffic distribution

is indicative of the network throughput we can expect for a given scenario [73, 82, 89]. The

inputs to this model are:

— A network graph among dragonfly routers, N = (V,E).

— An application communication graph for one time step or phase in terms of MPI ranks,

AC = (V C , EC).

— A job placement/mapping of MPI ranks to physical cores.

— A routing strategy, <.

The model accounts for contention on network links and outputs the expected traffic on

all network links for each phase of the application. All communication in one time step or

phase is assumed to be occurring simultaneously on the network and all messages for the

phase are considered to be in flight. For each phase, an iterative solve is performed to get the

probabilistic traffic distribution on the links. Only one iteration may be needed for simple

cases, such as the direct routing. The iterative solve in the model is described below.

Initialization: The input network graph N gives us the peak bandwidths on all network

links. We define two other copies of this graph – NA = (V A, EA), which stores the band-

widths that have already been allocated to different messages; and NR = (V R, ER), which

stores the remaining link bandwidths that can still be allocated in subsequent iterations.

For edge l in these graphs, this relationship holds: El = EA
l +ER

l . At initialization, EA
l = 0

and ER
l = El for all edges.

35

Iteration: The do loop below describes the iterative solve which is central to our traffic

prediction model:

do until no message is allocated any additional bandwidth

1. For each edge (message), m in EC , obtain a list of paths, P (m) that it can send its

packets on from the source to the destination router for a given routing <.

2. Derive the “request” count for each link using the P (m) sets for all messages. The

request count is the total number of messages that want to use a link; store the request

counts for all links in another copy of the network graph, NRC = (V RC , ERC).

3. For each path, p in P (m) for each message m in EC , calculate the “availability” of

each link in p. Availability of a link l is its remaining bandwidth divided by its request

count, ER
l /E

RC
l . Each link on path p allocates additional bandwidth to message m

which equals the minimum of the availabilities of all links on that path.

4. Decrement remaining bandwidth values in NR and increment values in NA based on

the freshly allocated bandwidths on the links in the previous step.

end do

Post Processing: For each message, the model assumes that its packets will be divided

among the paths on which it was allocated bandwidth during the iterative solve. Depending

on the routing protocol <, the fraction of a message that is sent on different paths is computed

differently. Thus, we obtain the traffic on a link l as,

traffic(l) =
∑
∀m∈EC

fp if l ∈ p,∀ p ∈ P (m)

where fp is the fraction of the message assigned to path p in the set P (m).

This iterative model is generic and can be used for any routing by selecting appropriate

schemes for finding P (m) in Step 1, deciding the request counts NRC in Step 2, finding the

link availability in Step 3, and deciding the fp in post processing. The specific schemes used

for different routings are described in detail next.

Routing-specific enhancements to model: The model described so far has been im-

plemented as a scalable MPI-based parallel program. For most parts, the parallelism is

obtained by dividing the processing of the messages among the MPI processes. The imple-

mentations for different routing schemes build upon the generic model and customize it to

improve the prediction capability and computation time. In the following description of the

36

routing schemes that are based on schemes proposed by Kim et al. [15], it is assumed that

a message is sent from the source router s to the destination router d.

Static Direct (SD): In this scheme, a message from s to d is sent using the shortest path(s)

between s and d. If multiple shortest paths are present, the message is evenly divided among

the paths. For the dragonfly interconnect described in Section 3.2.1, the maximum number

of hops for SD routing is 5 — two L1 hops in the source group, one L2 hop, and two L1

hops in the destination group.

For the evaluation of SD, only one iteration is needed to find all shortest paths that a mes-

sage can take. Once those paths are determined, the message is divided equally among those

paths during the post processing. Note that since this routing does not make use of the re-

quest count and availability computed in Step 2 and Step 3 respectively, our implementation

skips those steps of the iteration.

Static Indirect (SI): In this scheme, for each packet created from a message, a random

intermediate router i is selected. The packet is first sent to i using a shortest path between

s and i. It is thereafter forwarded to d using a shortest path between i and d. For the given

interconnect, use of an intermediate router results in the maximum number of hops for SI

to be 10.

Ideally, for packet-level SI routing, only one iteration is needed to find all the indirect

paths (like direct routing). However, storing all indirect routes requires very large amount

of memory. To address the memory concern, our implementation goes over the packets in

the message one by one, and assigns them to a randomly generated indirect path. Processing

each packet individually leads to extremely high workload making this routing the most time

consuming to evaluate.

Adaptive Direct (AD): The AD routing adds adaptivity to SD — if multiple shortest

paths are present between s and d, the message is divided among the paths based on the

contention on those paths. The iterative solve is suitable for adaptive routing given that

it allows a message to request more bandwidth on resources that have leftover bandwidth

iteratively. It also allows messages that can use multiple paths to get more bandwidth. In a

typical run, we ran the iterative solve till convergence is reached, i.e. no message is able to

obtain any more bandwidth for any of its paths.

Customization: In Step 2, instead of assigning equal weights to all requests of a message

to the links of the paths it can use, the requests are weighted based on the minimum

remaining bandwidth on any link of the paths. For example, if a message could be sent

on two paths with 50 and 100 units of minimum remaining bandwidth on the links of those

paths respectively, the requests to the links on those paths are given weights 0.33 and 0.66

respectively. Such weighted requests are helpful in adaptively selecting links that are less

37

congested. Also, the size of a message is considered while deciding the weights of the requests.

This allows for favoring larger messages which may increase the overall throughput of the

network as described next. In Step 3, on receiving several requests for a link from various

messages, instead of equally dividing the remaining bandwidth to all requests, the division

is weighted based on the weights of the requests. During post processing, the messages are

divided among the paths in proportion to the bandwidth allocated on those paths so that

the effective traffic on all links is equalized (as opposed to the static division done by SD).

Adaptive Indirect (AI): The AI routing is related to SI routing in a manner similar to

the relation between SD and AD. For each packet sent using AI routing, the intermediate

router, i , is selected from a randomly generated set of routers, based on the contention on

the corresponding paths.

Customization: The implementation for this routing also uses the schemes described for

adaptive direct routing. However, while adaptive direct routing uses the same set of paths in

every iteration for a message, it is impractical to use thousands of paths in every iteration as

required by the indirect routing. As a result, we used a set of 4 indirect paths selected afresh

in every iteration. However, this may overload the links of the paths used in initial iterations

since more bandwidth is typically available during the start. In order to overcome this bias,

we added the concept of incremental bandwidth. In this method, at the very beginning,

only a fraction of the maximum bandwidth of the links is available for allocation to the

messages. In each iteration, more bandwidth is made available incrementally for allocation.

This kind of increment of available bandwidth is continued until we have exposed all of the

maximum bandwidth of the links. In our experiments, we exposed an additional fraction (1
f
)

of bandwidth in each of the first f iterations. Prediction results with varying f suggested

that beyond f = 50, incremental exposure of bandwidth has no effect on the predictions.

Adaptive Hybrid (AH): A hybrid of AI and AD leads to the AH routing. In this scheme,

for sending each packet, the least contended path is selected from a fixed size set of shortest

paths and indirect paths. The indirect paths in the set are generated randomly for every

packet of the message. AH is implemented using the same schemes as described for AI.

To allow for use of direct paths in each iteration, the set of paths consists of 4 paths —

up to two direct paths and the remaining indirect paths, instead of 4 indirect paths used

for AI. This helps in biasing the routing towards direct paths if congestion on them is not

high. In the current implementation of the model, we have assumed global knowledge of

congestion (e.g. a router can estimate queue lengths on other routers). Hence, in terms of the

original terminology used by Kim et al. [15], the model predicts link utilization for UGAL-G

routing, which is an ideal implementation of Universal Globally-Adaptive Load-balanced

(UGAL) routing.

38

3.2.3 Evaluation setup

For the routings described in the previous section, we study the dragonfly interconnect using

the presented prediction framework for many job placement policies and communication pat-

terns. In this section, we briefly describe these job placement policies, list the communication

patterns, and explain the experimental setup.

Job placement

Job placement refers to the scheduling scheme used to assign a particular set of cores in

a particular order for execution of a job. The ordering of the cores is important because

it determines the mapping of MPI ranks to the physical cores. We explore the following

schemes that have been chosen based on our previous work on two-tier direct networks [73]

and the schemes that are currently in use at supercomputer centers that host Cray XC30, a

dragonfly interconnect based machine.

Random Nodes (RDN): In this scheme, the job is allocated randomly selected nodes from

the set of all available nodes in the system. The cores of a nodes are ordered consecutively,

while the nodes are ordered randomly. Random placement may be helpful in spreading the

communication uniformly in the system, thus resulting in higher utilization of the links.

Random Routers (RDR): The RDR scheme increases the level of blocking by allocating

randomly selected routers (set of four nodes) to a job. The cores attached to a router are

ordered consecutively, but the routers are ordered randomly. The additional blocking may

help in restricting the communication leaving the router. It also avoids contention within a

router among different jobs running on different nodes of the router.

Random Chassis (RDC): This scheme allocates randomly selected chassis to a job. The

cores within a chassis are ordered, but the chassis are randomly arranged. The additional

blocking may limit the number of hops to one L1 link for the messages of a job with com-

municating nearby MPI ranks.

Random Groups (RDG): The RDG scheme further increases the blocking to groups.

This may be useful in reducing the average pressure on L2 links by restricting a significant

fraction of communication to be intra-group. However, it may also overload a few L2 links

if the groups connected by a L2 link contains nearby MPI ranks that communicate heavily.

Round Robin Nodes (RRN): In this scheme, a job is allocated nodes in a round robin

manner across the groups. The cores of a nodes are ordered consecutively, while the nodes

are ordered in a round robin manner. Such a distribution ensures uniform spreading of a

job in the system.

39

Table 3.3: Details of communication patterns.

Communication Number of Messages Message
Pattern Processes per Process Size

(TDC) (KB)

Unstructured Mesh 8,847,360 6 - 20 512
Structured Grid 80 × 48 × 48 × 48 8 2,048
Many to many 180 × 128 × 384 127 100
Uniform Spread 8,847,360 6 - 20 512

Round Robin Routers (RRR): The RRR scheme is similar to the RRN scheme, but

allocates routers instead of individual nodes to a job in a round robin manner.

Communication patterns

Kamil et al. [1] have defined topological degree of communication (TDC) of a processor as the

number of its communication partners. They study a large set of important applications and

show that the TDC of common applications vary from as low as 4 to as large as 255. In order

to span a similar range of TDC and study a representative set of common communication

patterns [86, 87], the patterns listed in Table 3.3 have been used. Each of the pattern is

described in more detail as we analyze prediction results for it in Section 3.2.4.

The communication graphs for each of the pattern is generated either by executing them

using AMPI [90], which allows us to execute more MPI processes than the physical cores, or

by using a simple sequential program that replicates the communication structure of these

patterns.

Prediction runs setup

The parallel code that implements the proposed model was executed on Vesta and Mira,

IBM Blue Gene/Q installations at Argonne National Laboratory. For each run, three input

parameters were provided: 1) communication pattern based on MPI ranks, 2) mapping of

MPI ranks to physical cores, and 3) system configuration including the routing strategy.

Depending on the communication pattern and the routing, different core counts were used

for the parallel runs. Typically, for SD and AD routing schemes, 512 cores were used to

complete the simulation in ∼5 minutes. For the remaining routings, 2, 048 cores were used

to simulate the lighter communication patterns, such as structured grid, in ∼30 minutes.

For heavy communication patterns, e.g. many to many, 4096− 8192 cores were required to

finish the runs in up to two hours.

40

1

10

1E2

1E3

1E4

1E5

1E6

 0 20 40 60 80 100

N
um

be
r

of
 L

in
ks

Communication Volume (binsize = 31.4 KB)

Our Model's Prediction for Direct Routing

1

10

1E2

1E3

1E4

1E5

1E6

 0 20 40 60 80 100

N
um

be
r

of
 L

in
ks

Communication Volume (binsize = 1.4 KB)

Our Model's Prediction for Indirect Routing

1

10

1E2

1E3

1E4

1E5

1E6

 0 20 40 60 80 100

N
um

be
r

of
 L

in
ks

Communication Volume (binsize = 1.4 KB)

Our Model's Prediction for Hybrid Routing

1

10

1E2

1E3

1E4

1E5

1E6

 0 20 40 60 80 100

N
um

be
r

of
 L

in
ks

Communication Volume (binsize = 31.4 KB)

SST's Prediction for Direct Routing

1

10

1E2

1E3

1E4

1E5

1E6

 0 20 40 60 80 100
N

um
be

r
of

 L
in

ks

Communication Volume (binsize = 1.4 KB)

SST's Prediction for Indirect Routing

1

10

1E2

1E3

1E4

1E5

1E6

 0 20 40 60 80 100

N
um

be
r

of
 L

in
ks

Communication Volume (binsize = 1.4 KB)

SST's Prediction for UGAL-L Routing

Figure 3.15: Comparison of the predictions by the presented model with predictions by
SST/macro, a packet-level simulator, for a 4D Stencil simulated on a 36, 864 router system.

Model validation

We validate our proposed model against SST/macro, a packet-level discrete-event simula-

tor [50]. For these validation runs, we use the structured grid communication pattern from

Table 3.3 at a smaller scale. The prototype system considered here is one-third the size of

the full system (36, 864 routers). However, we assume one active MPI rank per router to

ensure that the predictions using SST/macro can be obtained in a reasonable time frame.

The left plots (top and bottom) in Figure 3.15 show the histograms of the predicted traffic

distributions for direct routing using our model and SST/macro. The two histograms are

very similar which attests that the proposed model closely resembles the predictions of a

packet-level simulation for direct routing. Similar results are seen for indirect routing (center

plots in Figure 3.15) which validates the model for indirect routing. For hybrid routing, we

were not able to use SST/macro for a one-to-one validation because SST implements UGAL-

L (a localized version of UGAL), while our model assumes global knowledge. Nevertheless,

we present the predictions for SST’s UGAL-L and our model’s routing schemes in the right

plots (top and bottom) in Figure 3.15. We observe that the predictions by SST’s UGAL-L

routing are very similar to its predictions using indirect routing. This is possibly due to the

localized view of the queues on a router; the queues for direct routes get filled quickly for

large messages, hence diverting the traffic towards indirect routes. In contrast, the hybrid

model is able to offload heavily used links (due to its global knowledge) and shift many links

to left bins in comparison to indirect routing.

41

1

10

1E2

P1 P2

Li
nk

 U
sa

ge
 (

M
B)

Job placements grouped based on Routing

Example Plot

minimum
1st quartile

average

median
3rd quartile
maximum

minimum and 1st quartile are same

Lowest maximum

Figure 3.16: Example to explain the data displayed in the plots.

3.2.4 Predictions for single jobs

The first half of the experiments are focused on understanding network throughput for

single job executions on a dragonfly network. We begin this section with a brief guide on

how to analyze the box plots presented in the rest of the section. Following it, the four

communication patterns are studied in detail. Finally, we present prediction results for the

case in which the many-to-many pattern is executed in isolation on the system with variation

in the number of cores used by it.

Description of the plots

Figure 3.16 shows a typical box plot used in this section. The x-axis contains combinations

of routing strategies and job placement policies, which are grouped based on the routing

strategy. The log scale based y-axis is the amount of traffic flowing on links in megabytes. For

each combination of job placement and routing, six data points are shown — the minimum

traffic on any link, the first quartile – 25% of links have lesser traffic than it, the median

traffic, the average traffic on all the links, the third quartile – 75% of links have lesser traffic

than it, and the maximum traffic on any link. The plot also shows a horizontal dotted blue

line that indicates the lowest maximum traffic among all the combinations.

Very high value of maximum traffic relative to other data point indicates network hotspots .

Hence, it is a good measure to identify scenarios whose throughput is impacted by bottleneck

link(s). The average traffic is an indicator of the overall load on the interconnect. It is helpful

in finding scenarios that reduce total traffic and hops taken by the messages. Comparing the

average with median is valuable for estimating the distribution. If average is significantly

42

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Static Direct Adaptive Direct Static Indirect Adaptive Indirect Adaptive Hybrid

Unstructured Mesh Pattern (All Links)

Median Average Lowest maximum

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Static Direct Static Indirect Adaptive Indirect

Unstructured Mesh Pattern (L1 Links)

Median
Average

Lowest maximum

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR
Li

nk
 U

sa
ge

 (
M

B)

 Static Direct Static Indirect Adaptive Indirect

Unstructured Mesh Pattern (L2 Links)

Median
Average

Lowest maximum

Figure 3.17: Unstructured Mesh Pattern (UMesh): blocking helps in improving the traffic
distribution.

higher than the median (P1 in Figure 3.16), the distribution is skewed to the right — most

of the links have relatively low traffic, but a long tail stretches to the right. In contrast, if

median is higher than the average, the distribution is skewed to the left — most of the links

have more traffic than the average, but a long tail stretches to the left. Finally, the quartiles

can be used to find more information about how much fraction of the links had what volume

of traffic flowing through them. Overall, we suggest that a distribution with closer values

of these data points is good for network throughput. In case of similar distributions, lower

values are better for throughput.

Unstructured Mesh Pattern (UMesh)

In this pattern, each MPI process r communicates with 6 − 20 other MPI processes in its

neighborhood (within range [r-30, r+30]). Such a pattern is representative of unstructured

mesh based and particle in cell (PIC) codes with space filling curve based mapping of MPI

processes (e.g. Morton ordering).

Effect of Job Placement: Figure 3.17 (top) presents the expected link utilization when

UMesh is executed on the full system. It can be seen that as we increase the blocking in job

placement, the maximum, the average, and the quartiles decrease significantly. For UMesh

43

with many communicating nearby MPI ranks, this trend is observed because increasing

blocking from nodes to router avoids network communication. Additionally, it may also

decrease the number of hops traversed by messages, since it places most communicating

MPI processes within a chassis or a group (as we move from RDR to RDC and RDG).

Effect of Indirect Routing: Comparison among routings shows that the use of any form

of indirect routing leads to an increase in average traffic on the links, a trend that is seen

in all results presented in this section. This is expected since indirect routing forces use of

extra hops. However, indirect routing also leads to a more uniform distribution of loads on

the links which is demonstrated by the closes values of the quartiles. Also, the median is

closer to the average for indirect routing, in contrast with direct routing for which median

is mostly zero (indicating a distribution skewed to the right). Note that although indirect

routing increases the average, owing to a better distribution, the maximum is never worse

than the direct routings for a given job placement. These characteristics indicate better

network throughput for indirect routing in comparison to direct routing.

We also observe that for direct routing with RRN and RRR placements (shown for SD in

Figure 3.17 (bottom)), only a few L2 links are being used heavily, thus increasing the overall

maximum. These are the L2 links that connect the consecutive groups which are used by

the communication among nearby MPI ranks mapped to the nodes and routers placed in a

round-robin manner. Indirect routing offloads these L2 links by distributing the traffic to

other unused L2 links.

Effect of Adaptivity: We observe that the expected traffic for adaptive versions of the

routing schemes have very similar distribution to the static version with similar or lesser

corresponding values for the data points of interest. In particular, for RDC and RDG,

the AI routing scheme reduces the maximum traffic by 50% in comparison to its static

counterpart, SI. We attribute this improvement to unloading of overloaded L1 links. As

shown in Figure 3.17 (bottom), comparison of the average suggests that the L1 links are

more loaded which is expected given the dominant nearby MPI rank communication in

UMesh. For RDC and RDG, the AI routing is able to improve the distribution of traffic on

L1 links, and thus reduces the maximum traffic.

Structured Grid Pattern (4D Stencil)

Based on a four-dimensional nine-point stencil, this pattern is representative of the com-

munication pattern in MILC, a Lattice QCD code [81]. The MPI processes are arranged

in a 4-D grid, with each process communicating with its 8 nearest neighbors in the four

dimensions. As a result, this pattern has lesser MPI rank based communication locality in

44

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Static Direct Adaptive Direct Static Indirect Adaptive Indirect Adaptive Hybrid

Structured Grid Pattern (All Links)

Median Average Lowest maximum

10

1E2

1E3

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Static Direct Adaptive Direct Static Indirect Adaptive Indirect Adaptive Hybrid

Random Neighbors Pattern (All Links)

Median Average Lowest maximum

Figure 3.18: Structured Grid Pattern (4D Stencil) and Random Neighbors Pattern (Spread).

comparison to UMesh. For 4D Stencil, two of an MPI process’ communicating partners are

its immediate MPI rank neighbors, but the remaining six neighbors are placed incrementally

further away from it. For the configuration provided in Table 3.3, two of the neighbors are

48 MPI ranks away, the next pair is 2, 304 ranks away, and the final two are 110, 592 ranks

away.

Effect of Job Placement: Figure 3.18 (top) shows the traffic distribution predictions for

4D Stencil. For direct routings, in a manner similar to UMesh, the average and the quartiles

decrease as blocking is increased, although the decrease in average is significantly lesser when

compared to UMesh. However, in contrast to UMesh, the maximum traffic increases as we

increase the blocking. We suspect that the increase in the maximum is due to high traffic

on a few L2 links — links that connect groups which contain many pairs of communicating

MPI processes. Such scenarios may arise when blocking is performed at chassis and group

levels. In this case, communication between corresponding consecutive MPI processes in two

sets that are roughly 48, 2304, or 110, 592 MPI ranks apart may result in large number of

communicating pairs, thus overloading a few L2 links. To verify this assumption, we first

studied the histogram for L2 link utilization (shown in Figure 3.19). It can be seen that

while most of the L2 links are unused, a few are overloaded. Then, we identified these links

using the raw link usage data and found them to be suspected links, hence verifying our

assumption.

45

0.0 0.5 1.0 1.5 2.0
Traffic (MB) 1e4

100

101

102

103

104

105

106

Li
n
k

C
o
u
n
t

Histogram for L2 Links Traffic

Figure 3.19: 4D Stencil: distribution of traffic on L2 links for RDG.

Effect of Indirect Routing: The skewness caused by the overloading of a few L2 links for

direct routing is eliminated by the use of indirect routing. As shown in Figure 3.18 (top),

indirect routing leads to a better distribution of traffic on the links. However, as we saw for

UMesh, it also increases the average traffic on the links. These results are consistent with our

past work on two-level direct networks in which 4D Stencil was also used as communication

pattern [73].

Effect of Adaptivity: Use of AI further decreases the variation in traffic distribution. For

many job placements (RDG, RRN, RRR), use of AI lowers the maximum traffic by up to

25%. Similar to UMesh, this gain is based on a better distribution of traffic on L1 links which

leads to reduced maximum traffic. The adaptive hybrid routing provides a distribution that

is similar to AI, but is marginally skewed by use of direct routes.

Many to Many Pattern (M2M)

In this pattern, the MPI processes are arranged in a 3-D grid with subsets being created

along the Y axis. Within subsets of size 128, an all-to-all operation is performed. Such a

pattern is representative of applications that perform many parallel Fast Fourier transform,

e.g. pF3D [20], PARATEC, NAMD [91], and VASP [92]. Using the configuration presented

in Table 3.3, an MPI process’s communicating partners are separated by multiples of 384

, i.e. a process r typically communicates with MPI ranks such as r+384, r-384, r+2*384,

r-2*384 etc. Depending on the position of a process in the 3D grid of the processes, the

number of partners that are to the left and to the right of an MPI process varies. Also,

as was the case with 4D Stencil, each MPI process in a set of consecutive MPI processes

typically communicates with the corresponding MPI process in another set if the two sets

46

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Static Direct Adaptive Direct Static Indirect Adaptive Indirect Adaptive Hybrid

Many to Many Pattern (All Links)

Median Average Lowest maximum

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Static Direct Static Indirect

Many to Many Pattern (L1 Links)

Median Average

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR
Li

nk
 U

sa
ge

 (
M

B)

 Static Direct Static Indirect

Many to Many Pattern (L2 Links)

Median Average

Figure 3.20: Many to many pattern (M2M): direct routing with randomized placement has
lower average and maximum traffic.

are 384 ranks apart on an average.

Effect of Job Placement: Figure 3.20 shows the prediction results for M2M. In a manner

similar to 4D Stencil, while the average and the median decreases on increasing the blocking

for direct routing, albeit in lower proportions, the maximum traffic increases significantly.

This increase is attributed to the overloading of certain L2 links as shown by the huge

difference between the third quartile and the maximum in Figure 3.20 (bottom). This

skewness is due to the non-uniform spread of communicating pairs described in the previous

paragraph.

Effect of Indirect Routing: Use of indirect routing helps in offloading the overloaded L2

links, but it increases the load on L1 links (Figure 3.20 (bottom)). The extra load on L1

links is expected since indirect routing doubles the number of hops on an average. However,

unlike the benchmarks we have seen so far, the maximum traffic is lower for direct routing

with randomized placements and minimal blocking (RDN and RDR). We hypothesize that

this is induced by a good distribution of traffic on links by randomized placement. The

lower nearby values of the minimum, the median, and the quartiles for direct routing with

randomized placement confirms this hypothesis. As a result, for M2M, direct routing is more

likely to provide higher network throughput. We believe that such a distribution was not

obtained for UMesh and 4D Stencil because of the fewer number of communicating partners

47

with better MPI rank locality.

Effect of Adaptivity: The adaptive versions of the static routings had a positive but

limited impact on the distribution of traffic. This is in part due to the limited opportunity

available for adaptivity in already uniform distribution (for randomized placements and

indirect routing). For cases with skewed distribution, e.g. SD with RRN, the skewness

is caused by a few L2 links that are the only path available for the messages to traverse

from one group to other (Figure 3.20 (bottom)). As a result, adaptivity cannot improve the

distribution. The adaptive hybrid yields a distribution that resembles AI, but unlike earlier,

use of direct routes helps it improve upon AI.

Random Neighbors Pattern (Spread)

This pattern spreads the communication uniformly in the system by making each MPI pro-

cess communicate with 6 − 20 neighbors selected randomly. In applications that perform

computation aware load balancing, e.g. NAMD, or are not executed on near-by physical

cores, such communication pattern arise. Figure 3.18 (bottom) shows the expected distri-

bution of traffic for execution of Spread on the full system.

The first thing to observe is that almost all links are utilized irrespective of the job

placement and the routing. This is a direct impact of the spread of the communicating pairs

that the benchmark provides. Another effect of the spread is the minimal impact of the

job placement on the load distribution. Next, we note that while the average quality of the

distribution has improved, the gap between the maximum and other data points (average,

median and quartiles) has increase significantly for indirect routings. Similar observation

can be made for direct routing with randomized placement if we compare with the results

for M2M. Further analysis of L1 and L2 links traffic distribution shows that such a skewness

is caused by overloading of certain L1 links. We believe this is caused by non-uniformity

in the communication pattern — randomization of communication patterns is probably not

uniformly distributing them.

The next important observation from the Figure 3.18 (bottom) is the lower values of all

data points (minimum, quartiles, average, and maximum) for direct routing in comparison to

the indirect routing. This result is similar to what we described in M2M — given a sufficiently

distributed communication pattern, indirect routing only adds extra traffic because of the

extra hops it takes. Finally, we note that the adaptive versions of the routings reduce the

maximum traffic by up to 10%. Other than that, they provide a very similar distribution. As

we saw in M2M, the AH routing provides a distribution similar to AI with lower maximum

traffic due to use of direct routes.

48

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Adaptive Direct Adaptive Indirect Adaptive Hybrid

Many to Many Pattern using 66% cores (All Links)

Median
Average

Lowest maximum

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Adaptive Direct Adaptive Indirect Adaptive Hybrid

Many to Many Pattern using 33% cores (All Links)

Median
Average

Lowest maximum

Figure 3.21: Traffic distribution for M2M on 66% and 33% cores.

Summary of full system predictions

Based on the analysis so far, we list the following summarizing points for single jobs executed

on full systems:

— For patterns with many communicating nearby MPI processes, blocking may reduce the

average and quartiles (UMesh).

— Direct routing may overload a few links, especially L2 links, if the communication is

distribute evenly (4D Stencil, M2M).

— Randomized placement spreads traffic for patterns with non-uniform distribution of traffic

(4D Stencil, M2M).

— Indirect routing is helpful in improving the distribution of traffic, but typically increases

the average traffic (all patterns).

— If the communication pattern and job placement spreads the communication uniformly,

indirect routing may increase the quartiles and the maximum traffic (M2M, Spread).

— Adaptive routing typically provides a similar traffic distribution, but may lower the

maximum traffic significantly. Thus, in order to save space, we avoid showing results for

static routings in the rest of the section.

— Adaptive hybrid provides a traffic distribution similar to AI, but may provide a higher

or lower maximum traffic depending on the relative performance of AD and AI.

Variations in job size

We now present a case study in which one of the patterns, M2M, is executed in isolation

on the full system, but occupies only a fraction of the cores. For comparison, we use M2M

predictions on the full system from Figure 3.20 (top) and traffic distributions presented in

Figure 3.21 for predictions using 66% and 33% of cores in isolation.

We observe very similar trends in traffic distribution across job placements and routings

49

as we move from predictions for 100% cores to predictions for 33% cores. As expected, the

absolute values of most data points (maximum, average, quartiles) decrease steadily for the

combinations that provide a good distribution. Direct routing with randomized placements

consistently outperform indirect routings for critical data points including the maximum

traffic.

Benefits of adaptive routing are significantly higher for job executions with smaller core

counts. For the 100%, 66% and 33% cores executions, adaptive routing reduces the maximum

traffic by up to 10.2%, 31.1% and 35% respectively. We attribute the increasing effect of

the adaptivity to the non-uniformity that use of a fraction of cores in the system induces.

Adaptive routing is able to observe these non-uniformities, and guides the traffic towards a

better distribution.

Finally, we draw attention to the adaptive hybrid routing. For job placements that suit

AD for this pattern (RDN and RDR), as we move from 100% to 33% cores, the critical data

points (maximum, average, median) for AH are significantly lesser than those for AI. In fact,

for the 33% cores case, the maximum traffic is least for AH among all the routings. This

suggests that as non-uniformity in the system increases, AH is able to judiciously capitalize

on good attributes of both AD and AI — use direct routes when they are not congested,

else use indirect routes to offload traffic.

3.2.5 Predictions for parallel workloads

In this section, we focus on the more practical scenario in which multiple jobs with different

patterns use the network simultaneously. Table 3.4 presents the representative workloads

that we use for the experiments. These workloads represent capability jobs that use at least

10% of the total system size. For each workload, the system is divided among 5 single jobs

that represent the following communication patterns: UMesh, 2D Stencil, 4D Stencil, M2M,

and Spread. While four of these patterns are the ones described in Section 3.2.3, 2D Stencil

is a new addition. It represents a two-dimensional stencil-based communication found in

many applications such as WRF [93].

Comparing different parallel workloads

Figure 3.22 presents the predicted traffic distribution for workloads listed in Table 3.4. A

common observation for all the workloads is the very high value for maximum traffic for

AD with heavy blocking (RDC and RDG). Detailed histogram for the traffic on the links

revealed that a few L2 links are heavily loaded. Initially, we suspected this to be caused by

50

Table 3.4: Percentage cores allocated to patterns in workloads.

Comm Pattern Workload 1 Workload 2 Workload 3 Workload 4

UMesh 20 10 20 40
2D Stencil 10 10 40 10
4D Stencil 40 20 10 20

M2M 20 40 10 20
Spread 10 20 20 10

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Adaptive Direct Adaptive Indirect Adaptive Hybrid

(a) Workload 1 (All Links)

Median
Average

Lowest maximum

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Adaptive Direct Adaptive Indirect Adaptive Hybrid

(b) Workload 2 (All Links)

Median
Average

Lowest maximum

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Adaptive Direct Adaptive Indirect Adaptive Hybrid

(c) Workload 3 (All Links)

Median
Average

Lowest maximum

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Adaptive Direct Adaptive Indirect Adaptive Hybrid

(d) Workload 4 (All Links)

Median
Average

Lowest maximum

Figure 3.22: Parallel workloads traffic distribution.

overloading of a few L2 links by 4D Stencil in a similar manner as we saw in Section 3.2.4.

In order to verify our assumption, we tried another workload with only four jobs: UMesh,

Spread, M2M and 2D Stencil. However, for this fifth workload too, we observed similar

overloading for AD with heavy blocking. Hence, we conclude that job placements with

heavy blocking exposes any locality in communicating pairs of MPI ranks and leads to a few

overloaded L2 links.

Figure 3.22 (a) presents the predicted traffic distribution for Workload 1, in which 40% of

the cores are allocated to 4D Stencil; UMesh and M2M are assigned 20% cores each. For AD

with blocked placement (RDC and RDG), we note that the average traffic is significantly

higher than the median — a characteristic of 4D Stencil which occupies 40% of the cores

in this workload. Use of randomized placement and indirect routing helps in reducing the

skewness and maximum traffic. Among the combinations with similar distributions, the

51

maximum traffic is lowest for AI with RRR placement and AH with RDN/RDR placement.

Adaptive routings reduce the maximum traffic by up to 35% in comparison to corresponding

static routings.

In Workload 2, M2M is allocated the most number of cores (40%), while 4D Stencil and

Spread are allocated 20% cores each. Other than the impact of locality in communicating

pairs for AD with RDC and RDG described earlier, one can observe the impact of higher

fraction of Spread and M2M in the closer values for average, median, and the quartiles.

It also leads to AD with RRR and AH with RDN/RDR having the lowest value for the

maximum traffic. Similar to Workload 1, adaptivity reduces the maximum traffic by up to

34.3%.

2D Stencil is assigned the largest number of cores (40%) in Workload 3, with UMesh

and Spread being allocated 20% cores each. In 2D Stencil, four messages of size 64 KB

are exchanged with its neighbors. For Workload 3, the traffic distribution shows mixed

impact of Spread and 2D Stencil in Figure 3.22 (c). Contribution from Spread leads to

a general increase in the maximum traffic for AI, while the gains obtained by randomized

placements of 2D Stencil lower the maximum traffic for those combinations. Overall, the

AH routing appears to take advantage of these effects and provides a nice distribution with

the lowest value of maximum traffic for RDN and RDR. For Workload 4, predictions shown

in Figure 3.22 (d) are very similar to Workload 3.

We make the following conclusions from these results: 1) Single capability jobs may have

a significant impact on the traffic distribution of a workload, especially on its skewness as

shown by the impact of 4D Stencil, 2) Similar traffic distributions are observed for workloads

with the same set of jobs executing in different proportions, 3) The adaptive hybrid routing

is able to combine positive features of AD and AI, thus providing a better traffic distribution.

Job-specific routing

Results presented in this section are for another interesting scenario in which each job in

a workload is allowed to use a routing of its choice. This is currently not allowed on most

systems but might become a useful option as system sizes increase further. We use Workload

2 and Workload 4 from Table 3.4 for these experiments. For each job, we select the routing

that resulted in the lowest maximum traffic for a given job placement when the job was run

by itself (Section 3.2.4).

Comparison of the traffic distribution for Workload 2, shown in Figure 3.23, with the

results in Figure 3.22 (b) indicates that the distribution for job-specific routing is most

similar to that of AH. However, for certain job placements, e.g. RDN and RDR, it has lower

52

0

1

10

1E2

1E3

1E4

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Workload 2 Workload 4

Median
Average

Lowest maximum (Workload 2)
Lowest maximum (Workload 4)

Figure 3.23: Job-specific routing traffic distribution (All Links).

values for minimum traffic and first quartiles — a characteristic shown by AD routing for

Workload 2. This is not surprising because Workload 2 is dominated by M2M and Spread

for which AD and AH were the best routings. An important observation to make is that the

use of job-specific routing reduces the maximum traffic on any link for all job placements.

Similarly, for Workload 4, the distribution of traffic for job-specific routing is similar to the

load distribution for AI (Figure 3.22 (d)) which was the best performing routing for UMesh

and 4D Stencil that dominate it. It also provides similar maximum traffic for best performing

job placements.

3.2.6 Summary

We have presented a comparative analysis of various routing strategies and job placement

policies w.r.t. network link throughput for the dragonfly topology. We have developed a

congestion-aware model to determine the traffic distribution given a communication trace

and a routing strategy. The output of this model is used to answer the questions we posed

in the introduction. The answer to the first question is more nuanced than the other two

because it depends heavily on the application communication patterns. The general ob-

servations are that a randomized placement at the granularity of nodes and routers and/or

indirect routing can help spread the messaging traffic over the network and reduce hot-spots.

If the communication pattern results in non-uniform distribution of traffic, adaptive routing

may provide significantly better traffic distributions by reducing hot-spots.

For parallel job workloads (second question), adaptive hybrid routing is useful for com-

bining good features of adaptive direct and adaptive indirect routings and may provide a

good traffic distribution with lower maximum traffic. Adaptive routings also improve the

53

traffic distribution significantly in comparison to static routings. We also observed that

allowing the users to choose a routing for their application can be beneficial in most cases

on dragonfly networks (third question). Use of randomized placement at the granularity of

nodes and routers is the suggested choice for such scenarios also. We believe that the model

presented here will enable system administrators and end-users to try different scenarios

w.r.t. optimizing network throughput for their use-cases.

54

CHAPTER 4
Causes of Network Congestion 1

In Chapter 3, we have seen that intelligent mapping of application tasks on nodes of a system

can significantly improve the communication performance of the code. However, the process

of finding the best mapping for an application may require executing a large number of

runs at different scales (number of processors). This can consume a significant amount of

resources including both man hours and machine allocation. Hence, it is desirable to predict

the communication performance of an application on a system without performing real runs,

given a communication graph and the mapping of tasks to nodes on the machine. However,

in order to make accurate predictions, credible models or simulators are needed, which in

turn require a detailed understanding of factors that impact communication performance.

Network congestion is widely recognized as one of the primary causes of performance

degradation, performance variability, and poor scaling in communication-heavy applications

running on supercomputers [31,72,95–97]. However, due to the complex nature of intercon-

nection networks, as well as message injection and routing strategies, network congestion and

its root causes in terms of network resources and hardware components are not well under-

stood. Understanding network congestion requires a study of message flow on the network.

When a message is sent from one node to another, it is split into packets that pass through

many resources and hardware components on the network. A packet starts in an injection

FIFO on the source. It then passes through multiple network links and receive buffers on

intermediate nodes before it finally lands in the reception FIFO on the destination. When

shared by multiple packets, any or all of these network components can slow down individual

flits, packets and messages. This work aims to identify the hardware components that affect

the performance of a message send the most.

Our approach is based on using supervised machine learning to build models that map from

1Based on [82,94]

55

20

30

40

50

60

 0 2 4 6 8 10

T
im

e
pe

r
ite

ra
tio

n
(m

s)

Maximum Dilation

20

30

40

50

60

8e8 1.2e9 1.6e9 2e9

Average bytes per link

20

30

40

50

60

1e09 3e9 6e9 9e9

Maximum bytes on a link

Figure 4.1: Performance variation with prior metrics for five-point halo exchange on 16,384
cores of Blue Gene/Q. Points represent observed performance with various task mappings.
A large variation in performance is observed for the same value of the metric in all three
cases.

independent variables, representing different network hardware components, to a dependent

variable – the execution time of the application. We only consider computationally balanced,

communication-heavy parallel applications and, hence, focus on the communication fraction

of the total execution time. In order to generate multiple different executions of a parallel

application, we vary the placement or layout of application processes/ tasks on the network.

The different task mappings result in different message flows on the network and different

execution times. This allows us to measure network hardware counters and execution times

for the same executable under different configurations and network conditions.

Prior metrics

Traditionally, researchers have focused on the maximum dilation or average number of hops

per byte for messages in an application as an indicator of its performance. These metrics

make simplified assumptions about the cause of network congestion and do not provide

accurate correlation with execution time. Mapping algorithms [27, 34, 98, 99] are generally

designed to minimize these metrics which might be sub-optimal. We conducted a simple

experiment with three of these metrics described in Section 2.4 – maximum dilation, average

bytes-per-link and maximum bytes on a link to analyze their correlation with application per-

formance. Figure 4.1 shows the communication time for one iteration of a two-dimensional

halo exchange versus the three metrics in different plots. Each point in these plots is repre-

sentative of a given task mapping on 16,384 cores of Blue Gene/Q. We observe that although

the coefficient of determination values (R2, metric used for prediction success) are high, there

is a significant variation in the y-values for different points with the same x-value. For exam-

ple, in the maximum bytes plot (right), for x = 6e9, there are mappings with performance

56

On link

 Injection
Memory
FIFOs

(per task)

MU
Memory

Injection
Network

FIFOs
(per node)

Network
Device

Source node

Network Device
Receiver

Buffers based
on channels,
next link etc.

Intermediate router/switch

MU

Reception
Memory
FIFOs

(per task)

Memory

Reception
Network

FIFOs
(per node)

Network
Device

Destination node

On links

Figure 4.2: Message flow on Blue Gene/Q - a task initiates a message send by putting a
descriptor in one of its memory injection FIFOs; the messaging unit (MU) processes these
descriptors and injects packets into the injection network FIFOs from which the packets
leave the node via links. On intermediate switches, the next link is decided based on the
destination and the routing protocol; if the forward path is blocked, the message is stored in
buffers. Finally on reaching the destination, packets are placed in network reception FIFOs
from where the MU copies them to either the application memory or memory reception
FIFOs.

varying from 20 to 50 ms. These variations make predicting performance using simple mod-

els with a reasonably high accuracy (±5% error) difficult. This motivates us to find new

metrics and ways to improve the correlation between metrics and application performance.

4.1 Contention on torus networks

Networks with n-dimensional torus topology are currently used in many supercomputers,

such as IBM Blue Gene series, Cray’s XT/XE, and K computer. The IBM Blue Gene/Q

(BG/Q) system is the third generation product in the Blue Gene line of massively parallel

supercomputers. Each node on a BG/Q consists of 16 4-way SMT cores that run at 1.6 GHz.

Nodes are connected by a five-dimensional (5D) torus interconnect with bidirectional links

that can send and receive data at 2 GB/s. The BG/Q torus supports two shortest-path rout-

ing protocols – deterministic routing for short messages (<64 KB by default, configurable)

and configurable dynamic routing for large messages.

4.1.1 Message flow and resource contention

Figure 4.2 presents the life cycle of a message on BG/Q. The tasks on a node send data on

to the network through the Messaging Unit (MU) on the node. Injection memory FIFO

(imFifo) is the data structure used to transfer information between the tasks and the MU.

To initiate a message send, a task puts a descriptor of the message in one of its imFifos.

Selection of which imFifo to inject a descriptor in is typically based on the difference in

57

coordinates of source and destination. The MU processes the descriptors in the imFifos,

packetizes the message data it reads from the memory (packet size up to 512 B), and injects

them into the injection network FIFOs. The descriptor of the message contains information

of the binding that is used by the MU to inject into the appropriate injection network FIFO.

In the default setting, there is a one-to-one mapping between imFifos and injection network

FIFOs. This may lead to contention for injection network FIFOs if the distribution of source-

destination pairs is such that a particular network injection FIFOs receives more traffic than

others.

From the injection network FIFOs, packets are sent over the network based on the routing

strategy and the destination. On the network, contention for hardware links is the most

common source of performance degradation. When a packet injected on a link reaches

an immediate neighbor, the network device decides the next link the packet needs to be

forwarded to. If the next link is occupied, the packets are stored in buffers mapped to the

incoming link. In the event of heavy contention for links, these buffers may get filled quickly,

and prevent the use of the incoming link for data transfer. When packets eventually reach

their destination, they are copied by the MU from the reception network FIFOs to either

the reception memory FIFOs or the application memory. Limited memory bandwidth may

prevent the MU from copying the data, and hence reception injection FIFOs and the buffers

attached to the corresponding links may get filled. This may lead to blocking of the links

for further communication.

4.1.2 Collecting hardware counters data

We use two methods to collect information that can indicate resource contention as described

in Section 4.1.1:

Blue Gene/Q counters: The Hardware Performance Monitoring API (BGPM) provides a

simple interface for the BG/Q Universal Performance Counter (UPC) hardware. The UPC

hardware programs and counts performance events from multiple hardware units on a BG/Q

node. Using BGPM to control the Network Unit of the UPC hardware, we implemented a

PMPI-based profiling tool that records the following information:

• Sent chunks: count of 32-byte chunks sent on a link. Counters used for collecting this

information:

PEVT NW USER PP SENT: user-level point-to-point 32-byte packet chunks sent (includes

chunks in transit);

PEVT NW USER ESC PP SENT: user-level deterministic point-to-point 32-byte packet

58

chunks sent (includes chunks in transit);

PEVT NW USER DYN PP SENT: user-level dynamic

point-to-point 32-byte packet chunks sent (includes chunks in transit);

• Received packets: count of packets (up to 512 B) received on a link. Counter used for

collecting this information:

PEVT NW USER PP RECV: user-level point-to-point packets received (includes packets

in transit).

• Packets in buffers on incoming links: count of packets added across all buffers associ-

ated with an incoming link. Counter used for collecting this information:

PEVT NW USER PP RECV FIFO: user-level point-to-point packets in buffers.

Analytical program: In order to derive information that is not available via counters,

we implemented an analytical program to mimic important aspects of the BG/Q network,

including the routing scheme and the injection network FIFO selection method. We use it

to compute the following information:

• Dilation - number of hops (links) traversed by individual messages on the network.

• Messages in network FIFOs - number of messages injected in a particular injection

network FIFO.

4.1.3 Indicators of resource contention

The information collected from hardware counters and the analytical program allows us to

define several new metrics (Table 4.1). Bytes passing through links are used to compute

average bytes and maximum bytes on links, which are indicators of link contention (these

two are prior metrics). Buffer length, which increases as more packets get blocked during

communication, is useful for measuring congestion on the intermediate switches. It may

also indicate memory contention, since packets gets buffered if available memory bandwidth

to the MU is not sufficient to remove packets from the reception network FIFOs (at the

destination). Ratio of the buffer length to the number of received packets indicates the

average delay of packets passing through a link. FIFO length, which is also local to nodes,

is an indicator of contention for injection network FIFOs, which may reduce the effective

message rate.

The raw data we obtain for each execution is gathered per link in the network. To train

our models, we require a single value for each feature aggregated over all the links. To

achieve this, we use aggregates such as the average or maximum value of a feature over all

59

links. We also consider a smaller subset of links from the distribution, such as only those

with a value greater than the mean (average outliers or AO), or those that are in the top

5% of the distribution (top outliers or TO). This helps us create several different aggregated

features for each source or hardware component from which we obtained raw data. In the

end, each execution (one sample) is represented by the nineteen features shown in Table 4.2

and a corresponding execution time.

4.2 Experimental setup

All the experiments were performed on two Blue Gene/Q systems – Mira and Vulcan. Mira

is installed at the Argonne National Laboratory and Vulcan is hosted at the Lawrence

Livermore National Laboratory. Table 4.3 presents the possible sizes of the torus dimensions

(A, B, C, D and E) when partitions of 1024 and 4096 nodes are requested on BG/Q.

4.2.1 Communication kernels

We use three different communication kernels and two scalable, communication-heavy, pro-

duction applications for the analysis in this work. A brief introduction to each is provided

below:

Five-point 2D halo exchange: The 2D Halo communication kernel uses a 2D grid of MPI

processes to exchange four messages with two neighbors in each dimension.

15-point 3D halo exchange: The 3D Halo communication kernel uses a 3D grid of MPI

processes to exchange fourteen messages with its near-neighbors (six faces and eight corners).

All-to-all over sub-communicators: The Sub A2A communication kernel also uses a 3D

process grid but performs all-to-alls on sub-communicators of size 64, formed from processes

in one of the three dimensions.

MILC: MILC [19] is a Lattice Quantum Chromodynamics (QCD) application that does

near-neighbor exchanges over a 4D process grid, similar to 2D and 3D Halo.

pF3D: pF3D [100] is a laser-plasma interaction code that performs all-to-alls over sub-

communicators (similar to Sub A2A) and near-neighbor exchanges over a 3D process grid.

The communication kernels are executed with different message sizes – 8 B, 512 B, 16 KB

and 4 MB to evaluate different MPI performance regimes. The computational load of both

60

Indicator Source Derived from

Bytes on links? Counters Sent chunks
Stalls or Buffer length† Counters #Packets in buffers
Stalls per packet or
Delay per link†

Counters #Packets in buffers divided by received packets

Dilation? Analytical Shortest-path routing between source and destination
FIFO length† Analytical Based on PAMI source

Table 4.1: ?Prior and †new metrics that indicate contention for network resources.

Feature name Description

avg dilation AO Avg. dilation of average outliers (AO)
max dilation Maximum dilation
sum dilation AO Sum of dilation of AO

avg bytes Avg. bytes per link
avg bytes AO Avg. bytes per link for AO
avg bytes TO Avg. bytes per link for top outliers (TO)
max bytes Maximum bytes on a link
#links AO bytes No. of AO links w.r.t. bytes

avg stalls Avg. receive buffer length
avg stalls AO Avg. receive buffer length for AO
avg stalls TO Avg. receive buffer length for TO
max stalls Maximum receive buffer length
#links AO stalls No. of AO links w.r.t. recv buffer length

avg stallspp Avg. number of stalls per rcv’d packet
avg stallspp AO Avg. no. of stalls per packet for AO
avg stallspp TO Avg. no. of stalls per packet for TO
max stallspp Maximum number of stalls per packet
#links AO stallspp No. of AO links w.r.t. stalls per packet

max inj FIFO Maximum injection FIFO length

Table 4.2: List of communication metrics (features) used as inputs to the machine learning
model. The colors in this table correspond to different hardware components in Table 4.1

Nodes A B C D E

1024 4 4 4 8 2
4096 4 4 8 16 2
4096 4 8 4 16 2

Table 4.3: Dimensions of the allocated job partitions on BG/Q.

61

2D Halo 3D Halo Sub A2A MILC pF3D Total
#Nodes 16 KB 4 MB 16 KB 4 MB 16 KB 4 MB

1024 84 84 84 84 84 84 208 94 806
4096 84 84 84 84 84 84 103 103 710

Total 168 168 168 168 168 168 311 197 1516

Table 4.4: Sizes of the input datasets in terms of the number of executions or samples for
the different codes.

MILC and pF3D is almost perfectly balanced across MPI processes. This allows us to focus

on their communication, which is a significant portion of their overall execution time. We

ran all the codes on 1024 and 4096 nodes of Blue Gene/Q to study the congestion behavior

on different torus sizes. Depending on the code, we placed between 16 and 64 processes per

node.

Table 4.4 lists the number of task mappings that were generated for each kernel or appli-

cation at each node count. For example, for 2D Halo, we created 84 different task mappings

and ran them for the two message sizes – 16 KB and 4 MB (168 in total). Similar number

of runs were performed for small message sizes also.

4.2.2 Prediction using ensemble methods

We employ supervised learning techniques used in statistics and machine learning to predict

the performance (execution time) of an application for different mappings using metrics

described in Section 4.1.3. The learning algorithm infers a model or function by working

with a training set that consists of n samples (mappings), and one or more input features

(raw and/or derived such as average bytes) per sample. Each sample has a desired output

value (execution time), also known as the target. We then use the trained algorithm to

predict the output for a testing set (new mappings for which we wish to predict execution

time). The values of the features and the target are normalized to obtain the best results.

We tested several supervised learning techniques ranging from statistical techniques, such

as linear regression, to machine learning methods, such as support vector machines and

decision trees. The scikit-learn package provides several of these algorithms/estimators in

Python [101]. The two steps, as described previously, are to first fit the estimator and then

to use it to predict unseen samples. For the benchmarks presented in this chapter, ensemble

learning provided the best fit. Ensemble methods use predictions from several, often weaker

models, to produce a stronger model or estimator that gives better results than the individual

62

MB <= 0.4295

AB <= 0.0082 MB <= 0.4857

AB <= 0.0017 AB <= 0.0176 AB <= 0.1905 leaf

leaf AB <= 0.0021 leaf

Rest of the tree

AB - average bytesMB - maximum bytes

(a) Decision tree. Based on the training set
and the learning scheme, conditions are com-
puted to guide prediction based on features,
e.g., maximum bytes and average bytes. To
predict, beginning at the root, the tree is tra-
versed based on the features of a test case until
a leaf is reached. The leaf determines the pre-
dicted value.

0.0 0.2 0.4 0.6 0.8 1.0
Maximum bytes

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 b

y
te

s

Task mapping

Decision surfaces of a random forest

(b) Random forests. A collection of decision
trees is used to predict. Each color represent
a leaf region in one of the decision trees; re-
gions from different decision trees overlap. For
a test case, all decisions trees are traversed to
obtain local predictions, which are combined
using weights to obtain the final prediction.

Figure 4.3: Example decision tree and random forests generated using scikit.

models.

Ensemble methods: The primary reasons for considering ensemble models are: (1) Statis-

tical : different predictive models may perform similarly on the training data, when learned

from a limited number of training samples. However, the performance of each of these mod-

els with test data can be poor. By averaging representations obtained from an ensemble,

we may obtain an approximation closer to the true test data; (2) Computational : even with

large training sets, the modeling technique might not reach the global optimum and using

an ensemble of multiple locally optimal models can result in improved performance; (3)

Representational : the hypothesis space assumed for learning the model cannot represent the

test data, and this can happen when the data is corrupted.

Random forests are a type of ensemble learning method developed by Leo Breiman in

2001 [102]. The idea is to build several decision trees and to use averaging methods on

these independently built models. In a decision tree, the goal is to create a model that

predicts the value of a target variable by learning simple decision rules inferred from the data

features. These trees are simple to understand and to interpret as they can be visualized

easily. However, decision tree based learners create biased trees if some patterns dominate.

Random forests attempts to avoid such a bias by adding randomness in the selection of

63

condition when splitting a node during the creation of a decision tree. Instead of choosing

the best split among all the features, the split that is picked is one among a random subset

of the features. Further, the averaging performed on the prediction from independently built

decision trees leads to a reduction in the variance and hence an overall better model. We

use the ExtraTreesRegressor class in scikit 0.13.1.

Figure 4.3 (left) shows an example decision tree that was used in one of our experiments.

This tree was produced by training performed using two features, maximum bytes and

average bytes, to predict the target, the execution time. The tree shows that at each level,

based on the conditions derived from the training set on values of maximum bytes and

average bytes, the prediction is guided to reach a leaf node, which determines the target

value. Figure 4.3 (right) presents the overlay of a number of such decision trees over a 2D

space spanned by the same two input features. Each color in the figure is a leaf region of one

of the decision trees in the random forest generated by fitting the training set. As expected,

regions from different decision trees overlap, and cover the entire space. The white circles

are the test set being predicted - new mappings with known maximum bytes and average

bytes. To predict, all the leaf regions, to which a test case belong, are computed. This

provides a set of local predictions for the test case, which are combined to provide a unique

target value.

Gradient boosted regression trees: The main idea of boosting is to add a new weak,

base-learner model in each iteration, which is trained with respect to the error of the whole

ensemble inferred so far. In gradient boosted regression trees (GBRT) [103], the new base-

learners are designed to be maximally correlated with the negative gradient of the loss

function associated with the whole ensemble. This technique is flexible enough to be used

with different families of loss functions, and this choice is often influenced by the desired

characteristics of the conditional distribution, such as robustness to outliers. Any arbitrary

loss function can be plugged into the framework by specifying the loss function and the

function to compute its negative gradient [104]. The squared `2 loss and the Laplacian `1

loss are common choices for regression tasks and these functions penalize large deviations

from the target outputs, while ignoring smaller residuals. In addition, parameterized loss

functions, such as Huber, can be adopted for robust regression. Given the input variable x,

the target output y and the regression function f , the Huber loss is defined as

ΨH(y, f(x)) =

1
2
(y − f(x))2 |y − f(x)| ≤ δ,

δ(|y − f(x)| − δ/2) |y − f(x)| > δ.
(4.1)

64

Figure 4.4: Parameterized loss functions for gradient tree boosting: Huber loss function with
the cutting-edge parameter δ (left), quantile loss function (right).

As it can be observed, Huber loss combines `1 and `2 functions. The parameter δ is the

cutting-edge parameter, and this specifies the maximum value of error beyond which the

`1 function is applied. Alternatively, we can predict a conditional quantile of the target

variable for robust regression. This can be achieved by considering the asymmetric quantile

loss function:

ΨQ(y, f(x)) =

(1− α)|y − f(x)| y − f(x) ≤ 0,

α|y − f(x)| y − f(x) > 0.
(4.2)

The parameter α specifies the desired quantile of the conditional distribution. When α = 0.5,

the quantile loss function corresponds to the `1 loss. Figure 4.4 illustrates the Huber and

quantile loss functions at different parameter values.

The following are the steps we follow for learning a model and predicting execution time

for an individual dataset:

• Scale each feature in the dataset to have values between 0 and 1 based on the minimum

and maximum values for that feature across all samples.

• Divide the n samples in the dataset into a training set and a testing set, roughly in a

two-thirds and one-third split.

• Generate all possible combinations of the nineteen features that we would like to learn

a model with.

• Do a parallel run where each process runs the ExtraTreesRegressor or the GBRT

regressor on a subset of feature combinations and reports the prediction scores using

the generated models.

65

• Based on the prediction scores, we pick the feature combinations that lead to the

highest scores.

Metrics for prediction success

The goodness or success of the prediction function (also referred to as the score) can be

evaluated using different metrics depending on the definition of success. Our main goal is

to compare the performance of two mappings and determine the correct ordering between

the mappings in terms of performance. Hence, we focus on a rank correlation metric for

determining success; we also present results for a metric that compares absolute values for

completeness.

Rank Correlation Coefficient (RCC): Let us assign ranks to mappings based on their

position in two sorted sets (by execution time): observed and predicted performance. RCC

is defined as the ratio of the number of pairs of task mappings whose ranks were in the same

pairwise order in both the sets to the total number of pairs. In statistical parlance, RCC

equals the ratio of the number of concordant pairs to that of all pairs (Kendall’s Tau [105]).

Formally speaking, if observed ranks of tasks mappings are given by {x1, x2, · · · , xn}, and

the predicted ranks by {y1, y2, · · · , yn}, we define RCC as:

concord ij =


1, if xi >= xj & yi >= yj

1, if xi < xj & yi < yj

0, otherwise

RCC =
(∑

0<=i<n

∑
0<=j<i

concordij

)
/(
n(n− 1)

2
)

Absolute Correlation (R2): To predict the success for absolute predicted values, we use

the coefficient of determination from statistics, R-squared,

R2(y, ŷ) = 1−
∑

i(yi − ŷi)2∑
i(yi − ȳ)2

where ŷi is the predicted value of the ith sample, yi is the corresponding true value, and

ȳ =
1

nsamples

∑
i

yi

66

10-5

10-4

10-3

10-2

10-1

100

101
T

im
e

(s
)

Mappings

8 bytes
512 bytes

16 KB
4 MB

(a) 2D Halo

10-5

10-4

10-3

10-2

10-1

100

101

Mappings

(b) 3D Halo

10-5

10-4

10-3

10-2

10-1

100

101

Mappings

(c) Sub A2A

Figure 4.5: Performance variations with different task mappings on 16,384 cores of BG/Q. As
benchmarks become more communication intensive, even for small message sizes, mapping
impacts performance.

4.3 Performance prediction of communication kernels

In this section, we present results on the prediction of execution times of several communi-

cation kernels (Section 4.2.1) for different task mappings.

4.3.1 Performance variation with mapping

Figure 4.5 presents the execution times for the three benchmarks for four message sizes –

8 bytes, 512 bytes, 16 KB and 4 MB. These sizes represent the amount of data exchanged

between a pair of MPI processes in each iteration. For example, for 2D Halo, this number is

the size of a message sent by an MPI process to each of its four neighbors. For a particular

message size, a point on the plot represents the execution time (on the y-axis) for a mapping

(on the x-axis).

For 2D Halo, Figure 4.5a shows that for small messages such as 8 and 512 bytes, mapping

has an insignificant impact. As the message size is increased to 16 KB, in addition to an

increase in the runtime, we observe up to a 7× difference in performance for the best mapping

in comparison to the worst mapping (note the logarithmic scale on the y-axis). Similar

variation is seen as we further increase the message size to 4 MB. For a more communication

intensive benchmark, 3D Halo, we find that mapping impacts performance even for 512-

byte messages (Figure 4.5b). As we further increase the communication in Sub A2A, the

effect of task mapping is also seen for the 8-byte messages as shown in Figure 4.5c. In the

following sections, we do not present results for the cases where the performance variations

67

���

���

���

���

���

��� �� ��� ��� �� � ��� ��� ��

�
�
�

���������������������������

������������
���������

���������

���������������������

���

���

���

���

���

��� �� ��� ��� �� � ��� ��� ��

�
�

��������������������������������

������������
���������

���������

���������������������

Figure 4.6: Prediction success based on prior features on 16,384 cores of BG/Q. The best
RCC score is 0.91 for most cases - 38 mispredictions out of 378.

from mapping are statistically insignificant: 8- and 512-byte results in case of 2D Halo and

8-byte results in case of 3D Halo.

4.3.2 Prior features

We begin with showing prediction results using prior metrics/features and quantify the

goodness of the fit or prediction using rank correlation coefficient (RCC) and R2. Figure 4.6

(top) presents the RCC values for predictions based on prior features (maximum dilation,

average bytes per link and maximum bytes on a link). In most cases, we find that the highest

value for RCC is 0.91, i.e., the pairwise ordering of 91% of mapping pairs was predicted

correctly. For a testing set of 28 samples, an RCC of 0.91 implies incorrect prediction of the

pairwise ordering of 38 mapping pairs. A notable exception is the 512-byte case for 3D Halo

where the RCC is 0.96. In contrast, for 16 KB message size, the highest RCC is only 0.86.

In the case of 2D Halo and 3D Halo, prediction using maximum bytes on a link has the

highest RCC while prediction using maximum dilation performs very poorly with an RCC

close to 0.60. However, for Sub A2A, prediction using average bytes per link is better than

prediction using maximum bytes on a link for small to medium message sizes (by 4-5%).

The metric for absolute performance correlation, R2, is also shown in Figure 4.6. For all

benchmarks and message sizes, maximum bytes on a link performs the best with a score of

up to 0.95 for 3D Halo and Sub A2A. These results substantiate the use of maximum bytes

and average bytes as simple metrics that are roughly correlated with performance.

68

���
���
���
���
���

�
�
�

���������������������������

���
���
���
���
���

��� �� ��� ��� �� � ��� ��� ��

�
�

��������������������������������

���������� ������������� ��������������� ������������ ������������
���������������������

Figure 4.7: Prediction success based on new features on 16,384 cores of BG/Q. We observe
a general increase in RCC, but R2 values are low in most cases resulting in empty columns.

4.3.3 New features

We propose new metrics/features based on the buffer length, delay and FIFO lengths (see

Table 4.1) and derive others by extracting counters and analytical data for outlier nodes and

links:

Average Outliers (AO) We define a node or link as an average outlier if an associated

value for it is greater than the average value of the entire data set. Selection of data

points based on the average value helps eliminate low values that can skew derived

features and hide information that may be useful.

Top Outliers (TO) Similar to the average outlier, we can define a node or link to be a

top outlier if an associated value for it is within 5% of the maximum value across the

entire data set.

We can use these two outlier selection criteria to define metrics that represent the features

extracted from outliers. Among a large set of features that we explored using prior/new

metrics in combination with known/new derivation methods, we focus on prediction using

the following features that had the highest RCC: average buffer length (avg stalls), average

buffer length of TO (avg stalls TO), sum of maximum dilation for AO (sum dilation AO),

average bytes per link for AO (avg bytes AO), and the average bytes per link for TO (avg

bytes TO).

The most important point to note as we transition from Figure 4.6 to Figure 4.7 is the

69

general increase in RCC. For Sub A2A in particular, we observe that RCC is consistently

0.95. The previous poor predictions in the case of 16 KB message size for 3D Halo improve

from 0.86 to 0.90 (RCC value). For the low traffic 2D Halo, new network-related features

such as those based on the buffer length exhibit low correlation. As traffic on the network is

increased (larger messages sizes) in 3D Halo and Sub A2A, the RCC of these new network-

related features increases, and occasionally surpasses the RCC of other features.

We note that the R2 value is consistently high only for the avg bytes TO feature. For a

number of features, the R2 values are either low or zero. There are two reasons that can

explain the low R2 values: 1) the features did not correlate well with the performance, e.g.

avg stalls for 2D Halo and 3D Halo, or 2) the predicted performance followed the same trend

as the observed performance but was offset by a factor, e.g., avg stalls for large messages in

3D Halo.

4.3.4 Hybrid features

The previous sections have shown that up to 94% prediction accuracy can be achieved using a

single feature. Depending on the benchmark and the message size, the feature that provides

the best prediction may vary. This motivated us to use several features together to improve

the correlation and enable better prediction.

In order to derive hybrid features that improve RCC, we performed a comprehensive search

by combining the features that had high RCC values. In addition, the combinations of good

features were also augmented with features that exhibited low to moderate correlation with

performance. We made two important discoveries with these experiments: 1) combining

multiple good features may result in a lower accuracy of prediction, and 2) the addition of

features that had limited success on their own to good features can boost prediction accuracy

significantly.

Hybrid Features combined

H1 avg bytes, max bytes, max FIFO
H2 avg bytes, max bytes, sum dilation AO, max FIFO
H3 avg bytes, max bytes, avg stalls, max FIFO
H4 avg bytes, max bytes, avg stalls TO
H5 avg bytes TO, avg stalls TO, avg stallspp AO, sum hops AO, max FIFO
H6 avg bytes TO, avg stalls AO, avg stallspp TO, avg stallspp AO, sum hops A0,

max FIFO

Table 4.5: List of hybrid features that achieve strong correlations.

70

0.6
0.7
0.8
0.9
1.0

R
C

C
Rank correlation coefficient

0.6
0.7
0.8
0.9
1.0

16K 4M 512 16K 4M 8 512 16K 4M

R
2

Absolute performance correlation

H1 H2 H3 H4 H5 H6
Sub A2A3D Halo2D Halo

Figure 4.8: Prediction success based on hybrid features from Table 4.5 on 16,384 cores of
BG/Q. We obtain RCC and R2 values exceeding 0.99 for 3D Halo and Sub A2A. Prediction
success improves significantly for 2D Halo also.

Figure 4.8 presents results for the hybrid features that consistently provided high predic-

tion success with different benchmarks and message sizes. Table 4.5 lists the features that

were combined to create these hybrid features. In our experiments, we found that combin-

ing the two most commonly used features, max bytes and avg bytes improves the prediction

accuracy in all cases. The gain in RCC was highest for the 4 MB message size, where

RCC increased from 0.91 (individual best) to 0.94 for all benchmarks. The addition of max

FIFO, which did not show a high RCC score as a stand alone feature, further increased the

prediction accuracy to 0.96. We denote this set as H1.

To H1, we added another low performing feature, avg stalls to obtain H3. This improved

the RCC further in all cases with the RCC score now in the range of 0.98−0.99 for 3D Halo

and Sub A2A (Figure 4.8). Replacing avg stalls is this set with avg stalls TO improved the

RCC for Sub A2A, but reduced the RCC for 2D Halo. Using a number of such combinations,

we consistently achieved RCC up to 0.995 for Sub A2A. Given a testing set of size 28, this

implies that the pairwise order of only 2 pairs was mispredicted for Sub A2A; in the worst

case for 2D Halo, pairwise order of 16 pairs was mispredicted.

Prediction using hybrid features also results in high R2 values as shown in Figure 4.8. For

2D Halo, the scores go up from 0.95 and 0.93 to 0.975 and 0.955 for the 16 KB and 4 MB

message sizes respectively. For the more communication intensive benchmarks, we obtained

R2 values as high as 0.99 in general. Hence, the use of hybrid features not only predicts the

correct pairwise ordering of mapping pairs but also does so with high accuracy in predicting

their absolute performance.

71

0.6
0.7
0.8
0.9
1.0

R
C

C
Rank correlation coefficient

0.6
0.7
0.8
0.9
1.0

16K 4M 512 16K 4M 8 512 16K 4M

R
2

Absolute performance correlation

max bytes
 avg bytes TO

 H3
 H5

Sub A2A3D Halo2D Halo

Figure 4.9: Prediction success: summary for all benchmarks on 65,536 cores of BG/Q.
Hybrid metrics show high correlation with application performance.

4.3.5 Results on 65,536 cores

Figure 4.9 shows the prediction success for the three benchmarks on 65,536 cores of BG/Q.

From all the previously presented features (prior, new and hybrid), we selected the ones

with the highest RCC scores for 16,384 cores, and present only those in this figure. Similar

to results on 16,384 cores, we obtain significant improvements in the prediction scores using

hybrid features in comparison to individual features such as max bytes and avg bytes TO.

For Sub A2A, RCC improved by 14% from 0.86 to 0.98, with a RCC value of 1.00 for both

512 bytes and 4 MB message sizes. For 2D Halo and 3D Halo, an improvement of up to 8%

was observed in the prediction success. Similar trends were observed for R2 values.

Figure 4.10 presents the scatter-plot of predicted performance for the three benchmarks for

the 4 MB message size. On the x-axis are the task mappings sorted by observed performance,

while the y-axis is the predicted performance. The feature set H5: avg bytes TO, avg stalls

TO, avg stallspp AO, sum hops AO, max FIFO was used for these predictions. It is evident

from the figure that an almost perfect performance based ordering can be achieved using

prediction for all three benchmarks, as expected based on the high RCC values. In addition,

as shown in Figure 4.10, absolute performance values can also be predicted accurately using

the proposed hybrid metric. In particular, for Sub A2A with large communication volume,

the predicted value curve completely overlaps with the observed value curve. These results

suggest that the same set of features correlate with the performance irrespective of the

system size being used.

72

 0.01

 0.1

 1

 0 5 10 15 20 25 30

Ex
ec

ut
io

n
T

im
e

(s
)

Mappings sorted by actual execution times

Blue Gene/Q (65,536 cores)

2D Halo Observed
2D Halo Predicted

 1

 10

 100

 0 5 10 15 20 25 30

Ex
ec

ut
io

n
T

im
e

(s
)

Mappings sorted by actual execution times

Blue Gene/Q (65,536 cores)

Sub A2A Observed
Sub A2A Predicted

3D Halo Observed
3D Halo Predicted

Figure 4.10: Summary of prediction results on 65,536 cores using 4 MB messages. For all
benchmarks, prediction is highly accurate both in terms of ordering and absolute values.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1K 4K 1K 4K 1K 4K 1K 4K 1K 4K

Pr
ed

ic
tio

n
sc

or
e

RCC and R2 (Extremely Randomized Trees)

16KB RCC 16KB R2 4MB RCC 4MB R2 RCC R2

pF3DMILCSub A2A3D Halo2D Halo

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1K 4K 1K 4K 1K 4K 1K 4K 1K 4K

RCC and R2 (GBRT, Huber loss function)

pF3DMILCSub A2A3D Halo2D Halo

Figure 4.11: Highest prediction scores obtained for the individual datasets using Extremely
Randomized Trees (left) and Gradient Boosted Regression Tree (right). Adjoining pairs of
vertical bars represent the RCC and R2 values for each of the sixteen datasets.

4.4 GBRT and production applications

Figure 4.11 shows the highest prediction scores (both RCC and R2) obtained for any feature

combination for each of the datasets. Adjoining pairs of vertical bars represent the RCC and

R2 values for each of the sixteen datasets. The left plot illustrates results obtained using the

extremely randomized trees algorithm, and the right plot shows similar results using GBRT

with the Huber loss function. Though either of the methods can be used for subsequent

analysis, we choose GBRT for the results in the rest of this chapter because of its flexibility

in allowing parameterized loss functions.

As we discussed in the previous sections, on an average, the prediction scores are very

high. When predicting the execution time of 2D and 3D Halo, we obtain RCCs in the range

0.95–1.0 and R2 in the range 0.94–0.996. As we increase the amount of communication being

performed (from 2D Halo to 3D Halo to Sub A2A), the predictions become stronger. For Sub

A2A, the RCC and R2 values are between 0.997 and 1.0. This is not unexpected – the more

73

 0

 0.2

 0.4

 0.6

 0.8

 1

16KB
1K

4MB
1K

16KB
4K

4MB
4K

16KB
1K

4MB
1K

16KB
4K

4MB
4K

16KB
1K

4MB
1K

16KB
4K

4MB
4K

1K 4K 1K 4K

R
an

k

 2D Halo 3D Halo Sub A2A MILC pF3D

Feature ranks for RCC (GBRT, Huber loss function)

Dilation Bytes Stalls Stallspp InjFIFO

 0

 0.2

 0.4

 0.6

 0.8

 1

16KB
1K

4MB
1K

16KB
4K

4MB
4K

16KB
1K

4MB
1K

16KB
4K

4MB
4K

16KB
1K

4MB
1K

16KB
4K

4MB
4K

1K 4K 1K 4K

 2D Halo 3D Halo Sub A2A MILC pF3D

Feature ranks for R2 (GBRT, Huber loss function)

Figure 4.12: Ranks of different features in the models that yield the highest RCC (left
plot) and R2 scores (right plot) for individual datasets using Gradient Tree Boosting (loss
function = ‘Huber’). Each stacked bar represents the ranks of the nineteen features (colored
by categories) for one of the sixteen datasets.

a parallel code stresses the network, higher is the correlation between the communication

features that represent congestion and execution time.

For production applications, which have more complex communication patterns, we ob-

serve very high prediction scores. MILC, which performs a 4D halo, is communication-

heavy and task mapping sensitive. Other than the RCC scores on 1K nodes, the prediction

scores for MILC are very high (R2 between 0.98 and 0.997). pF3D has communication

patterns similar to Sub A2A along with a near-neighbor communication, which results in

high RCC values between 0.975 and 0.991. This can be attributed to the structured and

communication-intensive all-to-all operations whose execution time is heavily dependent on

network congestion. The prediction scores for pF3D are also good. On 1K nodes, the R2

values are close to 0.995, while on 4K nodes, both RCC scores R2 scores are in the range

0.975–0.996.

As we compare the prediction quality of the supervised learning models for different codes,

a natural question that comes up is – which features are important in predicting the execution

time for different kernels and applications? Figure 4.12 presents the relative importance or

ranks of different features in the models that yield the highest RCC (left plot) and R2 values

(right plot). Each stacked bar represents the ranks of the nineteen features (colored by

categories) for one of the sixteen datasets. As we can see, the relative importance of features

changes depending on the code and on whether RCC or R2 is more important. The only

conclusive observation that can be drawn from these plots is that the number of bytes flowing

over the network has a significant impact on execution time, which is to be expected. Ideally,

we would like to identify a smaller subset of features that can predict the execution time

well for a range of applications, message sizes and node counts. We discuss this in detail in

74

-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

-100 0 100 200 300 400 500 600 700 800

Pr
ed

ic
te

d
va

lu
e

(s
)

Ground truth value (s)

Proximity of predictions

0.1 quantile
0.9 quantile

Figure 4.13: GBRT regression on the Apps dataset using different quantile loss functions.
The lower quantile regression function underpredicts for those samples with high execution
time, while predicting effectively for those with low execution times.

the next section.

4.5 Identifying relevant feature subsets

The variability in the importance (rank) of different features in the regression models learned

for different parallel codes makes it challenging to identify a common set of factors that

contribute the most to network congestion. Furthermore, some of the features considered in

our analysis might be strongly correlated to one another, thereby introducing instabilities in

the model selection process across multiple datasets. In order to overcome these challenges,

we propose to infer regression models under different quantiles, and analyze them to identify

the most relevant features in a stable manner (irrespective of our choice of training sets).

75

0

0.1

0.2

0.3

0.4

av
g d

ila
tio

n A
O

max
 di

lat
ion

su
m di

lat
ion

 A
O

av
g b

yte
s

av
g b

yte
s A

O

av
g b

yte
s T

O

max
 by

te
s

#li
nk

s A
O

 by
te

s

av
g s

tal
ls

av
g s

tal
ls

AO

av
g s

tal
ls

TO

max
 st

all
s

#li
nk

s A
O

 st
all

s

av
g s

tal
lsp

p

av
g s

tal
lsp

p A
O

av
g s

tal
lsp

p T
O

max
 st

all
sp

p

#li
nk

s A
O

 st
all

sp
p

max
 in

j F
IFO

R
an

k
Feature subset selection based on Kernels

0.1 quantile 0.9 quantile

0

0.1

0.2

0.3

0.4

av
g d

ila
tio

n A
O

max
 di

lat
ion

su
m di

lat
ion

 A
O

av
g b

yte
s

av
g b

yte
s A

O

av
g b

yte
s T

O

max
 by

te
s

#li
nk

s A
O

 by
te

s

av
g s

tal
ls

av
g s

tal
ls

AO

av
g s

tal
ls

TO

max
 st

all
s

#li
nk

s A
O

 st
all

s

av
g s

tal
lsp

p

av
g s

tal
lsp

p A
O

av
g s

tal
lsp

p T
O

max
 st

all
sp

p

#li
nk

s A
O

 st
all

sp
p

max
 in

j F
IFO

Feature subset selection based on Apps

0.1 quantile 0.9 quantile

Figure 4.14: Ranks of different features obtained using GBRT with quantile loss functions at
α = 0.1 and α = 0.9 respectively: left plot is for a combined set of the three communication
kernels (twelve datasets) and the right plot is for a combined set of the two applications
(four datasets).

4.5.1 Feature selection from extreme quantiles

For the analysis presented in this section, we use GBRT with the quantile loss function

defined in equation (4.2) in Section 4.2.2. In order to identify the most relevant features

for predicting the execution time, we propose to analyze the regression models at lower

(α = 0.1) and higher (α = 0.9) conditional quantiles. In particular, we consider the ranks

of the different features at the extreme quantiles. Instead of inferring a single regression

function that minimizes the average or median error for all data samples, the quantile loss

weights different regions in the function space asymmetrically (see Figure 4.4). For example,

in Figure 4.13, the lower quantile model provides an accurate prediction for samples with

low execution times (bottom left corner), while making large errors on samples with high

execution times.

It turns out that for the datasets used in this chapter, optimizing for the conditional quan-

tiles inherently promotes sparsity in the inferred model (Figure 4.14). This means that only

a few features show significant importance for prediction, and the ranks for different features

in the lower and higher quantiles case vary considerably. This also results in different fea-

tures being more important for the two quantiles. Figure 4.14 shows the feature importance

for the extreme quantiles for all the kernel datasets combined together (left plot) and all the

application datasets combined together (right plot). In the left plot, we see that the feature

avg bytes has a high rank in predicting at the higher quantiles only. On the other hand,

the feature avg stallpp is prominent in predicting at the lower quantiles and not used by the

regression function optimized for the higher quantile. We can observe similar things about

sum dilation AO and max inj FIFO in the right plot.

76

We exploit these observations by selecting the most relevant features from the models

at different quantiles, and using this subset of features to predict the execution time for

different applications. The steps involved in this proposed technique for feature selection for

a dataset are as follows:

• Create random splits of the dataset into training and testing sets (70% for training

and the rest for testing). We repeat this over 50 iterations to avoid overfitting.

• Learn regression models using GBRT with quantile loss functions at α = 0.1 and

α = 0.9. We denote the feature ranks in the two cases by τ0.1 and τ0.9 respectively.

• Compute the average feature ranks for the extreme quantiles from the 50 iterations.

• Identify the relevant features as those with either τ0.1 or τ0.9 greater than a pre-defined

threshold t. In our experiments, we fixed t at 0.1.

4.5.2 Results and discussion

We employ the proposed feature selection technique explained above on the following larger

datasets formed by combining the individual datasets in Table 4.4:

1. 2D Halo (4 datasets)

2. 3D Halo (4 datasets)

3. Sub A2A (4 datasets)

4. Kernels (combination of (a), (b), and (c), 12 datasets)

5. MILC (2 datasets)

6. pF3D (2 datasets)

7. Apps (combination of (e) and (f), 4 datasets)

8. All (all 16 datasets added together)

The goal is to identify a common set of features that might be relevant across multiple

datasets. Figure 4.15 presents the feature ranks obtained using the technique described above

for each of the larger datasets. Note that the importance/rank of each feature is obtained

by first identifying the smallest subset for each dataset and then performing another cycle

of training and testing to obtain the relative importance of the features in this new subset.

77

Figure 4.15: Comparison of the feature ranks obtained using the feature selection technique
applied to the eight larger datasets. Note that the marker colors for each row/dataset are
scaled independently (red is high and blue is low).

The marker colors for each row/dataset are scaled independently (red is high and blue is

low).

We can make a few important observations from Figure 4.15. The markers in the row for

the All dataset show that the “stalls” features are the most important. The stalls group

indicates scenarios in which a network packet has to wait in the receive buffer. The wait

could either be on an intermediate node because the next link is busy or on the destination

node because the node is not able to consume the received packets at the same rate as they

arrive. Stallspp refers to the number of stalls encountered on a link per packet. The high

ranks of these features suggest that the receive buffers on the nodes are one of the most

important causes of network congestion.

The other important feature in the All dataset of Figure 4.15 is avg bytes. This refers to

the average number of bytes passing through a network link and is an indicator of the average

traffic on the network. A high rank for this feature suggests that to mitigate congestion,

algorithms and task mappings should aim to keep the average load per link low. It also

indicates that max bytes or the most overloaded link (often referred to as a hot-spot) is

not a strong determinant of the execution time. Finally, we note that max inj FIFO or the

maximum injection FIFO length also plays a small part in predicting the execution time,

especially for the production applications.

78

0.5

0.6

0.7

0.8

0.9

1.0

Kernels MILC pF3D

R
C

C
RCC comparison for different feature subsets

All features
Expert selected

Feature subset for Kernels
Feature subset for Apps

Feature subset for All

0.5

0.6

0.7

0.8

0.9

1.0

Kernels MILC pF3D

R
2

R2 comparison for different feature subsets

Figure 4.16: Prediction performance of the features selected using the proposed quantile
analysis on different datasets.

We can also observe which features are important for a particular larger dataset using

Figure 4.15. For example, max inj FIFO is only important for the production applications

(MILC and pF3D) and the Apps and All datasets. Avg stallpp is important across most

datasets but max stallpp is only important for the production applications and their com-

binations. Avg bytes is also important in almost all datasets except Sub A2A and MILC.

Further, it is important to note that a feature might not show up as important for a dataset

in this figure for one of the following two reasons – either it was less important than the top

5-7 features or another feature that highly correlates with this feature was in the top list.

In order to evaluate the performance of the relevant feature subsets obtained using feature

selection, we learn regression functions using the subsets on the following datasets: Kernels,

MILC, and pF3D. In addition, we compare the performance for these feature subsets with

that obtained by using all nineteen features and an expert selected subset of twelve features.

For the expert selection, we only pick those features that we believe represent some unique

information about the dataset. We pick one of two features if they are known to be highly

correlated. In each case, we run GBRT regression with 70% of the data for training and the

rest for testing. The results reported in Figure 4.16 were obtained by averaging the RCC

and R2 values over 50 random splits of training and testing sets.

In Figure 4.16, we observe that if we use the feature subset from the communication

kernels to predict MILC or pF3D, there is a performance drop. This is also true if we use

the feature subset from the Apps to predict the communication kernels. This suggests that

the communication kernels dataset has some characteristics that are not well modeled by

the features extracted from the Apps dataset and vice versa.

Nonetheless, the main result in Figure 4.16 is that using a feature subset derived from all

the datasets, we can do reasonably good predictions for communication kernels and produc-

79

tion applications. These predictions are close to predictions performed using all nineteen

features. This subset of features is: avg bytes, avg bytes AO, #links AO stall, avg stallpp,

max stallpp and max inj FIFO. From these results, we conclude that the features that are

among the primary root causes of network congestion are (in decreasing order of impor-

tance): the average and maximum length of receive buffers, average load on the network

links, and the maximum length of injection FIFOs on the source node. We also observe that

the maximum load on a link (network hot-spots) and the dilation or hops a message travels

are lesser indicators of network congestion.

4.6 Summary

The ability to predict the performance of communication-heavy parallel applications without

actual execution can be very useful. This requires understanding which network hardware

components affect communication and in turn, performance on different interconnection ar-

chitectures. A better understanding of the network behavior and congestion can help in per-

formance tuning through the development of congestion-avoiding and congestion-minimizing

algorithms.

This chapter presented a machine learning approach to understand network congestion on

supercomputer networks. We used regression analysis on communication data and execution

time to find correlations between the two and learn models for predicting execution time of

new samples. Using the technique of feature subset selection, we were also able to extract

the relative importance of different features and the corresponding hardware components

in predicting execution time. This helped us identify the primary root causes of network

congestion which is a difficult challenge.

Using our methodology, we showed prediction scores close to 1.0 for individual datasets.

We were also able to reasonably predict the execution time on higher node counts using

training data for smaller node counts. We also obtained reasonable ranking predictions for

new applications using datasets based on communication kernels only. Finally, we identified

the hardware components that are primarily responsible for predicting the execution time.

These are – receive buffers on intermediate nodes, network links and injection FIFOs in

decreasing order of importance. We also observed that network hot-spots and the dilation

or hops a message travels are lesser indicators of network congestion. This knowledge gives

us a real insight into network congestion on torus interconnects and can be very useful to

network designers and application developers.

80

CHAPTER 5
TraceR: PDES Simulator

The design and deployment of large supercomputers with hundreds of thousands of cores is a

daunting task. Both at the design stage and after the machine is installed, several decisions

about the node architecture and the interconnection network need to be made. Application

developers and end users are often interested in studying the effects of these decisions on

their codes’ performance for existing and future machines. Hence, tools that can predict

these effects are important. So far, we have presented two such prediction and analysis

methodologies (Section 3.2 and Chapter 4). However, each of these methods has deficiencies

that limit its use. The learning method is more suited for port-mortem analysis and requires

input data to characterize the executions. The functional model for dragonfly (Section 3.2)

is suitable for throughput comparison based on indirect indicators of performance. However,

it does not capture flow dependencies of complex applications and does not predict execution

time.

In this chapter, we present a detailed simulation based method for prediction and analy-

sis of communication performance. Discrete-event simulation (DES) based frameworks are

often used to simulate interconnection networks. The usability and performance of these

frameworks depend on many factors: sequential versus parallel (PDES) simulation, the level

of detail at which the communication is simulated (e.g., flit-level or packet-level), whether

the PDES uses conservative or optimistic parallelism methods, etc. Existing state-of-the-art

DES-based network simulators suffer from two major problems. First, sequential simula-

tors have large memory footprints and long execution times when simulating large execution

traces. Second, some simulators can only simulate synthetic communication patterns that do

not accurately represent production high-performance computing applications. These short-

comings can be eliminated by using a scalable PDES engine, which improves performance

and reduces the memory footprint per node, and by replaying execution traces generated

81

from production HPC codes. To achieve this, we have developed a trace replay tool called

TraceR for simulating messaging on HPC networks.

TraceR is designed as an application on top of the CODES simulation framework [106].

It uses traces generated by BigSim’s emulation framework [107] to simulate an application’s

communication behavior by leveraging the network API exposed by CODES. Under the

hood, CODES uses the Rensselaer Optimistic Simulation System (ROSS) as the PDES en-

gine to drive the simulation [108]. Our major contributions w.r.t detailed simulation of

communication are two fold. First, we have developed TraceR, a trace-driven simulator

that executes under an optimistic parallel discrete-event paradigm using reversible comput-

ing for real HPC codes. As a result, it can be used for simulating production MPI and

Charm++ applications by generating traces using Charm++’s emulation framework. The

time taken to perform these simulations is also low, given the good scalability of TraceR

and its underlying PDES engine 1. Second, in order to perform highly accurate and diverse

simulations, we have made significant changes to CODES as described later in this chapter.

Heavy modifications to the torus and dragonfly models, and addition of a new fat-tree model

are among the most important contributions to CODES.

5.1 Background

TraceR is built upon several existing tools which are introduced briefly below.

BigSim’s emulation framework: The first requirement of simulating a parallel execution

is the ability to record the control flow and communication pattern of an application. The

BigSim emulation framework [107] exploits the concept of virtualization in Charm++ [110]

to execute a large number of processes on a smaller number of physical cores and generate

traces. This enables trace generation for networks of sizes that have not been built yet.

Using AMPI [90], this feature enables trace generation for production MPI applications as

well.

ROSS PDES engine: ROSS [108] is a general purpose, massively parallel, discrete-event

simulator. ROSS allows users to define logical processes (LPs) distributed among processors

and to schedule time-stamped events either locally or remotely. The ROSS core ensures

that all the posted events are delivered and scheduled on the respective targets ordered by

their time-stamps. The user is free to choose a static mapping of the LPs to the physical

1The initial implementation of TraceR was done by Bilge Acun under the guidance of Nikhil Jain
and Abhinav Bhatele [109]. Various features such as simulation of multiple concurrent jobs, simulation of
collectives, task-aware mapping, online-modification of traces, etc. were added by Nikhil Jain.

82

processors they are executed on. ROSS provides two execution modes that differ in the

mechanisms used to ensure the ordering of events according to their time-stamps. The

conservative mode executes an event for an LP only when it is guaranteed to be the next

lowest time-stamped event for it. Ensuring such a requirement requires synchronization

among all processors and may result in low performance for parallel ROSS. On the other

hand, the optimistic mode aggressively executes events that have the lowest time-stamps

among the current set of events. If an event with time-stamp lower than the last executed

event is encountered for an LP, reverse handlers are executed for the events executed out of

order to undo their effects. Optimistic scheduling with reverse handlers has been shown to

have better scaling characteristics for many cases [111], including the full Sequoia run that

yielded the 504 billion events per second record using PHOLD benchmark [112].

CODES: The CODES framework is built on top of ROSS to facilitate studies of HPC

storage and network systems [106]. The network component of CODES, Model-net, provides

an API to simulate the flow of messages on HPC networks using either detailed congestion

models or theoretical models such as LogP. Model-net allows users to instantiate a prototype

network based on one of these models. Such instantiations are controlled by parameters

such as network type, dimensions, link bandwidth, link latency, packet size, buffer size, etc.

CODES has been used to study the behavior of HPC networks for a few traffic patterns [106].

These traffic patterns have been implemented as one-off applications that use Model-net as

a network driver. Recently, an application to replay DUMPI [51] traces has also been added

to CODES.

5.2 Design and implementation of TraceR

TraceR is designed as an application on top of the CODES simulation framework. Fig-

ure 5.1 (left) provides an overview of TraceR’s integration with BigSim and CODES. The

two primary inputs to TraceR are the traces generated by BigSim and the configuration

parameters describing the interconnection network to be simulated. The meta-data in the

traces is used to initialize the simulated processes. The network configuration parameters

are passed to CODES to initialize the prototype network design.

We define the following terminology to describe the working of TraceR:

PE : Each simulated process (called PE) is a logical process (LP) visible to ROSS. It stores

virtual time, logical state, and the status of tasks to be executed by it.

Task : The trace for a PE is a collection of tasks, each of which represents a sequential

83

TraceR

CODES on
ROSS

Performance Prediction

Network Configuration

Application Traces from BigSim
Execute Task

First task

Send message
to other PEs

Schedule
completion event

Receive message
from other PEs

Completion Event

Message Recv
Event

Remote
Message

Figure 5.1: Integration of TraceR with BigSim emulation and CODES (left). Forward
path control flow of trace-driven simulation (right).

execution block (SEB). A task may have multiple backward dependencies to other tasks

or to message arrivals. At startup, all tasks are marked undone. If a task has an undone

backward dependency, it can not be executed.

Event : A unit entity that represents an action with a time-stamp in the PDES. We implement

three types of events in TraceR:

− Kickoff event starts the simulation of a PE.

−Message Recv event is triggered when a message is received for a PE. The network message

transmission and reception is performed by CODES.

− Completion event is generated when a task execution is completed.

Reverse Handler : Another unit entity which is responsible for reversing the effect of an

event. It is needed only for the optimistic simulation mode.

Let us consider an MPI application that performs an iterative 5-point stencil computation

on a structured 2D grid to understand the simulation process. In each iteration, every MPI

process sends boundary elements to its four neighbors and waits for ghost elements from those

neighbors. When the data arrives, the MPI process performs the 5-point stencil followed by a

global reduction to determine if another iteration is required. From TraceR’s perspective,

every MPI process is a PE. Tasks are work performed by these MPI processes locally: initial

setup, sending boundary elements, the 5-point stencil computation, etc. The Kickoff event

triggers the initial setup task. Whenever an MPI process receives ghost elements, a Message

Recv event is generated. The dependence of the stencil computation on the receives of ghost

elements is an example of a backward dependency. Similarly, posting of a receive by an MPI

84

Algorithm 1 Event handler implementation for PEs: code lines that begin with an asterisk
(*) are required only in the optimistic mode.

pe busy: A boolean; set to true if the PE is executing a task at the current virtual time.
ready tasks: List(FIFO) of tasks that are ready to be executed on a PE if pe busy is false.
trigger task: Map that stores the task executed at the completion of a given task.

(a) Execute Task(task id)
1: Get the current virtual time of the PE, ts.
2: Mark the PE busy, pe busy = true.
3: Send out messages of the task with their offsets

from ts.
4: Get the execution time of the task, te.
5: Schedule a Completion event for the PE at time ts

+ te for this task.

(b) Receive Msg Event(msg)
1: Find the task T that depends on the message.
2: If T does not have any undone backward depen-

dencies, add T to ready tasks.
3: if pe busy == false then
4: Get the next task, T ′, from ready tasks.
5: *Store T ′ and pe busy for possible use in

the reverse handler; trigger task[T] = T ′,
busy state[T] = pe busy.

6: Call Execute Task(T ′).
7: end if

(c) Completion Event(msg)
1: Get the completed task, T , from the msg.
2: Mark T as done.
3: Set pe busy = false.
4: for every task, f , that depends on T do
5: if f does not have any undone backward

dependency then
6: Add f to ready tasks.
7: end if
8: end for
9: Get the next task, T ′ from ready tasks.

10: *Store T ′ for possible use in the reverse han-
dler, trigger task[T] = T ′.

11: Call Execute Task(T ′).

process is a prerequisite for TraceR to execute the Message Recv event.

Figure 5.1 (right) presents the forward path control flow of a typical simulation in TraceR.

Application traces are initially read and stored in memory. When the system setup is com-

plete, the Kickoff event for every PE is executed, wherein the PEs execute their first task.

In the 2D stencil example, this leads to execution of the initial setup task. What happens

next depends on the content of the task being executed, and the virtual time, ts, at which

the task is executed.

Every task T has an execution time te, which represents the virtual time T takes for

executing the SEB it represents. When a task is executed, TraceR marks the PE busy

and schedules a Completion event for T at ts + te (Algorithm 1(a)). During the execution

of a task, messages for other PEs may be generated. These actions are representative of

what happens in real execution. When the MPI process is executing a SEB, e.g. to send

boundary elements, the process is busy and no other SEB can be executed till the sending

of boundary is complete. The generated messages are handed over to CODES for delivery.

Note that the execution of a task in our framework only amounts to fast-forwarding of the

PE’s virtual time and delegation of messages to CODES; the actual computation performed

by the SEB is not repeated.

When a Completion event is executed, the task T is marked done and the PE is marked

available (Algorithm 1(c)). Next, some of the tasks whose backward dependencies included

85

T may now be ready to execute. Thus, those tasks are added to a list of pending tasks,

ready tasks. Finally, the task at the top of ready tasks list is selected and Execute task

function is called (Figure 5.1 (right)).

As the simulation progresses, a PE may receive messages from other PEs. When a message

is received, if the task dependent on the incoming message has no other undone backward

dependency, it is added to the ready tasks list (Algorithm 1(b)). If the PE is marked available

when a message is received, the next task from the ready tasks list is executed. After the

initial tasks are executed, more tasks become eligible for execution. Eventually, all tasks are

marked done, and simulation is terminated.

5.2.1 Running TraceR in optimistic mode

When executing in the optimistic mode, TraceR speculatively executes available events

on a PE. When all the messages finally arrive, ROSS may discover that some events were

executed out of order and rolls back the PE to rectify the error. In order to exploit the

speculative event scheduling, TraceR does two things. First, during the forward execution

of an event, extra information required to undo the effect of a speculatively executed event

is stored. In Algorithm 1, these actions are marked with an asterisk. For both Message Recv

and Completion events, the data stored includes the task whose execution is triggered by

these events. For the Message Recv event, whether the PE was executing an SEB when the

message was received is also stored. If this information is not stored by TraceR, it will get

lost and hence the rollback will not be possible.

Second, as shown in Algorithm 2, reverse handlers for each of the events are implemented.

These handlers are responsible for reversing the effect of forward execution using the infor-

mation stored for them. For example, in the stencil code, reverse handler for a Message

Recv event reverts the MPI process back to a state where it was still waiting for the ghost

elements. In general, for a Message Recv event, the reverse handler marks the message as

not received, while the reverse handler of a Completion event marks the task as undone. In

addition, the tasks that were added to the ready tasks list are removed from the list. Both

the reverse handlers also add the task triggered by the event to the ready tasks list.

5.3 Network models in CODES

The CODES framework provides generic infrastructure for simulating various network mod-

els. Two types of LPs are used to simulate the network: one type to simulate the functioning

86

Algorithm 2 Reverse handler implementations: they use extra information stored by event
handlers to undo their effect.

(a) Message Recv Rev Handler(msg)
1: Find the task T that depends on the mes-

sage.
2: Recover the busy state of the PE,
pe busy = busy state[T].

3: if pe busy == false then
4: Add trigger task[T] to the front of the
ready tasks.

5: end if
6: Remove T from the ready tasks.

(b)Completion Rev Handler(msg)
1: Get the completed task, T , from the
msg.

2: Mark T as undone.
3: Remove the tasks that depends on T

from the bottom of ready tasks.
4: Add trigger task[T] to the front of
ready tasks.

of a NIC and another to simulate routers/switches. The implementation of the NIC LP is

common to most networks. It includes support for queuing the messages that needs to be

sent out, different scheduling methods to issue packets, and receiving the messages. Cur-

rently, three type of scheduling policies are available: first-come-first-serve (FCFS) i.e. all

packets of a message are issued before the next message is packetized, round-robin where one

packet is issued for each enqueued message in a cyclic fashion, and a priority-based ordering.

Each network model is required to provide a method that creates the next packet for the

message selected based on the scheduling policy.

At the time of writing this thesis, the production version of CODES provides torus and

dragonfly network models among others, which are of current interest to the HPC community.

We first describe the fat-tree model that we have added to CODES, and then discuss the

major improvements that have been made to other models.

5.3.1 Fat-tree model

We have added a full-bisection fat-tree network model with up to three levels of switch-

es/routers to CODES. Instead of using high-radix fat switches at the upper layers, our

construction uses multiple switches of same radix (as the lower layers) to form logical high

radix switches at upper layers. This mode of building fat-tree networks resembles a folded

Clos network [5], and is often used for practical deployment (e.g. Cab at LLNL) and in

simulations [50,52].

Figure 5.2 shows an example three level fat-tree built with switches of radix 4. In the

construction described next, this fat-tree is used as a running example. Let the input be

radix k switches with n levels desired in the fat-tree. At the lowest level (L0), the leaf level

switches are placed (shown as blue boxes in Figure 5.2). For a full fat-tree constructed using

87

Figure 5.2: Fat-tree construction using switches of same radix.

radix k switches and n levels, (k
2
)n−1 leaf switches are needed. Each of these switches can

connect to k
2

nodes, which leads to (k
2
)n nodes being the maximum size of a system built with

these parameters. The L0 switches are divided into sets of k
2

switches to form L0 groups.

Switches at the next level (L1) are also divided in a similar fashion. Each of the L0 groups is

mapped to a L1 group (and vice-versa); all the switches in the mapped groups are connected

to form complete bipartite graphs. In Figure 5.2, L0 and L1 switches shown as blue and

green boxes are divided into 2 groups each of size 2. It can be seen that switches in these

groups are connected to form complete bipartite graphs.

As more levels are added, similar grouping and mapping of switches can be performed.

However, due to the limited radix of switches, complete bipartite graphs are not created.

Instead, each group at a given level is subdivided into smaller groups; these subgroups are

then connected to other subgroups of a paired group in the adjacent level. At the highest

level (L2 in our construction), the number of switches is half the number of switches at other

levels. This is because L2 switches can use all their ports to connect to switches at lower

levels. As a result, in this case, two connections are added between every pair of switches

that are connected. This is illustrated by the connections between the black and green boxes

88

in Figure 5.2. Note that, if the fat-tree has only two levels, the number of switches at L1

will be half the number of switches at L0, and each subgroup at L1 will connect to two

subgroups at L0.

5.3.2 Adaptive routing

The existing network model for torus in CODES simulates dimension-ordered static rout-

ing [111]. However, it has been shown that adaptive or dynamic routing improves commu-

nication performance, especially for applications with large messages [67, 113, 114]. Hence,

we have added a fully-adaptive minimal path routing scheme for the torus network model in

CODES. Based on the routing scheme used in IBM’s Blue Gene series [114], the implemented

adaptive routing attempts to move the packets towards their destination by making locally

optimal decision. When a packet arrives at an intermediate router, all ports through which

the packet can be forwarded are computed. Among these ports, the one with minimum

buffer length is selected to enqueue the packet. In order to preserve the accuracy of simula-

tions with adaptive routing, we also added the functionality to handle possibly out-of-order

arrival of packets at the destination nodes.

For the fat-tree network, several pattern specific static routing schemes have been pro-

posed [115, 116]. However, given our immediate focus on comparison of different networks

using a diverse range of benchmarks, we have implemented a pattern-oblivious adaptive

routing scheme for the fat-tree network. Like the torus network, when a packet arrives at a

switch, all ports through which the packet can be forwarded are computed. If the packet is

going up and is to be forwarded to the next layer of switches, many ports (half the radix of

the switch) are eligible. In contrast, if the packet is going down, the number of eligible port

depends on the level of the switch: lower the level of current switch, fewer the number of

eligible ports. In either case, the port with minimum buffer length is selected to enqueue the

packet. We acknowledge that this routing scheme may not be the best routing scheme for

certain communication patterns for fat-tree networks. However, it provides a fair comparison

of fat-tree networks with other networks for the general case.

5.3.3 Deadlock avoidance

Various resources in the network have limited capacity. For example, the length of buffers at

the intermediate routers which store the packets to be sent out is typically large enough to

store only tens of packets. Hence, use of different routing schemes and adaptivity may lead

89

to deadlock, which can stall the progress of communication on the network [117]. Several

deadlock avoidance and resolution mechanisms have been proposed in the past and are used

in practical deployments of various networks [118–120]. Many of these schemes prevent

deadlock by restricting formation of cycles during routing of packets. Next, we briefly

describe two of these schemes that we have used to avoid deadlock in the network models in

CODES.

• Torus: For the torus network, we have added the Puente et al.’s bubble routing scheme

which avoids deadlock by use of an escape channel [120]. For dimension-ordered static

routing, this scheme requires a packet to be forwarded to the next port only when

there is enough space for a full packet in the next port’s buffer. If the packet makes

a turn from one dimension to another or is newly injected into the network, bubble

routing requires enough space for at least two full packets in destination buffer. These

rules are applied only to a special channel, called escape channel.

In addition to the escape channel, the network can use other virtual channels to forward

packets without fulfilling the given constraints. Typically, all packets are initially

inserted into these other virtual channels. While forwarding a packet, if other virtual

channels are blocked (due to cycle formation or overflow of resources), packets can be

placed in the escape channel only when there is space for at least two full packets in

the buffer. The routing used in the other channels can be selected independently of

the escape channel.

• Fat-tree: In a minimally routed fat-tree, cycles cannot form. Hence, we do not need

to add any deadlock prevention mechanism to the fat-tree network model.

• Dragonfly: Like torus, cycles can form when packets are routed on dragonfly networks

for both minimal static routing and non-minimal adaptive routing. Kim et al. [15] pro-

posed the use multiple virtual channels to avoid deadlock. We have implemented their

scheme using minimal number of virtual channels. In the original scheme, deadlock is

avoided by using as many virtual channels per connection as the maximum number

of hops, max hops, a packet may take in a given network. These virtual channels are

numbered from 0 to max hops - 1 locally on every router for every connection. When

a packet is forwarded at a router, it is inserted to a virtual channel whose number is

one more than the current virtual channel the packet occupied.

For non-minimal routing, the maximum number of hops is 5. However, any given

connection is either local (connects routers within a group) or remote (connects routers

across groups). The maximum number of local and global hops a packet may take are

90

3 and 2, respectively. Hence, only 3 virtual channels are needed per connection to

implemented deadlock free routing on dragonfly networks. A separate count is kept

for the last local and global virtual channels a packet was enqueued in, and this count

is used to determine the number of the channel the packet is buffered in at the next

router.

5.4 Simulation configuration

The complexity involved in simulating real codes over a PDES engine manifests itself in a

number of design and parameter choices. The first choice is the type of PDES engine: conser-

vative versus optimistic. While the optimistic mode provides an opportunity for exploiting

parallelism by speculative scheduling of events, the benefits of speculative scheduling may be

offset by the repeated rollbacks for scenarios with tight coupling of LPs. Conservative mode

does not pose such a risk, but spends a large amount of time on global synchronization.

Another option that is available through the BigSim emulation is defining regions of in-

terest in the emulation traces. TraceR can exploit this functionality to skip unimportant

events such as program startup. For some applications, this can speed the simulation sig-

nificantly. Next, we briefly describe some other important configuration parameters:

Event granularity: This parameter decides the number of tasks to execute when an event

is scheduled. We can either execute only the immediate task dependent on this event or all

the tasks in the ready tasks list. The former leads to one completion event per task, while

in the latter method, a single completion event is scheduled for all the tasks executed as a

set. The second option reduces the number of completion events to the minimum required.

Execution of one task per event may lead to a larger number of events and hence results

in overheads related to scheduling and maintaining the event state. However, it simplifies

the storage of information for reverse computation since only one task needs to be stored

per event. In contrast, when we execute multiple tasks per event, a variable length array of

all executed tasks needs to be stored. This leads to inefficiency in terms of memory usage

and memory access. However, the number of total events is fewer thus reducing the PDES

engine overheads. These modes are referred to as TraceR-single and TraceR-multi in

Figure 5.6.

Parameters for optimistic mode: There are three important parameters that are avail-

able in the optimistic mode only: batch size, global virtual time (GVT) interval and number

of LPs per kernel process (KP).

91

• Batch size defines the maximum number of events executed between consecutive checks

on the rollback queue to see if rollbacks are required.

• GVT interval is the number of batches of events executed between consecutive rounds

of GVT computation and garbage collection. GVT is the minimum virtual time across

all LPs and its computation leads to global synchronization.

• Number of LPs per KP : ROSS groups LPs into kernel processes (KPs), which is the

granularity at which rollbacks are performed.

Multi-job simulation: The common scenarios for using large scale systems involve con-

current execution of many jobs. Depending on the network being used and the distribution

of the jobs on the network, the execution and performance of these jobs may be affected

by other jobs. For example, if two jobs share communication links, the effective bandwidth

observed by these two jobs may be less than the maximum available bandwidth. In order to

facilitate understanding of such effects, TraceR supports concurrent simulation of multiple

jobs traces.

Conducting multi-job simulations with TraceR is straightforward and uses the same

traces as the single job simulation. These traces for individual jobs are generated indepen-

dently and thus can be reused across various studies. When TraceR is executed, a list of

individual jobs and the location of their traces is provided in TraceR’s configuration file.

These jobs are attached to different cores and nodes in the network using a mapping of global

rank (across the entire system) to the pair of job ID and local rank (within the job). There-

after, all the jobs are simulated simultaneously. TraceR handles the task of converting the

pair of job ID and local rank to global rank before the messages are offloaded to CODES

for transmission. Similarly, on receiving a message from CODES, TraceR performs the

reverse mapping from global rank to the pair of job ID and local rank.

Job placement and task mapping: In addition to supporting multi-job simulations,

TraceR also provides functionality for the users to select placement of the jobs being

executed and mapping of tasks within a job. Both these configurations are specified via a

binary file that contains mapping of global rank to the pair of job ID and local rank. By

letting users specify these two configurations, TraceR enables comparison study of various

mapping schemes with minimal effort from the users.

92

5.5 Impact of simulation configuration

In this section, we evaluate the performance of TraceR as a simulation tool. Results

based on application of TraceR, e.g. to compare various networks, will be discussed in the

following chapters.

5.5.1 Experimental setup and configuration parameters

Proxy applications: We use two proxy applications for evaluating TraceR. 3D Stencil is

an MPI code that performs Jacobi relaxation on a 3D process grid. In each iteration of 3D

Stencil, every MPI process exchanges its boundary elements with six neighbors, two in each

direction. Then, the temperature of every grid point is updated using a 7-point stencil. In

our experiments, we allocate 128 × 128 × 128 grid points on each MPI process, and hence

have 128 KB messages. LeanMD is a Charm++ proxy application for the short-range force

calculations in NAMD [121]. We use a molecular system of 1.2 million atoms as input to

LeanMD. We simulate three iterations of each benchmark.

Simulated networks: We simulate 3D tori of sizes 512 to 524, 288 nodes to measure and

compare simulator performance. For these studies, 3D torus has been used because it is

the only common topology available in all simulators used in this section. For validation,

we simulate a 5D torus because isolated allocations on IBM Blue Gene/Q (which has a 5D

torus) allow us to collect valid performance data. The fat-tree network model is validated

by comparing simulation results of 3-level fat-trees with radix 8 switches from TraceR and

Booksim [52], a cycle accurate simulator. Dimensions of the 3D tori are chosen to be as

cubic as possible and those of the 5D tori mimic the real allocations on IBM Blue Gene/Q.

For the 3D torus, we have experimented with two types of congestion models: a packet-level

congestion model based on IBM’s Blue Gene/P system (TorusNet) [111] and a topology-

oblivious packet-level α − β model (SimpleNet). The simulation runs were performed on

Blue Waters, a Cray XE6 at NCSA, while the emulation (trace generation) and validation

were performed on Vulcan, an IBM Blue Gene/Q system at LLNL.

Evaluation metrics: We use three metrics to compare and analyze the performance of

different simulators:

• Execution time: time spent in performing the simulation (excluding startup).

• Event rate: number of committed events executed per second

• Event efficiency: represents the “rollback efficiency” and is defined as:

93

���

����

�����

������

�� �� �� �� ���

��
��
��
��
��
�
��
��
��
�

��������������������������

��

�����������������
���������������

����������������
��������������

Figure 5.3: Optimistic vs. conservative DES

Event efficiency (%) =

(
1− #rolled back events

#committed events

)
× 100

Based on the equation above, when the number of events rolled back is greater than the

number of committed events (events that are not rolled back, which equals the number of

events executed in a sequential simulation), the efficiency is negative. A parallel simulator

may be scalable even if its event efficiency is negative. This is because while using more

cores may not improve event efficiency, it may reduce the execution time due to additional

parallelism.

5.5.2 Conservative versus optimistic simulation

We begin with comparing the conservative and optimistic modes in TraceR. In these

experiments, we simulate the execution of 3D Stencil on 4K nodes of a 3D Torus using 1 to

16 cores of Blue Waters. As shown in Figure 5.3, the execution time for the conservative mode

increases with the number of cores, but decreases for the optimistic mode (for both TorusNet

and SimpleNet). Detailed profiles of these executions show that the conservative mode

performs global synchronization 43 million times which accounts for 31% of the execution

time. Overall, 60% of the total execution time is spent in communication.

In contrast, the optimistic mode synchronizes only 1, 239 times for GVT calculation with

communication accounting for 10% of the execution time. This is in part due to the overlap

of communication with useful computation and in part due to the lazy nature of global syn-

chronization in the optimistic mode. Based on these results, we conclude that the optimistic

94

��

��

��

��

��

�� �� ��� ��� �����
��
��
�
��
��
��
���
��
��
��
��
��
��
�

�����������������������������

���

��������
��������

�������
������

������

���

���

���

���

�� �� ��� ��� ���

��
��
��
��
��
��
��
��
��
�

�����������������������������

���

������
������
�������
��������
��������

��

���

���

���

���

�� �� ��� ��� �����
��
��
�
��
��
��
���
��
��
��
��
��
��
�

�����������������������������

���

��������
��������

�������
������

������

����

����

����

���

��

�� �� ��� ��� ���

��
��
��
��
��
��
��
��
��
�

�����������������������������

���

������
������
�������
��������
��������

Figure 5.4: Effect of batch size and GVT interval on performance: 8K simulated nodes are
simulated using 8 cores (top 2 plots), and 512K using 256 cores (bottom 2 plots).

mode is suitable for performing large simulations using TraceR and we use it for the results

in the rest of this thesis.

5.5.3 Effect of batch size and GVT interval

Figure 5.4 shows the impact of batch size and GVT interval on performance when simulating

3D Stencil on a 3D torus with 8K nodes and 512K nodes using 8 and 256 cores, respectively.

Note that the choice of the number of simulated nodes and that of simulating cores affects the

results minimally except at the limits of strong scaling. These results are for the TorusNet

model; similar results were obtained for SimpleNet model also. The first observation from

Figure 5.4 (left) is the diminishing increase in the event rate as the batch size is increased.

The improvement in the event rate is because of two reasons: positive impact of spatial

and temporal locality in consecutive event executions and overlap of communication with

computation. However, as the batch size becomes very large, the communication engine is

progressed infrequently which reduces the overlap of communication with computation. At

the same time, the number of rollbacks increases due to the delay in communication and

execution of pending events to be rolled back. These effects become more prominent on

95

#LPs/KP Efficiency (%) Time(s)

1 51 82
2 38 92

16 2 119
128 -87 189

Figure 5.5: Impact of #LPs per KP.

larger core counts as shown by the event efficiency plots in Figure 5.4 (right).

Next, we observe that the event rate typically improves when a large GVT interval is

used. This is because as the GVT interval is increased, the time spent in performing global

synchronization is reduced. Infrequent synchronization also reduces idle time since LPs with

variation in load do not need to wait for one another. These results are in contrast to

past findings that were performed on PDES with uniform loads on the LPs [108]. When a

sufficiently large GVT interval is used with a large batch size, memory limits force certain

LPs to idle wait till the next garbage collection. As a result, the rollback efficiency and event

rates drop as shown in the Figure 5.4. Based on these findings, we use a batch size of 16

and GVT interval of 1024 for all simulations in the rest of this chapter.

5.5.4 Impact of number of LPs per KP

ROSS groups LPs together to form kernel processes (KPs) to optimize garbage collection.

This causes all LPs in a KP to rollback if any one of the LPs has to rollback. In [108], it

was shown that although smaller values of LPs per KP reduce the number of rolled back

events, they do not have a significant impact on the execution time. Our findings, shown

by a representative set in Figure 5.5 (obtained by simulating 3D Stencil on 8K nodes of 3D

Torus with TorusNet model on 8 cores), differ – smaller values of LPs per KP reduce the

execution time also. As we reduce the number of LPs per KP from 128 to 1, the execution

time decreases by 57%.

The primary reason for the difference in impact of LPs per KP is the varying event

efficiency. For synthetic benchmarks used in [108], the event efficiency is greater than 95%

in all cases. As a result, any further increase caused by decreasing LPs per KP is marginal.

In contrast, for real application simulations, the event efficiency is much lower. Thus, a

reduction in the number of rollbacks can significantly impact the overall execution time.

96

���

����

�����

������

����� ����� ������ ������ ������

�
��
��
��
�

������������������������������������

������������������������������������

������
����������

������������
�������������

Figure 5.6: Sequential simulation time.

5.6 Performance comparison

We now compare the performance of TraceR with other simulators and analyze its scal-

ing performance and prediction accuracy using the packet-level model (TorusNet). Here,

TraceR is executed in optimistic mode with batch size = 16, and GVT interval = 2048.

The simulated network topology is 3D torus, which is the only topology available in TraceR,

BigSim, and SST.

5.6.1 Comparison with sequential executions

We first compare the sequential performance of BigSim, SST (online mode), TraceR-single,

and TraceR-multi for simulating 3D Stencil’s execution on various node counts. Figure 5.6

shows that TraceR is an order of magnitude faster than BigSim. This is primarily because

of the inefficiencies in BigSim’s torus model and its PDES engine. Compared to SST, the

execution time of

The simulation time with TraceR-single is lower by 50% in comparison to SST, which we

believe is due to ROSS’s high performing DES engine. The performance of TraceR-single

is also better than TraceR-multi. This is because while TraceR-single increases number

of events visible to ROSS, it makes better use of cache by storing the triggered event along

with the message. Hence, for the remaining experiments in this thesis, we use and report

the performance of TraceR-single as TraceR’s performance.

97

���

����

�����

������

�� �� �� �� ��� ��� ��� ���� ���� ����

�
��
��
��
�

��������������������������

���������������������������������������

����
����

���
��

��

���

����

�����

������

�� �� �� �� ��� ��� ��� ����

�
��
��
��
�

��������������������������

��

��������

Figure 5.7: Scalability of TraceR when simulating networks of various sizes.

5.6.2 Parallel scaling and validation of TraceR

Next, we present scaling results for TraceR using packet-level TorusNet model. The com-

parison with other simulators was not possible due to the following reasons: 1) The parallel

execution of BigSim, on 2-16 cores, is an order of magnitude slower than its sequential ver-

sion. This is due to high overheads introduced by its PDES engine. 2) The parallel version of

SST does not work with packet-level models, and hence is not available for a fair comparison.

Figure 5.7(left) presents the execution time for simulating 3D Stencil on various node

counts of 3D torus. It is clear that TraceR scales well for all simulated system sizes. For

the simulations with half a million (512K) nodes, the execution time is only 542s using

TorusNet. For smaller systems, the execution time is reduced to less than 100s.

Figure 5.7 (right) shows the scaling behavior of TraceR when simulating LeanMD on

32K nodes of a 5D torus. The simulation takes only 65s on 128 cores using TorusNet.

However, the speed up for simulation of LeanMD is lower in comparison to the speed up

for simulating 3D Stencil. This is due to LeanMD’s relatively more complicated interaction

pattern and dependency graph, which causes more rollbacks on large core counts.

Validation: To validate various network models, we have conducted the following experi-

ments:

• Dragonfly: We have made minimal modifications to the dragonfly network model in

CODES which has been validated in the past [122].

• Fat-tree: To validate the fat-tree model, we first modified the routing scheme inside

Booksim to match our implementation. Alternatively, we also modified the routing

scheme implemented in our network model to match with the schemes available in

Booksim. Next, we implemented a benchmark that mimics the communication pattern

generated by the uniform pattern available in Booksim. Finally, since Booksim does

98

not support software-related overheads, we set those values to be zero in TraceR

for these validation experiments. Using a fat-tree constructed with radix 8 switches

and three levels, both Booksim and TraceR are executed to predict the injected and

accepted flit rate. We find that the predictions of TraceR are within 3% of the

predictions made by Booksim, thus validating the fat-tree network model.

• Torus: As described earlier, the Blue Gene/Q systems allow isolated execution of

jobs and hence are ideal for validating the torus network model. For both static and

adaptive routing, the following benchmarks were first executed on the real machine

and then simulated using TraceR to obtain real and predicted execution time.

1. Ping pong between various pairs of nodes of different message sizes.

2. Simultaneously communicating multiple pairs of nodes, with different placements

to cover various overlap scenarios.

3. Permutation communication pattern in which each MPI rank communicates with

a randomly selected partner for an allocated of size 512 nodes with 16 cores each.

For each of these benchmarks, we find that the predicted time to execute is within 5%

of the real execution time. These results combined with validation presented in earlier

papers [111] demonstrate that the torus network model used by TraceR is accurate.

These results also show that the simulation components added on top of CODES’s

network model are correct and predict the performance correctly.

5.7 Summary

In this chapter, we have presented a trace-driven simulator, TraceR, for studying commu-

nication performance of HPC applications on current and future interconnection networks.

TraceR shows how one can leverage optimistic parallel discrete-event simulation with re-

versible computing to provide scalable performance. We have also shown that TraceR

outperforms state-of-the-art simulators such as BigSim and SST in serial mode and signifi-

cantly lowers the simulation time on large core counts. In the following chapters, we show

two example applications of TraceR. Chapter 6 uses TraceR to compare three commonly

used network topologies at the scale of the next generation supercomputers: torus, fat-tree,

dragonfly. Following that, Chapter 7 deploys TraceR to study the impact of various net-

work configuration parameters on the performance of two mini-applications executed on the

torus and dragonfly networks..

99

CHAPTER 6
Comparison of Networks

A primary motivation for development of TraceR (presented in Chapter 5) was to build

a simulator that can be used to compare performance of different network topologies for

different types of communication patterns in a practical time frame. In this chapter, we use

TraceR to achieve that goal by first designing system prototypes with different network

topologies, and then comparing communication performance obtained on these systems. For

the comparison, we use a set of five communication patterns induced by mini-applications

which are representative of common HPC workload. We also develop a model to estimate the

cost of networks for the prototype systems, and combine the cost metrics with performance

metrics to compare the cost-effectiveness of various network topologies.

6.1 Network prototypes

Three interconnect topologies are widely used to build HPC networks: fat-tree, torus, and

dragonfly. Hence, we focus on comparing prototype systems of similar capabilities built using

these topologies. We measure the capability by the total number of nodes in the system; this

combined with the assumption that nodes with similar capacity are used in every system,

leads to prototype systems with similar peak performance (FLOPS) built using different

network topologies. In addition to the choice of topology, many design choices need to be

made to fully define a prototype system. In order to primarily focus on the effects of network

topology, we keep the following design choices constant across different prototypes of a given

capability:

• Link bandwidth: Bidirectional bandwidth of links connecting a pair of routers/switches

in the system.

100

• Injection bandwidth: Bidirectional bandwidth of bus/link that connects a node’s NIC

to its router/switch.

• Floating point to injection bandwidth ratio (F/B): This is the ratio of node’s compu-

tation capability to the injection capability of its NIC.

• Ranks per node: Number of control flows (MPI ranks, Charm++ objects, etc.) that

are executed on a given node.

• Injection policy: The policy used by the NIC to select message that should be packe-

tized to generate the next packet transmitted to the router/switch.

• Packet size: Size of individual packets that messages are broken down to by the NIC.

This is the smallest transmission entity visible to the simulator.

• Router buffer: Capacity of each of the channel of a router port that holds packets in

transit; defined as a multiple of the packet size.

• Software delay: The delay caused by software stack for initiating a message send or

processing a received message.

While the above mentioned design choices are kept constant across different prototypes,

most of the other components/characteristics are decided based on the network topology be-

ing constructed. The fundamental design principle that guides our topology specific choices

is that the network should be balanced. For example, given the large number of hops on

torus topologies, the number of nodes attached to a torus router is chosen to be one [123]

(more on this later in this section). Additionally, practicality of design choices is also con-

sidered. Design choices that lead to unrealistic systems have been omitted. Here is a list of

components/characteristics that are determined based on the topology being used:

• Router connectivity: Fundamentally, the choice of topology determines how various

pairs of routers/switches are connected.

• Number of nodes per router: In order to build a balanced network, the number of injec-

tion ports should be such that the outgoing links should be able to transfer the injected

traffic at full speed, while also serving the traffic from other routers at full speed. Given

that we want the same F/B ratio (floating point capacity to injection bandwidth ratio)

across network topologies, this imply that the number of nodes connected to a router

depends on the network topology being used.

101

• Routing scheme: The choice of topology also determines the routing schemes that can

be used to send messages from one node to another.

• Network latency/delay: When packets are injected onto the network, they encounter

delays of several types, e.g. time to compute route when packet arrive at a router, or

latency to traverse from one router to another, etc. These parameters are typically

dependent on the network topology and the size of the system being studied.

• Job placement: Based on the network and the communication pattern, the placement

of communicating pairs that provides the best performance may change. We rely on

past results, personal experience, and simulation results to find the task mapping that

gives the best performance on each of the topology.

Table 6.1 summarizes the design choices made in the prototype systems that are simulated

in this chapter; these choices are described in detail next.

6.1.1 Torus

Multi-dimensional torus networks have been used in many HPC systems, e.g. Cray XE’s

3-D torus, IBM Blue Gene/Q’s 5D torus, and K-computer’s 6D-torus. In a typical torus

network, messages travel many hops when sent from a source node to destination node. The

average number of hops depends on the application being executed. Thus, the best one can

do to create a balanced torus-based system is to attach only one node per router [123]. We

also adopt this choice when designing prototype systems based on torus.

As the number of dimensions increase in a torus, the bisection bandwidth also increases for

a given router (or node) count. Additionally, the number of one-hop neighbors also increases.

Thus, our prototype systems use 6D-torus, which is the largest dimensionality that has been

used in a production torus-based system. In terms of routing, most torus systems use

minimal path routing which are either static or adaptive in nature. Our prototype systems

also provides these routing options. Finally, given the low radix and localized nature of

router connections, we use lowest values for the latency on torus-based prototypes.

6.1.2 Dragonfly

Dragonfly topology is being used in some of the largest next generation supercomputers

being built (e.g. Aurora at ALCF, Cori at NERSC). In their introductory paper, Kim et

al. [15] proposed that for a dragonfly network built using routers with radix k, k
4

ports should

102

be used for injection, k
2

ports should be used for local connections within a group, and k
4

connections should be used for global connections across groups. These values are suitable

for creating a balanced system which uses direct routing, i.e., for every packet injected onto

the network, two local and one global links are used in the worst case. However, recent

studies and practical deployments [16, 85, 89] have shown that indirect or hybrid routing is

essential to obtain good performance on dragonfly networks. In indirect routing, for a given

packet, three local links and two global links may be used. Thus, in a balanced system which

uses indirect routing, k
6

ports should be used for injection, k
2

ports should be used for local

connections, and k
3

ports should be used for global connections. These are the values used

in our prototype systems and simulations.

Among many routing schemes that have been proposed for dragonfly networks, three

have been deployed in production systems: direct, indirect, and hybrid. Our experiments

make use of these schemes for evaluating dragonfly networks. The router radix required to

construct dragonfly networks is typically larger than the torus. Moreover, the length of wires

that connects the groups is also longer. Hence, the latency used for dragonfly networks is

higher than the latency used for torus-based system.

6.1.3 Fat-tree

Over the last 10 years or so, the number of systems with fat-tree topology, using either

infiniband or ethernet, has grown significantly. These systems now account for as many

as 50% of the total number of machines. Moreover, two of the largest next generation

supercomputers, Summit at ORNL and Sierra at LLNL, will also be based on the fat-tree

network topology. To create a full-bisection fat-tree, for every switch at level i, the number

of ports connected to switches at levels i + 1 and i − 1 should be equal, i.e. half the ports

should connect to switches at level i + 1, and the other half should connect to switches at

level i − 1. For the leaf switches, the switches at lower levels are replaced by the nodes.

This construction is used in our prototype systems to build 3-level fat-tree networks. The

number of levels is chosen to be three for two reasons: 1) We want to limit the radix of the

switches being used to a reasonable value. For large systems, a two-level fat-tree may require

switches with very large radix (>100). 2) Use of 3-level fat-tree also limits the maximum

number of hops traversed by any message to 5 switches. Adding more level increases this

value further, which may impact the performance significantly.

Most routing schemes for fat-tree networks use shortest path, e.g. Up/Down routing.

Many of these routing schemes are designed to optimize performance for specific communi-

103

Design Option Torus Dragonfly Fat-tree

Number of nodes (n)
and ranks per node

Kept constant (∼46656)

Router radix (r) 13 6*ceil((n
18)

n
4) (48) 2*ceil(n

1
3) (72)

Nodes per router 1 r
6 (8) r

2 (36)

Routing scheme Static and adap-
tive with minimal
paths

Adaptive with minimal
paths, non-minimal paths,
and hybrid

Adaptive with
minimal path

Network latency/delay Lowest (∼30 ns) Medium (∼50 ns) High (∼60ns)

Job placement Blocked mapping Random at node-level Linear

Link and injection
bandwidth per node

Kept constant (12.5 GB/s)

Packet size Kept constant (1,024)

Router buffer Kept constant (65,536 bytes)

Software delay Kept constant (1 microsecond)

Table 6.1: Design choices for prototype systems. Specific values shown are for the systems
compared in the next section. The job placement choices have been made after comparing
different types of placement schemes for each of the network.

cation pattern. Given our evaluation of significantly different communication patterns, we

avoid such customizations and deploy full adaptive Up/Down routing with minimal paths

for the prototype systems. Finally, the latency used for fat-tree based system is highest

among the three networks, due to their largest router radix and typically long wire length.

6.2 Communication performance comparison

Even when high-level decisions have been made with regard to various design choices, com-

parison of different network topologies requires us to fully specify prototype systems. In

addition to summarizing the high-level design choices, Table 6.1 also presents these specifica-

tions. Here, our goal is to compare systems of size comparable to the largest supercomputers

in the next generation of HPC systems, viz. systems with 150 − 200 PetaFlops capability.

Current trends suggests that the capability of individual nodes in the next generation sys-

tems will be approximately 4 TF. Thus, we focus on systems with node count in the range

45, 000 to 50, 000.

In the given node range, a symmetric 6D-torus can be created with length of each dimen-

sion being 6, i.e. a 6×6×6×6×6×6 torus. The number of nodes in this prototype system

is 46, 656. These 46, 656 nodes can also be connected as a fully-formed 3-level fat-tree using

switches with 72 ports. The closest port count for a dragonfly network in this node range

104

is 48. However, a fully-formed dragonfly network with 48 port router consists of > 70K

nodes; a similar network constructed using 42 port routers can only support ∼ 43K nodes

at its maximum. Thus, in order to construct a balanced dragonfly-based system with ∼ 46K

nodes, we make two modifications to the dragonfly network constructed using 48 routers:

1) Only 10 global connections are attached to every router; this leads to a system with 240

groups each with 24 routers. 2) The link bandwidth of each of the global link is increased

by 60%. In this way, using ten global links only, we can balance the traffic from 24 local

links. This modified dragonfly system has 46, 080 nodes, which is only 1.2% less than the

prototype system constructed using torus and fat-tree topologies.

The link bandwidth and the injection bandwidth per node has been chosen to be 12.5

GB/s, which matches with the corresponding values for the next generation systems (to the

best of our knowledge). The packet size for running the simulations has been set to 1, 024

bytes for two reasons: 1) Similar values have been used in torus and dragonfly networks

(BG/Q, PERCS). 2) Efficiency and accuracy of the simulator are reasonable for this value

of packet size. The size of router buffer, which is typically not known in public domain, is

chosen to fit 64 packets based on private conversations with researchers in industry. Finally,

the network latency and software delay values have been appropriately chosen to resemble

the current systems.

Job placement or task mapping: Placement of tasks relative to each other can have

a significant impact on the communication performance of an executing pattern. Thus,

it is important that the task mapping which provides the best performance is used when

comparing different network topologies. In our experiments, we have tested various such

mappings and used the one which provides the best performance as listed below:

• Torus - Mappings tested: random, linear, blocked. Best mapping: blocked mapping.

• Dragonfly - Mappings tested: random at node level, random at router level, linear,

blocked, round-robin at node level, round-robin at router level. Best mapping: random

at node level mapping.

• Fat-tree - Mappings tested: random, linear, blocked. Best mapping: linear mapping.

Using the prototype systems and job placement policies described above, we perform

simulation of five representative mini-applications. Given the high capacity nodes, it is

expected that multiple control flows (MPI ranks, Charm++ objects) should execute on each

of the nodes. It is expected that the number of cores/threads available on each node will be

greater than 100, possibly a few hundreds. However, it is also expected that not all these

105

resources will execute as independent ranks; rather within node parallelism will be deployed

to reduce the number of communicating ranks per node. Based on recent trends, we choose

64 to be the number of ranks executing per node. Thus the total number of ranks simulated

are around three million (64 on each of ∼ 46K nodes).

6.2.1 Stencil

As stated in Section 2.2, one of the common decomposition in scientific applications is to

partition the problem domain in a structured manner among ranks. For example, a 3D

domain can be divided among ranks arranged as a 3D grid, wherein each rank owns a

sub-cuboid. In a typical relaxation-based method, this decomposition leads to each rank

communicating with its neighbors in the grid. Note that the grid neighbors may be far

apart in terms of MPI ranks, and thus blocked job placement is often performed to improve

the communication performance.

We use 4D Stencil, in which ranks are arranged in a four-dimensional grid, as a represen-

tative mini-application for this type of decomposition and its communication pattern. The

dimensions of the process grid used in these experiments are 160× 128× 192× 192. Within

this grid, for all the networks, the ranks within a node are blocked together as a sub-grid

of dimension 4 × 4 × 2 × 2. This is done to minimize the amount of traffic that is injected

onto the network. For each of the three prototype systems, execution of the 4D Stencil

kernel is simulated for six different message sizes: 5 KB, 50 KB, 250 KB, 500 KB, 1 MB,

2 MB. For the torus-based system and dragonfly-based system, we found that the adaptive

routing and hybrid routing provide the best performance, respectively; hence, we use them

for comparison with the fat-tree based system, which used adaptive Up/Down routing.

Figure 6.1 presents a comparison of 4D Stencil’s performance when executed for different

message sizes on the three networks. For the smallest message size (5 KB) the run time for

all the networks is very similar (around 400 microseconds). However as the message size is

increased to 50 KB and 250 KB, the increase in execution time for torus is much smaller

in comparison to the other networks. For torus, the execution time increases by 6x as the

message size is increased by 10x, while the increase is 9.5x and 11.5x for dragonfly and fat-

tree, respectively. A further increase in message size of 5x (to 250 KB) leads to relatively

similar increase in execution time on all the network (5.5x on torus, 5.9x on dragonfly, and

6.5x on fat-tree).

As shown in Figure 6.1 (right), for large messages, the increase in execution time for both

torus and dragonfly network is proportional to the increase in the message size. However,

106

�������

������

�����

����

�� ��� ����

��
��
��
��
��
���
��
��
��
��
��
�

��������������������

������������������������������������

����� �������� ��������

�����

����

��

���� �� ��

��
��
��
��
��
���
��
��
��
��
��
�

��������������������

������������������������������������

����� �������� ��������

Figure 6.1: Communication performance of different networks for 4D Stencil. Torus out-
performs dragonfly, which in turn performs better than fat-tree for large message sizes. For
smallest message size, all networks show similar performance.

the increase in execution time on fat-tree is higher, ∼ 2.25 for every 2x increase in the

message size. As a result, for 2 MB messages, the execution time for fat-tree is three times

the execution time on torus, and 1.7 times the time for dragonfly.

6.2.2 Neighborhood communication

The next communication pattern we study examines the effect of communication restricted to

a process’ rank neighborhood. Such communication frequently arise in two scenarios: 1) An

application is written in such a way that a given rank communicates only with other ranks

that are in its rank neighborhood (e.g. in bubble sort). 2) The user performs topology-

aware mapping to ensure that all the processes that communicate heavily are placed on

nearby nodes. Our benchmark, called Near-Neighbor (NN), emulates these patterns by

selecting 20 − 30 communicating partners per rank within a rank neighborhood of 2000.

We compared performance for various topology aware mappings and show results for the

placement that provides the least execution time.

Figure 6.2 (left) compares the performance of torus, dragonfly, and fat-tree for running

NN with small message sizes. At 5 KB message size, torus shows 1.7x speed up over both

dragonfly and fat-tree. On all other message sizes, torus is 2x faster than dragonfly and fat-

tree, which show similar performance. This is due to the high suitability of NN pattern to

the torus network: by carefully mapping clusters of nearby ranks to smaller blocks (cuboids

in the torus network), we can reduce the number of hops while minimizing the interference

among communication induced by the clusters. Attempts to perform similar mapping in

dragonfly and fat-tree leads to more interference, while not affecting the number of hops

(which are already very low).

107

������

�����

����

�� ��� ����

��
��
��
��
��
���
��
��
��
��
��
�

��������������������

��������������������������

����� �������� ��������

����

��

���� ��� ��

��
��
��
��
��
���
��
��
��
��
��
�

��������������������

��������������������������

����� �������� ��������

Figure 6.2: Communication performance of different networks for Near-Neighbor (NN). Ir-
respective of the message size, torus is faster by 2x in comparison to dragonfly and fat-tree.

��

����

����

����

����

��

����

�� ��� ��� ����

�
��
�
��
��
��

�
��
��
��
��
��

���
��
�
��
���
��
��
��
��

��������������������

�����������������������

����� �������� ��������

Figure 6.3: Communication performance of different networks for Subset All-to-All (A2A).
With careful mapping, the execution time is similar for all the networks, with dragonfly
being marginally better and fat-tree being marginally worse than torus.

6.2.3 Subset All-to-All

Multi-dimensional Fast-Fourier Transforms are one of the most common operations per-

formed in scientific applications. Both 1D and 2D decomposition of data to perform FFT

lead to a communication pattern in which subsets of ranks perform all-to-all operations

within the subsets. The A2A benchmark represents this scenario in our experiments. The

rank space is arranged as a 3D grid of dimensions 64× 144× 320. The all-to-all operation is

performed along the first and the second dimension, i.e. 144× 320 1D FFTs are performed

among subsets of size 64, and 64× 320 1D FFTs are performed among subsets of size 144.

In order to optimize communication, the first dimension is wrapped entirely within a node.

Figure 6.3 compares the execution time of A2A for four different message sizes: 5 KB,

108

��

����

��

����

��

�� ��� ����

�
��
�
��
��
��

�
��
��
��
��
��

���
��
�
��
���
��
��
��
��

��������������������

������������������������������

����� �������� ��������

��

����

��

����

��

���� ��� ��

�
��
�
��
��
��

�
��
��
��
��
��

���
��
�
��
���
��
��
��
��

��������������������

������������������������������

����� �������� ��������

Figure 6.4: Communication performance of different networks for Perm. Fat-tree provides
the best performance for all message sizes, followed by dragonfly which is better than torus
by ∼ 25%.

25 KB, 50 KB, 100 KB. It can be seen that for all the message sizes, the performance of

the three networks is comparable. The fat-tree provides marginally slower execution time,

with torus and dragonfly being 10− 20% faster. Note that this similarity of performance is

obtained by finding the best mapping for each of the network. If instead of blocked mapping,

the default mapping is used in torus, its execution is almost doubled. Similarly, if linear

mapping is used instead of randomized mapping for the dragonfly network, its performance

goes down by more than 50%. Finally, if randomized mapping is used instead of linear

mapping for fat-tree, it takes almost twice the time to execute A2A for any given message

size.

6.2.4 Transpose communication

The next communication pattern tests communication performance of communicating part-

ners situated far-away, both logically and physically. In the given benchmark, Perm, a rank

communicates with another rank that is placed diagonally opposite to it assuming linear

rank space. Topology aware mapping is not performed for any of the networks since the

purpose of this benchmark is to test performance for such as unfavorable case. These type

of patterns can be obtained for various reasons, two of which are: 1) Applications that per-

form transpose operation on large matrices need such far-away communication. 2) On many

systems, job placement policies can allocate nodes of a given job far away in the system; as

a result, a near-neighbor pattern manifests as a transpose pattern in this case.

In Figure 6.4 (left), we compare the execution time for three message size: 5 KB, 50 KB,

and 250 KB for simulating Perm. At the smallest size, 5 KB, fat-tree provides the minimum

execution time of 123 microseconds, followed by torus with 147 microseconds, and then by

109

������

�����

����

�� ��� ����

��
��
��
��
��
���
��
��
��
��
��
�

��������������������

����������������������������������

����� �������� ��������

����

��

���� ��� ��

��
��
��
��
��
���
��
��
��
��
��
�

��������������������

����������������������������������

����� �������� ��������

Figure 6.5: Communication performance of different networks for Spread. Fat-tree outper-
forms dragonfly by a small margin, while both of them are significantly faster than torus for
all message sizes.

dragonfly at 167 microseconds. However, as the message size is increased by ten times to

50 KB, the execution time for torus increases proportionately by 10.5x, while dragonfly

and fat-tree increases by 7.5x and 8x only. Hence, while fat-tree provides the minimum

execution time of ∼ 1 ms, the dragonfly outperforms torus by 20%. Thereafter, the increase

in execution time is proportional to the increase in message size for all networks, with minor

variations. At the largest message size (2 MB shown in Figure 6.4 (right)), the execution

time on fat-tree is 45% less than torus, with dragonfly in between.

6.2.5 Distributed communication

The last communication pattern we study is a distributed communication pattern. In this

pattern, each rank communicates with an arbitrary set of partners in such a way that obtain-

ing good topology aware mapping is not feasible. Among other scenarios, this communication

pattern provides an approximation for performance of a complete all-to-all communication

pattern, which is often difficult to simulate. Applications that are load balanced based on

compute load, or implement some form of distributed hash-tables, or use approximations

for force computations from distant objects exhibit such a communication pattern. In our

benchmark, called Spread, we arbitrarily select 15− 20 partners for every rank to mimic the

distributed communication pattern.

Figure 6.5 presents a comparison of the performance obtained when Spread is simulated

on the three prototype systems using various message sizes. For all message sizes, fat-tree is

the best performing network. It outperforms the dragonfly network by a small margin which

varies from 10% to 15%. The growth in execution time is proportional to the increase in

the message size for both these networks. Both these networks provide better performance

110

���

���

���

���

���

���

���

���� �� ���� �� ���� ��

�
��
��
��
�

������������

�����������������������������

�����������
���������������������

����

����

����

����

�����

�����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�
��
��
��
�

������������

������������������������������

�����������
����������������������������������

Figure 6.6: Cost model for copper and optical cables.

than torus, which also shows proportional increase in the execution time. For the smallest

message size of 5 KB, the fat-tree and the dragonfly are better than torus by 32% and 20%,

respectively. At the largest message size of 2 MB, the improvements for the former are 30%,

while the latter provides 19% lower execution time in comparison to torus.

6.3 Network cost comparison

In addition to performance, cost of networks being built is also critical to their deployment.

In this section, we create models to estimate and compare the cost of building networks for

prototype systems of various sizes. To create these models, we first find the price of cables

and routers available in the market1. By performing regression on these values, appropriate

models are obtained for estimating price of cables and routers based on different independent

variables.

6.3.1 Cost models

Three types of connections are commonly used in building HPC networks: backplane-based,

copper cables and optical cables. Since the cost of connections performed via backplane

is extremely low, we ignore them in our models. Among others, copper cables are used for

short distance connections (up to six meters or so), while optical are used for the rest. Other

than the material used to build cables, their length plays an important role in determining

their cost. Figure 6.6 shows change in price of 56 Gbps copper and optical cables based on

their length. By using linear regression on the data shown on the left side of the figure, we

1All prices obtained from Colfax as of Dec, 2015.

111

http://www.colfaxdirect.com/store/pc/home.asp

obtain the following function that estimates the cost of copper wire with an R2 value higher

than 0.99:

costcopper(x) = 10.743x+ 56.2 (6.1)

where x is the length of cable.

Similarly, the right side graph in Figure 6.6 shows how the price of 56 Gbps optical cable

changes with the length of the cable. In this case, very high value of R2 is obtained by using

a quadratic polynomial as shown below:

costoptical(x) = 0.028x2 + 5.787x+ 340.95 (6.2)

where x is the length of cable.

The simulation results presented in the previous section are based on 100 Gbps link band-

width, which is expected to be used in the next generation systems. If the price of cables

with 56 Gbps bandwidth is compared with the cost of cables with 100 Gbps bandwidth, we

observe a 1.35x increase in the price of a given length. In our cost computation, we use this

ratio to estimate the cost of cables with 100 Gbps bandwidth. Note that the model used

here is developed based on cables with 56 Gbps because more data points are available for

these cables; in contrast only 2-3 data points are available for 100 Gbps cables.

Next, we look at the price of routers, where the number of ports in the router affect the

cost significantly. Figure 6.7 shows the variation in cost of a QDR router (with 40 Gbps

bandwidth per port) and a FDR router (with 56 Gbps bandwidth per port) as the number

of ports is varied. It can be seen that for both QDR and FDR routers, the price of the router

is a linear function of the number of ports. In our study, we use the formula obtained by

performing linear regression on the data for QDR router since the number of ports for these

data points is closer to the values we have used in the prototype systems:

costrouter(x) = 140.11x+ 646.11 (6.3)

where x is the number of ports.

Again, a comparison of the cost of router with 40 Gbps per port capacity with a router

with 100 Gbps per port capacity suggests a 2x increase in the price as the bandwidth is

increased. Hence, we use this value to estimate the cost of routers in our analysis. It is to be

noted though that we found a large variation in the cost of routers across different vendors

and different per port bandwidths. As a result, the absolute values presented here may vary

significantly based on the vendor and bandwidth chosen as base values.

112

�����

������

�������

�� ��� ���� �����

�
��
��
��
�

���������������

���������������

�������������������
������������������������

�������������������
������������������������

Figure 6.7: Cost model for routers.

6.3.2 Router and cable cost

Estimating the cost of router is straightforward. Based on the formula defined in Table 6.1,

the number of routers and their radix can be computed. Cost of each of these routers is

then computed using the model defined in the previous section. This value multiplied with

the number of routers provide the estimated cost of routers. In Figure 6.8, this cost is

shown in black as a bar chart. It can be seen that for all the networks, the router cost

is a large value; it is in fact approximately 80%, 75%, and 85% of the total network cost

for torus, dragonfly, and fat-tree topologies, respectively. In terms of absolute values, the

total number of routers required to build torus networks is very large, and hence the total

router cost is also very large. The number of routers required to build a dragonfly network

is approximately double the number of routers needed by the fat-tree network, though the

radix of the routers needed by dragonfly network is smaller. Hence the total router cost of

a dragonfly network is only 25− 30% higher than the total router cost of the corresponding

fat-tree network. An interesting result to note is that as the number of nodes is increased

by 10x, from 10 K to 100 K, the router cost for all the network also increases by a factor of

ten.

Estimating total cable cost is more complex than estimating total router cost since cables

of different lengths are used for connecting routers and nodes placed at different locations.

We briefly describe the layout used for each of the networks based on which cable costs are

computed.

Torus: For torus networks, we assume that each cabinet/rack consists of 128 nodes arranged

113

��
���

����
����
����
����
����
����
����
����
����

��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�
��
��
��
���
��
��
��

�����������������������������

�����������������������������������

��
���
���
���
���

����
����
����
����
����
����

��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�
��
��
��
���
��
��
��

�����������������������������

��������������������������������������

��
���
���
���
���

����
����
����
����

��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�
��
��
��
���
��
��
��

�����������������������������

��������������������������������������

Figure 6.8: Estimated router cost for building networks for prototype systems based on
different interconnect topologies.

��

���

���

���

���

����

����

����

��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�
��
��
��
���
��
��
��

�����������������������������

����������������������������������

��
���
���
���
���
���
���
���
���

��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�
��
��
��
���
��
��
��

�����������������������������

�������������������������������������

��

��

���

���

���

���

���

��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�
��
��
��
���
��
��
��

�����������������������������

�������������������������������������

Figure 6.9: Estimated cable cost for building networks for prototype systems based on
different interconnect topologies.

as a 4× 2× 2× 2× 2× 2 block. The size of the cabinet is estimated to be two meters high,

with one meter depth and width. All the connections within this block are electrical, made

using the backplane. At each of the 5-dimensional surfaces of this block, end points of the

connections for the sixth dimension are added. Based on the total number of nodes, the

number of these cabinets are computed; these cabinets are then arranged as a 2D-grid. The

cabinets in the rows are placed next to each other without any gap, while the rows are placed

at the distance of 1 m. Three out of six dimensions are connected within a row with an

increasing cabinet distance, while the other three connections are made across rows along the

column. This leads to the following connection set up in a row of cabinets: positive direction

of first dimension is made to the adjacent cabinet (distance one), while the negative direction

is made to the cabinet at distance two. The positive direction of the second dimension is

made to the cabinet at distance three, while the negative direction is at distance six. Finally,

the positive direction of third dimension is at distance seven, while the negative dimension

is at distance 14. Similar set up is done along the column for the other three dimensions.

Dragonfly: Each group of the dragonfly network is placed in two cabinets that are situated

right next to each other. This is done since it is hard to accommodate all the nodes that are

part of a group in one cabinet. The cabinets are same size as the torus, and are arranged

in exactly the same manner as the torus. Intra-group connections within a cabinet are

supported via backplane, while connection across cabinets are copper based. All the inter-

114

group connections are made using optical cables that are connected via a 2D-grid set up on

top of the cabinets.

Fat-tree: Using similar cabinets as for torus and dragonfly, multiple rows of cabinets are

laid out. Each cabinet hosts three level 0 and level 1 routers, and the nodes connected to

the level 0 routers. Each row consists of cabinets that contain routers which belong to a

common level 0 cluster, i.e. we have as many rows as the number of level 0 clusters. The

routers are rack mounted, and are connected to the nodes via copper cables. Level 0 to

level 1 connections among routers are restricted to individual rows, while level 1 to level 2

connections can be restricted to individual columns if the level 2 routers are placed in the

central row in a relatively sparse set up.

Based on the layouts described above, the computed cable cost is presented in Figure 6.9.

The large number of router in the torus network also leads to a large number of cables.

Hence the total cable cost for torus is very high. In contrast, for the fat-tree, although the

router radix is high, the small number of routers leads to low total cable cost. For both

these networks, the increase in the cable cost is proportional to the increase in the number

of nodes. In contrast, for the dragonfly, the cable cost increases by 16x for a 10x increase

in node count. This is partially due to increased radix as the systems become large, and

partially due to the requirement for longer wires for the inter-group connections.

6.3.3 Total cost comparison

Figure 6.10 compares the estimated cost for building networks based on the torus, dragonfly,

and fat-tree topologies. It is easy to see that the cost of building a torus network is much

higher (2 − 3x) in comparison to the cost of dragonfly and fat-tree networks. As discussed

earlier, this is primarily due to the high router count, which also leads to higher cable count

in the torus network. The comparison among dragonfly and fat-tree is more interesting.

At the lowest node count (10 K), the cost of building a dragonfly is 30% higher than the

fat-tree. However, as the node count is increased, this difference increases to 50%. Within

this 50%, only 20% increase is due to the router cost, which accounts for 70% of the total

cost of the dragonfly. The cable cost increases much faster for the dragonfly, and accounts

for the remaining 30% of the cost difference with the fat-tree.

115

��

����

����

����

����

����

����

����

��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�
��
��
��
���
��
��
��

�����������������������������

���������������������������������������

�����
��������

��������

Figure 6.10: Comparison of estimated cost for building different networks for a given node
count. Only router and cable cost are considered.

6.4 Performance Per Dollar

So far, we have compared the performance and the cost of the three network topologies

(torus, dragonfly, and fat-tree) individually. In this section, we attempt to combine these two

metrics together to provide a more insightful comparison of these topologies. The first step

in this comparison is to compute the communication rate obtained when a communication

pattern is simulated on a network. To achieve this, we find the total number of bytes that are

communicated in a given simulation, and then divide it by the execution time to obtain bytes

per second, which is the communication rate. As one would expect, we desire networks with

higher communication rate. The communication rate is divided by the cost of the network

to obtain a metric that is the focus on this section: performance per dollar.

4D Stencil and NN: Figure 6.11 presents a comparison of performance per dollar for

the three networks when 4D Stencil is executed on them for six different message sizes.

The corresponding performance results were presented in Figure 6.1. The first thing to

observe is the difference in performance per dollar at the lowest message size (5 KB). At this

message size, the performance of all the three network is same, but the difference in cost

116

��

���

�� ��� ���� ���� �� ��

�
��
�
��
��
��
��
��
�
��
��
��

�
��
��
��
��

��������������������

������������������������������������

����� �������� ��������

Figure 6.11: Although torus provides the best performance, its performance per dollar is
worst among the three networks. As the message size increases, the superior performance of
dragonfly leads to a better performance per dollar.

��

���

�� ��� ���� ���� �� ��

�
��
�
��
��
��
��
��
�
��
��
��

�
��
��
��
��

��������������������

��������������������������

����� �������� ��������

Figure 6.12: Fat-tree shows the best performance per dollar due to its low cost, although
its performance is similar to dragonfly. Due to its superior performance, torus’ performance
per dollar is only 10% lower than the dragonfly.

117

��

���

�� ��� ��� ����

�
��
�
��
��
��
��
��
�
��
��
��

�
��
��
��
��

��������������������

�����������������������

����� �������� ��������

Figure 6.13: Given the similar performance of all networks, performance per dollar is signif-
icantly impacted by the cost of the networks.

leads to a large difference in the performance per dollar. As the message size is increased,

although torus provides the best performance, its high cost leads to lowest performance

per dollar value. The relative values of performance per dollar for dragonfly and fat-tree are

interesting: as the message size increases, the superior performance of dragonfly compensates

for its higher cost, and the performance per dollar for dragonfly eventually becomes better

than the fat-tree.

For the near-neighbor communication executing on torus, the results shown in Figure 6.12

are similar to the results for 4D Stencil. The primary difference here is that due to its very

high performance, the performance per dollar for torus is only 10% lower than the dragonfly.

Although the performance of the fat-tree is similar to the dragonfly as shown in Figure 6.2,

the lower cost of former results in a much higher performance per dollar.

A2A: Figure 6.13 compares the performance per dollar for execution of subset all-to-all

for the four message sizes whose performance is compared in Figure 6.3. Due to similar

performance of all the networks, performance per dollar is significantly impacted by the cost

of the networks. As a result, the torus has performance per dollar values three times less

than that of the fat-tree. Between the dragonfly and fat-tree, the performance per dollar of

118

����

��

���

�� ��� ���� ���� �� ��

�
��
�
��
��
��
��
��
�
��
��
��

�
��
��
��
��

��������������������

������������������������������

����� �������� ��������

����

��

���

�� ��� ���� ���� �� ��

�
��
�
��
��
��
��
��
�
��
��
��

�
��
��
��
��

��������������������

����������������������������������

����� �������� ��������

Figure 6.14: The performance difference among the three network is further enhanced by the
cost difference. As a result, fat-tree show very high performance per dollar in comparison to
the dragonfly, which in turn is much higher than the performance per dollar of torus.

dragonfly is approximately 17% less than the fat-tree. Note that this difference is lower than

the relative difference among the cost of these networks because of the better performance

of the dragonfly network.

Perm and Spread: Both the transpose and distributed communication patterns lead to

communication among ranks that are typically far apart. As shown in Figures 6.4 and 6.5,

the fat-tree and the dragonfly outperform the torus network for these patterns. Figure 6.14

shows that this difference is further increased by the higher cost of torus network. In fact, the

performance per dollar for the fat-tree is six times the performance per dollar of the torus,

although the performance slowdown due torus is 30 − 50% only. Similar higher differential

is seen among fat-tree and dragonfly: the performance per dollar for dragonfly is 60% of the

performance per dollar of the fat-tree network.

6.5 Summary

In this chapter, we have presented a comprehensive comparison of three network topologies

that are used in supercomputers of today: torus, dragonfly, and fat-tree. Performance

comparison using five distinct communication patterns shows that different networks provide

better performance when different interaction patterns are executed on them. Figure 6.15

(left) summarizes one such comparison set via a spider chart that uses the communication

rate obtained for fat-tree as the base value. It can be see that torus provides best performance

for patterns such as Stencil and Near-neighbor. In contrast, fat-tree performs the best for

transpose and distributed communication pattern. The dragonfly provides intermediate

119

0.1

0.2

0.4

0.8

1.6

3.2

4D	Stencil

NN

A2APerm

Spread

Communication	rate

Torus

Dfly

Fat-tree

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4D	Stencil

NN

A2APerm

Spread

Performance	per	dollar

Torus

Dfly

Fat-tree

Figure 6.15: Summary of the communication rate and performance per dollar for large
message sizes. Plotted values are normalized using the values for the fat-tree.

performance across all the benchmarks.

Following the performance comparison, we analyzed the cost of building networks using

the three topologies. Here, we found that cost of building torus is much higher (2−4x), while

fat-tree based networks can be built in a much cheaper manner. Finally, we compared the

three networks for a metric that combines the performance and cost metrics. Figure 6.15

(right) provides a brief summary of results for performance per dollar metric that were

discussed in this chapter. It can be seen that the performance per dollar values are highest

for the fat-tree for most cases, except for the 4D Stencil benchmark. This suggests that

fat-tree is the most economical topology for building networks on which the aforementioned

communication patterns are executed.

120

CHAPTER 7
Impact of Configuration on Performance

A network simulator, such as TraceR (Chapter 5), provides us with the capability to

simulate what-if scenarios of various types. In this chapter, we make use of this capability

to study the relation between configuration changes and the communication performance.

At a very high level, this experimentation entails predicting the execution time when a given

benchmark is run on similar systems, but with incremental modifications to the system

configuration. By analyzing the results from these experiments, we hope to understand the

impact of changing a given network configuration, and thus develop a better understanding

of the method to create systems with good network configuration. While the mechanism

being used in this chapter generally applies to all applications, we use two mini-applications

from Chapter 6: 4D Stencil and Spread. These two benchmarks have been used because of

the difference in their characteristics. As for the network topologies, we focus on the torus

and the dragonfly topologies, though similar studies can be conducted with other network

topologies too.

7.1 Stencil with unbounded resources

In the first set of experiments, we simulate torus and dragonfly topologies, assuming prac-

tically unbounded resources. The systems used in these experiments consist of ∼ 24, 576

nodes, with 16 control flows (ranks) on each node. For the torus, the nodes are arranged as

a 5D torus of dimensions 8 × 8 × 12 × 16 × 2, which is similar to the topology of Vulcan,

a Blue Gene/Q at LLNL. The dragonfly network consists of 201 groups with 20 routers

each. Each router has 6 nodes attached to it. The bandwidth of inter-group links is higher

than the intra-group links to balance the traffic at each router. The stencil grid is divided

121

������

�����

����

��

�� ��� ���� �����

��
��
��
��
��
���
��
��
�

��������������������

����������������������

�����
��������

������

�����

�� ��� ���� ����� ������

��
��
��
��
��
���
��
��
�

��������������������������

����������������������������

�����
��������

Figure 7.1: (left) When all other resources are practically unlimited, the communication
performance is directly proportional to the router delay/latency. (right) Size of router buffer
has no effect on the performance of the dragonfly network. Its impact on the torus network
can be significant, but is hard to model.

among ranks arranged as a 72 × 96 × 96 × 144 grid. Six network configurations are varied

in these experiments: router delay/latency, link bandwidth, injection bandwidth, buffer size

on routers, routing policy, and injection policy. For four of these parameters, the following

values are chosen to make them the non-bottleneck resource: 0 for delay, 1000 GBps for link

bandwidth and injection bandwidth, and 1, 048, 576 bytes for the router buffers.

Figure 7.1 (left) shows the impact of changing the router delay/latency on execution of

4D Stencil on the torus-based and dragonfly-based prototype systems. These executions are

performed with other configurations being set at their non-bottleneck values as mentioned

above. It is easy to see that when other resources are not the bottleneck, the execution

time varies linearly with the router delay. This clearly suggests the need for minimizing

the router delay in order to reduce the execution time. In contrast, the impact of the size

of the router buffer is uncertain. For the dragonfly network, when all other resources are

practically not the bottleneck, the execution time does not depend on the size of the router

buffer. However, the execution time on the torus network varies from 1.8 ms to 2.5 ms when

the size of router buffer is changed. The trend though is hard to understand. The lowest

execution time is obtained for router buffer size of 1 MB, while the 64 KB sized buffers lead

to highest execution time. We believe these differences are due to the way adaptive routing

reacts to the injection of the traffic generated by 4D Stencil on the torus network.

Next, we analyze the impact of changing either the link or injection bandwidth, while

the other is kept at a high value of 1000 GBps. Figure 7.2 (left) shows the results for

simulating 4D Stencil with different link bandwidths when the router latency is set to zero.

For both dragonfly and torus networks, as the link bandwidth is increased, the execution

time decreases linearly. However, at very large values of link bandwidth, while the execution

122

������

�����

����

��

�� ��� ���� �����

��
��
��
��
��
���
��
��
�

���������������������

������������������������

�����
��������

������

�����

����

��

�� ��� ���� �����

��
��
��
��
��
���
��
��
�

��������������������������

�����������������������������

�����
��������

Figure 7.2: As the link or injection bandwidth is increased, the execution time drops linearly.
While the dragonfly network saturates at the link bandwidth of 400 GBps, the torus network
shows performance improvement till 1000 GBps. In contrast, the dragonfly network provides
performance improvement till 1000 GBps when injection bandwidth is increased, but the
torus network saturates at 400 GBps.

time decreases for the torus network, the performance saturates on the dragonfly network.

This suggests that the dragonfly network can do with lower link bandwidth relative to the

torus network. In contrast, the situation is reversed for changes in the injection bandwidth

as shown in Figure 7.2 (right). For large injection bandwidth, dragonfly network continues

to provide performance improvement but the torus network saturates at 400 GBps.

Figure 7.3 (left) shows the impact of changing both link bandwidth and injection band-

width simultaneously, i.e. when the link bandwidth is set to x, the injection bandwidth is

also set to x. As expected, based on the results observed for changing only link or injection

bandwidth, the execution time decreases significantly as the link and injection bandwidths

are increased. However, while the torus shows significant gains for large values of the band-

widths (e.g. 33% reduction when increasing the bandwidths from 400 GBps to 800 GBps),

the improvement for dragonfly are low. Less than 20% improvement in execution time is

observed for doubling the bandwidths above 200 GBps for the dragonfly network.

In order to understand the results better, we now compare the three trends we have pre-

sented above: impact of changing link bandwidth only, injection bandwidth only, and both

link and injection bandwidth. Figure 7.4 presents this comparison for the torus on the left,

and for the dragonfly on the right. It can be seen that for torus, the performance numbers

are much better when only injection bandwidth is low, i.e. if the link bandwidth is high, the

effect of low injection bandwidth is observed less. In contrast, for the dragonfly, performance

for all three cases is relatively close. For low bandwidth values, the link bandwidth is the

primary bottleneck. Moreover, limited injection bandwidth in addition to limited link band-

width leads to worse performance. As the bandwidths are increased, the injection bandwidth

123

������

�����

����

��

�� ��� ���� �����

��
��
��
��
��
���
��
��
�

�����������������������������������

����������������������������������

�����
��������

Configuration Torus Dragonfly

FCFS + Static 0.003105 0.001855
FCFS + Adaptive 0.002859 0.001494

RR + Static 0.002628 0.001458
RR + Adaptive 0.001861 0.001456

Figure 7.3: (left) Impact of changing both link and injection bandwidth on execution time.
For both the networks, significant improvement in performance are observed; for dragonfly,
the relative improvement reduces as the bandwidths are increased to very large values.
(right) Impact of routing policy and injection policy. When other configuration parameters
are not the bottleneck, both policies impact the observed performance on torus; in contrast,
on a dragonfly, good choice of one makes the other irrelevant.

becomes the primary bottleneck with negligible impact due to limited link bandwidth.

Finally, we discuss the impact of routing and injection policy using the results presented

in Figure 7.3 (right). Here, FCFS refers to the scheme in which the NIC injects packets

from messages using a first-come-first-serve ordering. Packets from the next message are not

injected till the previous message has been sent entirely. On the other hand, RR stands for

the injection policy in which messages are selected in a round-robin manner to create the

next packet. For the routing, Static represents the dimension-ordered shortest path routing

for torus and minimal-path routing for the dragonfly. Adaptive routing signifies dynamic

shortest-path routing for torus and non-minimal hybrid routing for dragonfly (Section 5.3).

Very different outcomes are observed for torus and dragonfly networks in these results. For

torus, use of Adaptive routing results in 10% and 30% improvement in performance for FCFS

and RR injection policy, respectively. This is because Adaptive routing is able to distribute

network traffic onto more links irrespective of the injection policy. For the RR policy, the

improvements are higher because packets targeted to different destinations are available for

the Adaptive routing to send. This diversity in destinations provides more freedom to the

routing policy, which can then better balance the load on different links. In contrast, for the

dragonfly network, making a better choice for one of the routing or injection policy leaves

the other choice unimportant. Use of Adaptive routing results in an improvement of 20%

over the Static routing when FCFS is the injection policy. Similar improvement is observed

if RR policy is used instead of FCFS with Static routing. However, using Adaptive routing

with RR injection policy does not provide any benefit. This suggests that the RR policy

124

������

�����

����

��

�� ��� ���� �����

��
��
��
��
��
���
��
��
�

����������������

�������������������������������������

��������������
�������������������

����������������������������

������

�����

����

��

�� ��� ���� �����

��
��
��
��
��
���
��
��
�

����������������

��

��������������
�������������������

����������������������������

Figure 7.4: (left) For torus, link bandwidth acts as a primary bottleneck, with injection band-
width requirement saturating at large values. (right) For dragonfly, both link and injection
bandwidth are critical, with link bandwidth being more important at lower bandwidth and
injection bandwidth being the bottleneck at larger values.

�����

����

��

��� ����

��
��
��
��
��
���
��
��
�

�����������������������������������

���

��������������
����������������

�����������������
�������������������

�����

����

��

��� ����

��
��
��
��
��
���
��
��
�

�����������������������������������

���

��������������
����������������

�����������������
�������������������

Figure 7.5: (left) For torus, the impact of routing is minimal for FCFS injection policy,
when resources are limited. Adaptive routing improve performance for dragonfly, especially
for large bandwidth. (right) With RR injection policy, Adaptive routing provides significant
performance improvement for both torus and dragonfly networks.

provide sufficient randomization of destinations and thus routes, which is the goal of the

Adaptive routing on dragonfly.

7.2 Stencil with practical resources

Having studied the impact of various network configurations on performance of 4D Stencil

when availability of most resources is practically unlimited, we now focus on scenarios in

which most resources are limited. These scenarios are closer to real systems which have

limitations on most of the network resources, and thus potentially have multiple causes of

performance bottlenecks.

125

����

����

��

����

����

��� ������
��
��
��
��
���
��
��
���

�
��
��
��
��
��
�

�����������������������������������

������������������������������������

����������������
������������������ ����

����

��

����

����

����

��� ������
��
��
��
��
���
��
��
���

�
��
��
��
��
��
�

�����������������������������������

���������������������������������������

����������������
������������������

Figure 7.6: (left) On torus, using RR injection policy is highly beneficial when Adaptive rout-
ing is used. (right) When the link and the injection bandwidths are the primary bottlenecks,
RR provide significant performance improvement on a dragonfly.

Figure 7.5 presents the impact of changing routing policy from Static to Adaptive for

different link/injection bandwidths; the router latency is kept constant at 30 ns for these

simulations. The x-axis in these plots is the link/injection bandwidth. On the left side, we

see that the impact of routing policy is minimal for execution on torus with FCFS injection

policy. This is because FCFS injection policy produces many packets targeted at the same

destination before the next message is packetized; as a result, when a good mapping scheme

is used as in our simulations, the numbers of hops and possible paths in torus are limited.

In contrast, we see that the routing scheme impacts the performance on dragonfly networks

where hybrid routing transmits packets from the same message via many different paths.

On the right hand side of Figure 7.5, the impact of routing for RR injection policy is shown.

Here, we find that for both torus and dragonfly, use of Adaptive routing provides significant

performance gains. Presence of packets destined to multiple targets is a big factor that helps

Adaptive routing provide these benefits. Some of these results are also in contrast to the

results we observed for the previous case, in which most network resources were unbounded.

This is probably because presence of limited resources creates a congestion scenario, which

is handled in a better way by the Adaptive routing.

Figure 7.6 shows the same results as Figure 7.5, but focuses on comparing the impact of

injection policy on performance. The left graph shows that, on torus, the impact of injection

policy is low when Static routing is used. However, with adaptive routing, the RR injection

policy leads to significant performance improvements. As discussed earlier, this is because

Adaptive routing is able to redistribute the network load better when RR provides it with

multiple packets targeted at distinct destinations. For the dragonfly network, the graph on

the right shows similar results for Adaptive routing. Up to 40% reduction in execution time

is observed when RR injection policy is used instead of FCFS. For the Static routing and

126

������

�����

����

��

�� ��� ��� ��� ��� ���

��
��
��
��
��
���
��
��
�

��������������������

���

������
�������

�������
�������

��������
��������

������

�����

����

��

�� ��� ��� ��� ��� ���

��
��
��
��
��
���
��
��
�

��������������������

��

������
������

�������
�������

�������
��������

Figure 7.7: As the router delay increases, the bottleneck changes from link and injection
bandwidth to the fixed delays. Conversely, for a fixed router delay, as the link/injection
bandwidth decreases, the fixed delays cease to be the performance bottleneck.

smaller values of bandwidth, decent improvement in performance is also observed. However,

as the link and injection bandwidths are increased, other network configurations (e.g. router

delay) become the bottleneck. As a result, the improvement due to RR slowly diminishes.

Next, we analyze the impact of changing router delay/latency for scenarios in which the

available link and injection bandwidth is realistic (unlike in the previous section where

we assumed a 1000 GBps bandwidth). Figure 7.7 presents the impact of changing router

delay/latency for different bandwidth values. For both torus and dragonfly, we observe that

as the link and injection bandwidth is increased, the performance bottleneck shifts from one

configuration to another. For low bandwidth values, such as 2 − 10 GBps, the link and

injection bandwidths are the bottleneck. Since our packet size choice is 1024 bytes, this

is understandable since at these bandwidths, the packet transmission time (100 − 500 ns)

dominates the communication cost. As the bandwidth is increased further, the transmission

time is comparable or even less than the router delay. Thus, the link and injection bandwidth

cease to have an impact on the performance and the execution time is determined by the

latency. From these results, it is clear that for 4D Stencil with large messages, the impact

of router delay and link/injection bandwidth do not add up; rather a maximum function is

what determines which of these resources is the performance bottleneck.

Finally, we present results that show an interplay of three network configurations on

performance: link bandwidth, injection bandwidth, and router delay. Figure 7.8 shows the

predicted execution time for four scenarios on the torus network: link bandwidth of 5, 20, 50,

and 100 GBps. For each of these cases, the injection bandwidth is varied from 5 GBps to 100

GBps and router delay is varied from 0 ns to 50 ns. It can be seen that when link bandwidth

is low, it determines the execution time. For those cases, latency has minimal impact and

injection bandwidth is less important if its reasonably high. At very high link bandwidth,

127

����

��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��
���
��
��
�

��������������������������

�������������������������������

����
�����

�����
�����

�����
�����

�����

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��
���
��
��
�

��������������������������

��������������������������������

����
�����

�����
�����

�����
�����

�����

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��
���
��
��
�

��������������������������

��������������������������������

����
�����

�����
�����

�����
�����

�����

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��
���
��
��
�

��������������������������

���������������������������������

����
�����

�����
�����

�����
�����

Figure 7.8: Effect of variations in the link bandwidth, injection bandwidth, and latency on
execution time of 4D Stencil on torus. Increasing link bandwidth reduces the execution time,
but if injection bandwidth is much lower, it limits the performance. When both link and
injection bandwidth are high, very high latency can be the performance bottleneck.

e.g. 50 and 100 GBps, both injection bandwidth and router latency are important. Very

low values of injection bandwidth limit the performance for cases in which router delay is

low. However, as the router delay increases, the performance is entirely bound by it.

Figure 7.9 presents the results for changing link bandwidth, injection bandwidth and

router delay for the dragonfly network. While many trends are similar to the ones found

for torus, e.g. high router delay being the bottleneck when bandwidth is high, there are a

few significant differences. First, for many scenarios, increasing injection bandwidth for a

fixed link bandwidth and router delay helps reduce the execution time. The trend is clearly

visible for the case with 0 ns latency for all link bandwidths, and a few other router delays.

However, there are also many cases in which an increase in injection bandwidth leads to

significant decrease in the performance (e.g. 75 ns router delay curves for link bandwidth

20, 50, and 100 GBps). These are most likely due to the local view of the Adaptive routing.

As packets are injected at higher rate than the rate at which the router can transmit them,

sub-optimal decisions are made for selecting the best possible routes for the packets. This is

because in these scenarios the routers are forced to act based on stale local information about

128

�����

����

��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��
���
��
��
�

��������������������������

�������������������������������

����
�����

�����
�����

�����
�����

�����

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��
���
��
��
�

��������������������������

��������������������������������

����
�����

�����
�����

�����
�����

������

�����

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��
���
��
��
�

��������������������������

��������������������������������

����
�����

�����
�����

�����
�����

������

�����

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��
���
��
��
�

��������������������������

���������������������������������

����
�����

�����
�����

�����
�����

Figure 7.9: Unlike torus, an increasing injection bandwidth impacts the execution time both
positively and negatively, even when link bandwidth is low. Similarly, the router latency has
impact on the performance even when the link and injection bandwidth are relatively low.

the load at its connected partner routers. The second main differentiating fact about these

results, in comparison to torus, is the impact of router delay even at low link bandwidths.

We suspect this is because low router delays help the Adaptive routing in making marginally

better use of multiple routes when injection bandwidth is high.

7.3 Spread with unbounded resources

Having analyzed how network configurations impact the execution of 4D Stencil on torus

and dragonfly, we now conduct a similar study with a very different communication pattern,

Spread. The prototype systems used in these experiments are the same ones as used in the

previous section, and consist of ∼ 24, 576 nodes, with 16 control flows (ranks) on each node.

For the Spread communication pattern, each rank communicates with 15 − 20 randomly

chosen partners using messages of size 2 MB. The packet size used in these simulations is

same as earlier, i.e. 1, 024 bytes.

Router delay/latency is the first network configuration analyzed in this section, assuming

129

������

�����

����

��

���

�� ��� ���� �����

��
��
��
��
��
���
��
��
�

��������������������

����������������������

�����
��������

������

�����

�� ��� ���� ����� ������

��
��
��
��
��
���
��
��
�

��������������������������

����������������������������

�����
��������

Figure 7.10: (left) The execution time increases as the router latency is increased; perfor-
mance of the torus is similar to the dragonfly. (right) As for 4D Stencil, size of router buffer
has no effect on the performance of the dragonfly network. Its impact on the torus network
is significant, but does not follow a pattern.

other configurations are set at their practically non-bottleneck values. Figure 7.10 (left)

shows that the execution time closely follows the changes in the router delay. However, unlike

4D Stencil where a linear model can precisely depict the trend, for Spread, the increase in

execution time is sometimes higher and sometimes lower than predicted by a linear model.

We believe this is because Spread causes significant congestion at the bisection links. Hence,

the observed performance varies by a small margin based on the efficacy of the Adaptive

routing at the given latency.

Figure 7.10 (right) presents the impact of the size of the router buffer with the router delay

set to 0 ns. As with 4D Stencil, the size of router buffer has no impact on the execution

for the dragonfly network. For the torus network, the size of network buffer does impact

the performance, but it is difficult to find a model that accurately predicts the impact. The

lowest execution time is obtained when router buffer size is 4 MB, while the highest time is

obtained for 256 KB sized buffers. We believe these differences are due to the way adaptive

routing reacts to the flow of traffic generated by Spread on the torus network.

The simulation results obtained by modifying link and injection bandwidths, individually

and together are shown in Figure 7.11 and Figure 7.12 (left). The trends observed here

are very similar to the ones observed for 4D Stencil. As the link or injection bandwidth

is increased, the execution time reduces significantly. However, when the link bandwidth

is increased beyond 200 GBps, performance saturates for dragonfly, but shows a consistent

improvement for torus. The trends are reversed when injection bandwidth is increased

beyond 400 GBps, i.e. the dragonfly network continues to see improvements while the torus

network saturates at 400 GBps.

Figure 7.12 (left) shows the impact of changing both link bandwidth and injection band-

130

������

�����

����

��

���

�� ��� ���� �����

��
��
��
��
��
���
��
��
�

���������������������

������������������������

�����
��������

������

�����

����

��

�� ��� ���� �����

��
��
��
��
��
���
��
��
�

��������������������������

�����������������������������

�����
��������

Figure 7.11: The execution drops almost linearly as the link or injection bandwidth is
increased. The dragonfly network saturates at link bandwidth of 400 GBps, but the torus
network observes good performance improvement till 1000 GBps. The reverse is true for
injection bandwidth.

������

�����

����

��

���

�� ��� ���� �����

��
��
��
��
��
���
��
��
�

�����������������������������������

����������������������������������

�����
��������

Configuration Torus Dragonfly

FCFS + Static 0.009726 0.004375
FCFS + Adaptive 0.008264 0.003881

RR + Static 0.010453 0.003858
RR + Adaptive 0.007629 0.003858

Figure 7.12: (left) For both torus and dragonfly, significant improvement in performance is
observed, even for very large bandwidth. (right) Impact of routing policy and the injection
policy: RR + Adaptive provides the best performance on torus, while only FCFS + Static
performs badly on dragonfly.

width simultaneously on execution time of Spread. In these experiments, when the link

bandwidth is set to x, the injection bandwidth is also set to x. For both torus and dragonfly,

increasing the value of both link and injection bandwidth provides better performance. As

opposed to 4D Stencil where the torus obtained higher improvements for large values of

bandwidths, both torus and dragonfly show similar relative improvement. This is because

Spread is more communication intensive, and is thus able to use the additional bandwidth

to improve performance on dragonfly also.

We end this section with a discussion on the impact of routing and injection policy on

performance of Spread. As shown in Figure 7.12 (right), very different trends are observed

for torus and dragonfly networks. For torus, use of Adaptive routing provides 15% and 25%

improvement in performance for FCFS and RR injection policy, respectively. These gains

131

�����

����

��

���

��� ����

��
��
��
��
��
���
��
��
�

�����������������������������������

���

��������������
����������������

�����������������
�������������������

�����

����

��

���

��� ����

��
��
��
��
��
���
��
��
�

�����������������������������������

���

��������������
����������������

�����������������
�������������������

Figure 7.13: (left) Adaptive routing provides significant improvement for torus, but has
minimal impact on the dragonfly network . (right) With RR injection policy, Adaptive
routing provides significant performance improvement for both torus and dragonfly networks.

are similar to what we observed for 4D Stencil, and are probably due to the same reasons.

However, use of RR policy with Static routing results in a performance drop of 7%. As

was the case with 4D Stencil, for the dragonfly network, making a better choice for one of

routing or injection policy leaves the other choice unimportant. Use of Adaptive routing

results in an improvement of 12% over the Static routing when FCFS is the injection policy.

Similar improvement is observed if RR policy is used instead of FCFS with Static routing.

The improvement are lower in comparison to 4D Stencil because Spread pattern provides a

reasonable variation in message destinations because of its characteristics, thus resulting in

good performance with Static routing.

7.4 Spread with practical resources

We now switch our focus to analyzing impact of various network configurations on perfor-

mance of Spread when each of the resources can be a potential bottleneck. As one can

imagine, this is the more common case and thus a better indicator of the impact of various

network configurations.

The impact of routing policy is presented in Figure 7.13 for FCFS and RR injection

policies. For the FCFS policy (left graph), the Adaptive routing provides significant per-

formance improvement for the torus network, while showing minimal impact on dragonfly.

These results are in contrast to the results for 4D Stencil where the Adaptive routing im-

proves performance for the dragonfly network only. This is because of the placement of

the communicating neighbors in the two benchmarks: in 4D Stencil, the communicating

processes are typically placed on physically close nodes which provides fewer links for the

132

����

����

��

����

����

��� ������
��
��
��
��
���
��
��
���

�
��
��
��
��
��
�

�����������������������������������

������������������������������������

����������������
������������������

����

����

��

����

����

����

����

��

��� ������
��
��
��
��
���
��
��
���

�
��
��
��
��
��
�

�����������������������������������

���������������������������������������

����������������
������������������

Figure 7.14: (left) The RR injection policy provides better performance when Adaptive
routing is used, but FCFS shows similar performance for Static routing. (right) On the
dragonfly network, performance improvements are high for Adaptive routing and for Static
routing if the bandwidth is high.

Adaptive routing to utilize on torus. However, the random spread of neighbors in Spread

ensures that Adaptive routing has more links to utilize on torus and even Static routing

is able to distribute traffic more evenly for the dragonfly network. Thus, Adaptive routing

helps torus, while does not improve performance much for dragonfly.

For the RR injection policy, the factors described above continue to benefit Adaptive

routing on torus as shown in Figure 7.13 (right). For the dragonfly network, Adaptive

routing also helps when the injection policy is RR. However, the gains are lesser when the

bandwidth is high. We suspect this is because when bandwidth is low, the Adaptive routing

can disperse the packets created from different messages in an even manner, and thus utilize

the network better. While the Static routing also works on a similar well distributed set of

destinations, it does not make use of many links in the system. At higher bandwidth, other

resources become the performance bottleneck, and thus the impact of routing is low.

Next, we compare the performance of different injection policies in Figure 7.14. On torus,

the results are similar to what we observed for 4D Stencil: the impact of injection policy is

minimal for Static routing, while it is significant for Adaptive routing. As discussed earlier,

this is because presence of packets targeted at different destinations is helpful to the Adaptive

routing in making use of more links. RR policy also improves performance significantly when

Adaptive routing is used on dragonfly. We believe this is because RR policy helps make use

of many more links with packets targeted at a much larger set of nodes, thus reducing

the hotspots. For the Static routing, the trend is reversed in comparison to 4D Stencil:

RR provides no benefit when bandwidth is low, but leads to significant improvement when

bandwidth is high. We are currently unsure of the reasons that lead to such a behavior.

Figure 7.15 shows the change in execution time as the router delay is increased for different

133

������

�����

����

��

�� ��� ��� ��� ��� ���

��
��
��
��
��
���
��
��
�

��������������������

���

������
�������

�������
�������

��������
�������� ������

�����

����

��

�� ��� ��� ��� ��� ���

��
��
��
��
��
���
��
��
�

��������������������

��

������
�������

�������
�������

��������
��������

Figure 7.15: For low bandwidth, the router delay does not impact the execution time, but
as the router delay increases, it becomes the performance bottleneck.

bandwidths. The general pattern found in these results is similar to the one observed for 4D

Stencil (Figure 7.7). For both torus and dragonfly, we observe that as the link and injection

bandwidth is increased, the performance bottleneck shifts from one configuration to another.

As was the case for 4D Stencil, it is clear that the effects of router delay and link/injection

bandwidth do not add up; rather a maximum function is what determines which of these

resources is the performance bottleneck.

The last set of results presented in this chapter study the relationship between link band-

width, injection bandwidth, and router delay. Figure 7.16 shows the predicted executed time

for four scenarios: link bandwidth of 5, 20, 50, and 100 GBps. For each of these cases, the

injection bandwidth is varied from 5 GBps to 100 GBps and router delay is varied from 0 ns

to 50 ns. As the link bandwidth is increased, we observe a significant drop in the execution

time, though if the injection bandwidth is low, the execution time is high even with high

link bandwidth. At low delays, torus shows low requirement for injection bandwidth (than

link bandwidth) to obtain its best performance. As the delay is increased at high link band-

width, the behavior is different from the one observed in 4D Stencil. While in 4D Stencil,

we observe a linear increase in execution time when link/injection bandwidth is high and

router latency is increased, the increase in execution time for Spread is significantly less.

This is because at very high link bandwidth, the adaptive routing is able to make use of

alternate routes in parallel and hence reduce the impact of increased router latency. This is

not possible in 4D Stencil because of near-neighbor placement of message destinations.

Figure 7.17 presents the results for changing link bandwidth, injection bandwidth and

router delay for the dragonfly network. These results are very similar to the one obtained

for 4D Stencil (Figure 7.17), but are significantly different from the torus. While the exe-

cution time decreases as the link bandwidth is increased, the best performance is obtained

when injection bandwidth is also increased proportionally or by a higher margin. When the

134

����

��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��
���
��
��
�

��������������������������

�������������������������������

����
�����

�����
�����

�����
�����

����

��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��
���
��
��
�

��������������������������

��������������������������������

����
�����

�����
�����

�����
�����

�����

����

��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��
���
��
��
�

��������������������������

��������������������������������

����
�����

�����
�����

�����
�����

�����

����

��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��
���
��
��
�

��������������������������

���������������������������������

����
�����

�����
�����

�����
�����

Figure 7.16: Performance improves with increasing link bandwidth, but saturates quickly
when injection bandwidth is increased. Impact of latency is less prominent in comparison
to 4D Stencil.

����

��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��
���
��
��
�

��������������������������

�������������������������������

����
�����

�����
�����

�����
�����

�����

����

��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��
���
��
��
�

��������������������������

��������������������������������

����
�����

�����
�����

�����
�����

�����

����

��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��
���
��
��
�

��������������������������

��������������������������������

����
�����

�����
�����

�����
�����

�����

����

��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��
���
��
��
�

��������������������������

���������������������������������

����
�����

�����
�����

�����
�����

Figure 7.17: An increasing injection bandwidth impacts the execution time positively, even
beyond the link bandwidth value. The impact of the router latency is prominent and pro-
portional to the delay.

135

combined effect of link and injection bandwidth is high and saturates, the router latency

shows up as the bottleneck. The increase in execution time is linearly related to the increase

in the delay as shown in the graphs for 50 and 100 GBps link bandwidths.

7.5 Summary and discussion

Parametric evaluation of what-if scenarios for networks being used for building large scale

systems can be a powerful method to design networks that suit the requirements of an HPC

center and its users. This chapter has presented a novel way of conducting and analyzing such

an evaluation. For two commonly used networks, torus and dragonfly, we have performed an

in-depth analysis of impact of various network configurations for two distinct communication

patterns. By further expanding such an evaluation to more networks and communication

patterns, we plan to create a comprehensive report (and possibly develop prediction models)

on behavior of several communication patterns on various networks.

From the results presented in this chapter, the following conclusions can be drawn about

torus and dragonfly networks for the two communication patterns we have studied, 4D

Stencil and Spread:

• Dragonfly provides best performance when injection bandwidth is higher than link

bandwidth, while torus saturates at lower injection bandwidth.

• Round-robin injection policy in combination with Adaptive routing typically provides

better performance than the FCFS policy.

• In order to obtain the best performance, tradeoffs should be studied among router

delays, link bandwidth, injection bandwidth, and packet size.

136

CHAPTER 8
Communication Algorithms

8.1 Analysis of collectives on dragonfly networks

Many scientific applications use data movement collectives such as Broadcast, Scatter, Gather,

Allgather, All-to-all, and computation collectives such as Reduce, Reduce-scatter, and Allre-

duce [124]. The performance of these MPI collectives is critical for improved scalability and

efficiency of parallel scientific applications. In recent years, there have been an increasing

number of applications such as web analytics, micro-scale weather simulation and computa-

tional nanotechnology, that involve processing extremely large scale data requiring collective

operations with large messages. Performance of such large message collectives is significantly

affected by network bandwidth constraints.

On networks with small radix, such as torus, transmitting packets from a source to des-

tination involve traversal through a large number of nodes/switches. The multiplicity of

hops makes these networks congestion prone, especially when performing collectives on large

data/messages. To counter the effects of congestion, carefully designed topology aware al-

gorithms have been used for collectives on such networks [64,66]. In addition, there is a set

of topology oblivious algorithms which perform reasonably well on most systems [125–127].

How well are these algorithms suited to dragonfly networks? This section attempts to answer

this question, and proposes a new set of topology aware algorithms for collectives on drag-

onfly networks for large messages. These new algorithms are designed to exploit the high

radix routers and the multi-level structure of a dragonfly network. A cost model based on

the link utilization is used to evaluate the effectiveness of proposed algorithms in comparison

to general topology oblivious algorithms.

137

8.1.1 Cost model and assumptions

We assume an in order mapping of MPI ranks onto the cores in the system. Consider a

system with sn groups/supernodes, each consisting of nps (nodes per supernode) nodes

with cpn (cores per node) cores each. Hence, we have p = sn∗nps∗ cps cores whose in order

mapping is performed as following. Consider a global numbering of supernodes from 0 to

sn − 1. Within a supernode and a node, nodes and cores are locally numbered from 0 to

(nps− 1) and from 0 to (cpn− 1) respectively. In the global space, cores are numbered (by

MPI) from 0 to (p−1) using the core’s supernode, node and position within the node as the

key. For example, cores in supernode 0 get ranks from 0 to (nps ∗ cpn − 1). Following the

cores in supernode 0, cores in supernode 1 get ranks from nps ∗ cpn to (2 ∗ nps ∗ cpn − 1)

and so on.

Further, we assume a dragonfly network with round robin connections at the second level

(L2 links) to connect supernodes. A connection from supernode S1 to supernode S2 origi-

nates at node (S2 modulo nps) in supernode S1. This link connects to node (S1 modulo nps)

in supernode S2. Therefore, each node is connected to spn = sn
nps

supernodes. We consider

the case in which job allocation onto nodes and supernodes happen in a uniform manner.

To keep things simple, we assume the cases where the entire machine is being used by an

application. Algorithms and results for the other case, where allocation is not uniform, can

be derived with minor variations and will be discussed in a future work.

As we focus on large message collectives, we use a bandwidth based model to estimate

the cost of a collective algorithm. The start up cost and latency effects are ignored as the

bandwidth term dominates for large messages. We assume that the time taken to send

a message between any two nodes is nβ, where β is the transfer time per byte, if only 1

link is being used to send n bytes of data. In case of a computation operation, we add

a γ computation cost component per byte. We also use a two step approach to find link

utilization which provides a more accurate estimate of performance of an algorithm. In the

first step, given a collective operation, the algorithm to use, number of MPI ranks or cores

and the data length information (required by the operation), pattern-generator generates a

list of communication exchange between every pair of MPI ranks. The data generated by

pattern-generator is fed to linkUsage. Given a list of communication exchange, linkUsage

generates the amount of traffic that will flow on each link in the given network.

138

Operation Algorithm Cost (n bytes)

Scatter Binomial Tree p−1
p nβ

Gather Binomial Tree p−1
p nβ

Allgather Ring, Recursive Doubling p−1
p nβ

Broadcast DeGeijn’s Scatter with Allgather [127] 2p−1
p nβ

Reduce-Scatter PairWise Exchange p−1
p (nβ + nγ)

Reduce Rabenseifner’s Reduce-Scatter with Gather [125] p−1
p (2nβ + nγ)

Table 8.1: Commonly used algorithms.

Topology oblivious algorithms

Table 8.1 lists the algorithms which are generally used to perform various collective opera-

tions in a topology oblivious manner for large message sizes. Many of these algorithms are

used in MPICH as the default option [126].

8.1.2 Two-tier algorithms

Given the clique property and the multiple levels of connections, the dragonfly networks

naturally leads to a new set of algorithms which we refer to as two-tier algorithms. The

common idea in any two-tier algorithm is stepwise dissemination, transfer or aggregation

(SDTA) of data. SDTA refers to simultaneous exchange of data within a level in order

to optimize the overall data exchange. Performing SDTA ensures that the algorithms use

maximum possible links for best bandwidth, and collate information to minimize the amount

of data exchanged at higher levels. Without loss of generality let us assume that the root

of any operation is core 0 of node 0 of supernode 0. In our discussion, we use core to refer

to any entity which takes part in the collective operation. An MPI process and Charm++

chare are examples of such entities.

Scatter and Gather

Scatter is a collective operation used to disseminate core specific data from a source core to

every other core. The two-tier algorithm for Scatter using SDTA is as follows:

1. Core 0 of node 0 of supernode 0 sends data to core 0 of every other node in supernode

0. The data sent to a core is the data required by the cores residing in the supernodes

connected to the node of that core.

2. Core 0 of every node within supernode 0 sends data to core 0 of every node outside

139

supernode 0 that the node is connected to. The data sent to a node is the data required

by the cores in the supernode to which this destination node belongs.

3. Core 0 of every node that has data (including node 0 of supernode 0) sends data to

core 0 of every other node within its supernode. This data is required by the cores

within the node that the data is being sent to.

4. Core 0 of every node shares data, required by the other cores, with all other cores in

their node.

The four step process described above implies that the source core first spreads the data

within its supernode. The data is then sent to exactly one node of every other supernode by

the nodes that received the data. Thereafter, nodes that have data to be distributed within

their supernode spreads the data within their supernodes. Gather can be performed using

this algorithm in the reverse order.

For collectives with personalized data for each core such as Scatter, the dissemination of

data can also be done using direct message send. The data will take exactly the same path

as described in the above scheme. We have described our approach using Scatter because of

its simplicity, and ease of understanding.

Broadcast

Broadcast can be performed using the approach used for Scatter if the entire data, without

personalization, is sent in the four steps. We refer to this type of Broadcast as base broadcast.

However, using the following scheme better performance can be obtained.

1. Core 0 of node 0 of supernode 0 divides the data to be broadcasted into nps chunks

and sends chunk i to core 0 of node i of supernode 0.

2. Core 0 of every node within supernode 0 sends data to core 0 of exactly one node

outside supernode 0 that the node is connected to. Exactly one node is chosen to

avoid duplication of data delivery in following steps.

3. Core 0 of every node that received data in the previous step sends data to core 0 of

every other node within their supernode.

4. Core 0 of all the nodes that received data in Step 2 and Step 3 send data to core 0 of

all other nodes outside their supernode that they are connected to.

5. Now, these cores share data with core 0 of all other nodes in their supernode.

140

6. Core 0 of every node shares data with all other cores in their node.

This algorithm begins with the source core dividing the data into chunks, and distributing

it within its supernode (as if performing Scatter over a limited set of cores). In the second

step, every node in supernode 0 share the chunk with exactly 1 node outside their supernode.

Thereafter, the nodes that received the chunk in the previous step share the data with other

nodes in their supernode. As a result, all nodes in some of the supernodes have a chunk of

initially divided data which needs to be sent to other supernodes. This is done in the next

step, following which all nodes, which have received a chunk so far, share these chunks with

other nodes in their supernode.

Allgather

An Allgather operation is equivalent to Broadcast being performed by all cores simultane-

ously. The SDTA based algorithm begins with all cores within every node exchanging data

and collecting it at core 0 of the node. In the second step, all nodes within a supernode

exchange data in an all-to-all manner using L1 links, and thus every node in every supern-

ode contains the data which a supernode wants to broadcast to other supernodes. In the

following step, supernodes exchange data in an all-to-all manner in parallel. Finally the

nodes which receive data in the previous step disseminate this data to other nodes within its

supernode. In addition, core 0 of every node has to share this data with all other cores in its

node. This algorithm can be seen as a base broadcast being done by all nodes simultaneously

(refer to Section 8.1.2).

Please note that in many cases, multiple steps of SDTA can be performed by a send from

the source of one step to eventual destination of the following step. An example case will be

when core 0 of node 0 of supernode 0 has to send data to core 0 of nodes that are connected

to other nodes of supernode 0. We have presented them as separate steps in which initially

core 0 of node 0 sends the data to core 0 of other nodes of supernode 0. These nodes then

forward the data to core 0 of nodes of other supernodes. This has been done only for ease

of understanding, and comparison results will not reflect them.

Computation Collectives

Although the same two-tier approach presented in the previous section can be used to per-

form computation collectives such as Reduce, it may not result in the best performance.

The inefficiency in the previous approach derives from the fact that computation collectives

141

require some computation on the incoming data, and therefore if some node receives a lot

of data from multiple sources, the computation it has to perform on the incoming data will

become a bottleneck. We assume that the multiple cores do not share memory, and hence

will not be able to assist in the computation to be performed on the incoming data. Also,

the presented algorithms assume commutative and associative reduction operation.

Let us define an owner core as the core that has been assigned a part of the data that

needs to be reduced. This core receives the corresponding part of the data from all other

cores and performs the reduction operation on them. Consider a clique of k cores on which

a data of size m needs to be reduced, and be collected at core 0. The algorithm we propose

for such a case is the following:

1. Each core is made owner of m
k

data - assume a simple rank based ownership.

2. Every core sends the data corresponding to the owner cores (in their data) to the owner

cores.

3. The owner cores reduce the data they own using the corresponding part in their data,

and the data they receive.

4. Every owner core sends the reduced data to core 0.

Essentially, what we are doing is a divide and conquer strategy. The data is divided among

cores, and they are made responsible for reduction on that data. Every core divides their

data, and sends the corresponding portion to the owner cores. The owner cores reduce the

data, and eventually send it to core 0.

Reduce - The above strategy can be used in multiple stages to perform the overall reduction

in a two-tier network:

1. Perform reduction among cores of every node; collect the data at core 0.

2. Perform reduction among nodes of every supernode - owners among nodes are decided

such that instead of collecting data at node 0, the data can be left with the owner

nodes and directly exchanged in the next step. This may require a node to be owner

of scattered chunks in the data depending on the supernode connections.

3. Perform reduction among supernodes and collect the data at supernode 0.

Reduce-Scatter - We can use the same algorithm as above to perform Reduce-scatter with

a minor modification. Since the Reduce-scatter requires the reduced data to be scattered

over all cores, in the last phase of reduction (i.e. reduction among supernodes), we decide

142

Operation Base Cost Two Tier Cost

Scatter p−1
p
nβ nβ ∗max{ 1

nps
, 1
sn
}

Gather p−1
p
nβ nβ ∗max{ 1

nps
, 1
sn
}

Allgather p−1
p
nβ nβ(1

nps
+ 1

sn
+ 1

sn∗nps)

Broadcast 2p−1
p
nβ nβ(3

nps
)

Reduce-Scatter p−1
p

(nβ + nγ) nβ(1
nps

+ 1
sn

+ 1
sn∗nps) + 2nγ

Reduce p−1
p

(2nβ + nγ) nβ(1
nps

+ 2
sn

) + 2nγ

Table 8.2: Cost model based comparison.

owners of data such that a supernode becomes owner of the data which its cores are required

to receive in a reduce-scatter. Thereafter, instead of collecting all data at supernode 0 in the

final step, the algorithm scatters the data within every supernode as required by Reduce-

scatter.

8.1.3 Analysis of collectives

This section presents a comparison of the topology oblivious algorithms with the two-tier

algorithms. The prototype dragonfly network that has been analyzed for these comparisons

consists of 64 supernodes. Each supernode consists of 16 nodes each of which has 16 cores.

The given configuration implies that there are 4, 032 L2 links (inter-supernode connections)

and 15, 360 L1 links (intra-supernode connections) in the system. Note that we ignore the

time spent in sharing data within a node by the cores.

Table 8.2 compares the two-tier algorithms with other algorithms using the cost model

mentioned in Section 8.1.1. Among the data collectives, for Scatter and Gather, we observe

that the two-tier algorithms which distributes data using all L1 links simultaneously within

a source supernode provides theoretical speedup of factor nps i.e. nodes per supernode. This

speedup may be affected by sn, i.e., the number of supernodes. If there are too few L2 links,

they may become the bottleneck, and the speedup hence is bounded by min{nps, sn}. For

Allgather, we find that the speedup provided by two-tier algorithms depends on both sn and

nps. For Broadcast, which happens in three phases, the theoretical speedup is nps
3

. Finally,

for computation collectives, we observe that our approach leads to more computation being

performed. This is because the reduction happens in two phases and some computation,

which could have been avoided, is performed. However, as with data collectives, the speedup

for data transfer is substantial and should mask the effect of increase in computation.

143

Scatter Broadcast
Binomial Two-tier DeGeijn Two-tier

L1 Links Used 1036 960 1588 15360
L1 Links Min Traffic 1 MB 1 MB 2 MB 64 MB
L1 Links Max Traffic 141 MB 64 MB 1.1 GB 128 MB

L2 Links Used 56 63 95 3937
L2 Links Min Traffic 16.7 MB 1 MB 32 MB 64 MB
L2 Links Max Traffic 520 MB 16 MB 1.09 GB 64 MB

Table 8.3: Link usage comparison for Scatter and Broadcast.

Scatter, Gather and Broadcast

We consider a Scatter operation in which the root sends 64 KB data to each of the remaining

cores. In Table 8.3, we present a comparison of binomial algorithm link utilization with the

two-tier algorithm. The important thing to note in the comparison is the maximum load

binomial algorithm puts on a link in comparison to what two-tier algorithm puts. For L1

links, we find that two-tier algorithm puts a maximum load of 64 MB whereas binomial

algorithm performs much worse, and puts a load of 141 MB. The difference is much more

significant when it comes to L2 links where binomial algorithm puts a factor 32 times more

load. Exactly same results are found for Gather operation due to its inverse nature to

Scatter.

We also present the link utilization statistics for a 1 GB Broadcast in Table 8.3. Link

utilization improves substantially both in terms of number of links used and the load which is

put on links when two-tier algorithm is used. We expect an order of magnitude improvement

in the execution time as the worst case link load goes down from 1.1 GB to 128 MB.

Allgather

As mentioned earlier, we study the performance of Allgather using two algorithms - recursive

doubling and ring. The amount of data that each MPI rank/core wants to send is 64 KB.

In Table 8.4, we present a comparison of two-tier algorithm with the recursive doubling and

ring algorithms. It can be seen that while two-tier algorithm uses all the available L1 and

L2 links in the system, the other two algorithms use a very small fraction of available links.

Moreover, the load which two-tier algorithm puts on the links is orders of magnitude smaller

in comparison to the other algorithms. It strongly suggests that the two-tier algorithm will

outperform the other two algorithms. These results also conforms with the fact that for

large messages, ring algorithm is better than recursive-doubling [126].

144

Recursive Doubling Ring Two-tier Algorithm
L1 Links Used 10496 1080 15360

L1 Links Min Traffic 16 MB 1 GB 65 MB
L1 Links Max Traffic 15.1 GB 1 GB 65 MB

L2 Links Used 384 634 4032
L2 Links Min Traffic 4.2 GB 1 GB 16 MB
L2 Links Max Traffic 4.3 GB 1 GB 16 MB

Table 8.4: Link usage comparison for Allgather.

Reduce-Scatter Reduce
Pairwise Exchange Two-tier Rabenseifner Two-tier

L1 Links Used 15360 15360 15360 15360
L1 Links Min Traffic 2 GB 65 MB 2 GB 66 MB
L1 Links Max Traffic 2 GB 65 MB 3 GB 130 MB

L2 Links Used 4032 4032 4032 4032
L2 Links Min Traffic 4 GB 16 MB 4 GB 16 MB
L2 Links Max Traffic 4 GB 16 MB 5 GB 32 MB

Table 8.5: Link usage comparison for Reduce-scatter and Reduce.

Computation collectives

In Table 8.5, we present a comparison of link utilization for Reduce-scatter and Reduce. For

this experiment, the overall reduction size is 1 GB, and hence each core receives 64 KB re-

duced data when Reduce-Scatter is performed. We observe an order of magnitude difference

in the load put on the links by two-tier algorithms in comparison to other algorithms. This

can be attributed to the step wise manner in which two-tier algorithms perform reduction.

Only the necessary data go out of a node or a supernode, and hence two-tier algorithm

reduces the load put on the links significantly. Given this large difference in communication

load, two-tier algorithms should outperform most other algorithms despite the additional

computational load they put on the cores.

8.2 Charm-FFT

In many applications, parallel FFT, especially that of a distributed 2D or 3D grid of data, is

often a critical bottleneck that limits their scalability. The communication heavy all-to-all

pattern of parallel FFT is one of the primary reason for the limited scalability of FFTs.

Moreover, parallel FFTs are commonly performed based on a 1D-decomposition of data.

145

Hence, the amount of parallelism available is limited by the length of the smallest dimension

of the data grid. For example, in a typical OpenAtom [128] simulation, each of the electronic

state is represented using a grid that ranges from 100 × 100 × 100 to 300 × 300 × 300. As

a result, 3D-FFTs of these grids and that of density-grid exhibit limited parallelism (100-

300). This affects the scalability of OpenAtom significantly, especially on large machines

with powerful compute nodes.

8.2.1 Overview

In order to eliminate the scaling bottleneck induced by parallel FFTs, we have developed

a fully asynchronous Charm++ based FFT library, called Charm-FFT. This library allows

users to create multiple instances of itself and perform concurrent FFTs with them. Each

of the FFT calls runs in the background concurrently with other parts of the user code, and

a callback is invoked when the FFT is complete. Currently, FFTW [68] is used to perform

sequential line FFTs in Charm-FFT. The key features of this library are:

1. 2D-decomposition to enable more parallelism: at higher core counts, users can define

fine-grained decomposition to increase the amount of available parallelism and better

utilize the network bandwidth.

2. Cutoff-based reduced communication: provides an option for users to specify a cutoff,

which can be used to prune parts of the grid. Such cutoffs are typically based on scien-

tific property of the entities represented by the grid. For example, the density grid in

OpenAtom has a g-space spherical cutoff [129]. Charm-FFT can improve performance

by avoiding communication of data beyond the cutoff points and by performing fewer

line FFTs.

3. User-defined mapping of library objects: the placement of objects that constitute

the FFT instance can be defined by user based on the application’s other concurrent

communication.

4. Overlap with other computational work and other FFTs: given the callback-based

interface and Charm++’s asynchrony, the FFTs are performed in the background

while other application work is performed.

146

Nx

Ny

Nz

(a) 2D-decomposition: each D1 object performs
line FFT on a few pencils (along Z dimension).

Nx

Nz

Ny

(b) Cutoff in Z dimension: D1 objects send only
those parts of the grid to D2 objects that satisfy
the linear cutoff constraint in Z dimension.

Figure 8.1: Phase 1 and 2 of Charm-FFT.

8.2.2 Implementation details

The creation of an instance of the FFT library is performed by calling Charm createFFT

from one of the processes. The user is required to specify the size of the FFT grid and the

desired decomposition. Optionally, a cutoff and mapping of FFT objects can be specified.

A callback can also be specified; this callback is invoked when the distributed creation of

the FFT library is completed. Internally, the FFT library creates three types of Charm++

objects: D1, D2, and D3. Each of the D1, D2, and D3 objects owns a thin bar (a pencil)

of the FFT-grid in one of the dimensions (say Z, Y, X). The decomposition of the FFT-grid

among these objects is decided based on the user input and can be obtained by querying

the library. Figure 8.1a shows an example of decomposing a grid among D1 objects. Since

D1 objects own pencils along Z dimension, a balanced distribution is obtained by dividing

the XY-plane using a 2D-decomposition.

Typically, D1 objects are associated with the grid in the time (real) space. The D3 objects

own pencils along X dimensions, and are associated with the output grid in the wave space.

In order to load balance the number of points in the sphere owned by each of the D3 objects,

the X-pencils are assigned to D3 objects in a round-robin fashion. Unlike D1 objects which

are part of a two-dimensional collection, D3 objects are a 1D collection. The D2 objects are

not visible to the user as they are used for the intermediate Y-pencil FFTs and transpose.

They are also a two-dimensional collection with decomposition in the XZ-plane. Due to

the cutoff constraints, the typical length of Z-dimension in D2 objects is shorter than the

Z-pencil length used by D1 objects.

Either when the FFT library is created, or when the callback is invoked after the set

up is complete, the application obtains a unique identifier for the newly created library

147

Nz

Ny

Nx

(a) After D2 objects perform line FFTs along Y
dimension, only a cylindrical grid is left within
the cutoff.

Nz

Ny

Nx

(b) D3 objects perform the final FFTs along X-
dimension, and provide the user with the sphere
that satisfies the cutoff constraint.

Figure 8.2: Phase 3 and 4 of Charm-FFT.

instance. It can then make distributed calls to query the parts of FFT-grid owned by

various processes. Before computing a FFT, the processes are required to assign the grid

memory to D1 and D3. This can be done by calling the functions Charm setInputMemory

and Charm setOutputMemory in a distributed manner. The plans required for performing

line FFTs in FFTW can either be explicitly created before invoking the FFTs, or will be

created by the library before performing the FFT.

After the set up is complete and the grid memory has been assigned, FFT computation can

be started on a instance by calling Charm doForwardFFT or Charm doBackwardFFT. As

suggested by their names, these calls are for performing forward FFTs (time to wave space,

D1 to D3 objects) and backward FFTs (wave to time space, D3 to D1 objects), respectively.

Both these calls are non-blocking and returns immediately without actually performing the

FFT. The requests to perform FFTs are registered with the runtime system.

If Charm doForwardFFT is invoked, lines FFTs are performed locally along Z dimension

by D1 objects. Following these line FFTs, any data along Z axis that is beyond the cutoff is

ignored, and only the data within the cutoff is communicated to D2 objects. In Figure 8.1b,

the cutoff is represented by the grey region and is based only on the Z-coordinate/index of

the grid points. At D2, line FFTs along Y dimension are performed. After these FFTs, the

FFT-grid within the cutoff is further reduced to a cylinder of thin bars. This is because

both Y and Z coordinates are now used to determine if a point falls in the cutoff range

(Figure 8.2a).

The D2 objects communicate the data within the cylinder to D3 objects. The third and the

final line FFT is performed by D3 objects along X dimension. Now, the grid points within

the cutoff range are defined by a sphere as shown in the Figure 8.2b. At this point, the

148

#Objects Decomposition Time (ms)

100 10 × 10 80
300 300 × 1 76
300 75 × 4 69
300 20 × 15 45
400 20 × 20 35
900 30 × 30 24
1600 40 × 40 24
2500 50 × 50 22
3600 60 × 60 23

Table 8.6: Effect of decomposition on time to perform FFT on a 300 × 300 × 300 grid.
Representative best values are shown for each of the object counts.

application specified callback is invoked which informs the application of FFT’s completion.

As mentioned earlier, the distribution of pencils, which contain the data in this sphere, to

D3 objects is performed such that the total number of grid points that are in the sphere

are load balanced across D3 objects. If Charm doBackwardFFT is invoked, these steps are

performed in reverse order. Note that if FFTs are started on multiple instances one after

the other, all of them are performed concurrently.

8.2.3 Performance of Charm-FFT

Table 8.6 presents the impact of decomposition choice on the time to perform 3D-FFT on

a 300× 300× 300 grid executed on 512 nodes of Blue Gene/Q. The baseline performance is

taken to be 76 ms which is obtained when 1D-decomposition of the grid is performed, i.e.

the grid is divided among 300 objects.

In Table 8.6, it can be seen that as we perform finer decomposition of the grid along two

dimensions, the time to FFT reduces significantly. The best performance is obtained when we

divide the grid among 2, 500 objects that are arranged as a 2D grid of size 50×50. The time

to perform FFT is reduced by 70% in comparison to the baseline FFT. Further decreasing the

decomposition granularity leads to communication overheads which impact the performance

negatively. Another important observation from the table is the performance difference

between two cases in which the same object count is used, but with different layouts. A

20×15 decomposition improves the FFT performance by 40% over a 300×1 decomposition.

This is because use of a 2D-decomposition results in small sized messages which can be

communicated effectively.

149

��

���

���

���

���

���� ����� ������

��
��
��
��
��
���
��
��
��

���������

����������������������������������

(a) As the G2 cutoff decreases, the time to FFT
reduces due to the decrease in the communica-
tion performed during the transpose by Charm-
FFT.

��

����

����

����

����

��� ���� ���� ����

�
��
��
��
��
��
��

�
��
�

���������������

����������������������������������

������
���������

(b) OpenAtom performance for Water test
system: by exploiting 2D-decomposition and
cutoff-based reduced communication, Charm-
FFT is able to improve the iteration time of
OpenAtom by up to 40%.

Figure 8.3: Performance of Charm-FFT.

Next, we compare the effect of the choice of G2 cutoff on the time taken to perform FFT.

Figure 8.3a shows that the choice of cutoff can cause the time to FFT to vary from 10 ms

to 30 ms for a 300 × 300 × 300 grid executed on 512 nodes of Blue Gene/Q using the best

2D-decomposition. While a cutoff of 100 is unrealistic from a science perspective, G2 values

that eliminate as many as half the grid points are common. In Figure 8.3a, the data point

at 6, 400 cutoff is close to such a scenario. Hence, by the use of cutoff aware FFT, Charm-

FFT can reduce the time to FFT by 41%, which can significantly improve performance of

FFT-heavy applications such as OpenAtom.

Finally, in Figure 8.3b, we present the impact of using Charm-FFT in OpenAtom for

the Water system scaled to core counts that are at its parallelization limits. For most of

the core counts, use of Charm-FFT reduces the per step time of OpenAtom by 30%-40%.

For core counts less than 400, we observe that the performance of the default version of

OpenAtom matches closely with the performance of the version that deploys Charm-FFT.

This is expected since for smaller core counts, the default 1D-decomposition is able to utilize

most of the network bandwidth. At very large counts (3, 584 in this case), the improvement

due to the Charm-FFT is around 20%. We believe the reduction at very large core count is

due to the increased overheads of sending and processing many small messages.

150

8.3 Summary

In this chapter, we have presented two diverse case studies in which use of communication-

centric algorithmic design leads to significant improvement in communication performance.

The first of these studies was on collectives in MPI, which are often the performance bottle-

neck in scaling applications. We presented a new set of algorithms, called two-tier algorithms,

for performing collectives on the dragonfly networks to take advantage of the interconnect

topology. A comparison, based on a cost model and network utilization, was done to show

the superiority of these new algorithms in comparison to well know algorithms. In the

second case study, we presented Charm-FFT, a fully asynchronous Charm++ based FFT

library, which facilitates 2D-decomposition of data grid to increase the amount of available

parallelism. Additionally, this library uses a science based cutoff to reduce the amount

of communication and computation required to perform the FFT. We showed that use of

Charm-FFT in OpenAtom improves its performance by up to 40%.

151

CHAPTER 9
Conclusion

This thesis has explored the flow of communication on various HPC networks when appli-

cations with diverse patterns are executed on the systems. Detailed studies that focus on

different components of the communication stack, such as the application’s communication

pattern, runtime’s communication support, injection policy on the system, routing protocol,

etc., have been presented. Impact of various environment parameters, e.g. the network

topology and the job placement policy, on communication performance of different applica-

tions has also been analyzed and presented in this thesis. From the experience we gained

in these case studies, we conclude that communication optimization should not be per-

formed in isolation. While optimizing one aspect of communication can lead to significant

improvements, an inclusive approach that spans different components and configurations,

which affect communication, should be adopted to obtain the best possible communication

performance.

Several contributions have been made in different chapters of this thesis, most of which

have been discussed at the end of the chapters. Here, we summarize them briefly for com-

pleteness:

• A new functional model to predict steady state traffic distribution on dragonfly net-

works has been proposed and its scalable parallel implementation using MPI, Dam-

selfly, has been described.

• Using Damselfly, we have shown that adaptive hybrid routing with randomized place-

ment at the granularity of nodes and routers is the suggested choice to obtain best

network utilization for parallel workloads executing on a dragonfly network.

• A first of its kind machine learning approach is presented to understand network con-

gestion on supercomputer networks. Using this approach, three features are shown

152

to be highly correlated with the observed communication performance: maximum re-

ceive buffers on intermediate nodes, average network link load and maximum injection

FIFOs length (arranged in decreasing order of importance). Using these features ac-

curacy close to 1.0 is obtained for predicting performance of various communication

kernels and production applications.

• A three-step guide to analyze and improve communication performance in production

applications has been presented. As a demonstration of these guidelines, communica-

tion performance of two production applications, pF3D and MILC, has been improved

by 79% and 21%, respectively.

• A new set of algorithms, called two-tier algorithms, are proposed for performing col-

lectives on the dragonfly networks to take advantage of their topology. A cost model

and network utilization based comparison with well know algorithms shows that the

the two-tier algorithms significantly outperform most other algorithms.

• Charm-FFT, a new scalable FFT library which uses 2D-decomposition and minimizes

communication by using cutoff based on scientific properties of the data grid, is pre-

sented and its benefits are shown.

• A highly scalable trace-driven packet-level simulator, TraceR, is presented to enable

simulation of real HPC codes on very large networks. It is shown to outperform state-

of-the-art simulators such as BigSim and SST in serial mode and significantly lower

the simulation time on large core counts.

• TraceR is used to compare three common networks - torus, dragonfly, and fat-tree,

using three metrics - performance, cost, and performance per dollar. It is shown

that different networks provide the best performance depending on the communication

pattern. In terms of cost, torus is shown to be most expensive by a significant margin,

while dragonfly and fat-tree are found to be much cheaper. Finally, the fat-tree is

shown to be the best network for the performance per dollar metric.

• TraceR is also used to conduct a novel parametric evaluation of what-if scenarios on

the torus and dragonfly networks. It is found that dragonfly provides best performance

when injection bandwidth is higher than link bandwidth, while torus saturates at

lower injection bandwidth. Round-robin injection policy in combination with Adaptive

routing is also shown to typically provide better performance than the FCFS policy.

153

REFERENCES

[1] S. Kamil, L. Oliker, A. Pinar, and J. Shalf, “Communication requirements and in-
terconnect optimization for high-end scientific applications,” IEEE Trans. Parallel
Distrib. Syst., vol. 21, no. 2, pp. 188–202, Feb. 2010.

[2] B. Duzett and R. Buck, “An overview of the ncube 3 supercomputer,” in Frontiers
of Massively Parallel Computation, 1992., Fourth Symposium on the, Oct 1992, pp.
458–464.

[3] C. Leiserson, “Fat-trees: Universal Networks for Hardware-Efficient Supercomputing,”
IEEE Transactions on Computers, vol. 34, no. 10, October 1985.

[4] The Connection Machine CM-5 Technical Summary, Thinking Machines Corporation,
245 First Street, Cambridge, MA 02154-1264, October 1991.

[5] X. Yuan, “On nonblocking folded-clos networks in computer communication environ-
ments,” in Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE Interna-
tional, May 2011, pp. 188–196.

[6] “Lonestar supercomputer at TACC,” https://www.tacc.utexas.edu/systems/lonestar.

[7] “Stampede supercomputer at TACC,” https://www.tacc.utexas.edu/stampede/.

[8] “Wikipedia entry on torus,” http://en.wikipedia.org/wiki/Torus.

[9] M.Blumrich, D.Chen, P.Coteus, A.Gara, M.Giampapa, P.Heidelberger, S.Singh,
B.Steinmacher-Burow, T.Takken, and P.Vranas, “Design and Analysis of the Blue
Gene/L Torus Interconnection Network,” IBM Research Report, December 2003.

[10] Y. Ajima, S. Sumimoto, and T. Shimizu, “Tofu: A 6d mesh/torus interconnect for
exascale computers,” Computer, vol. 42, pp. 36–40, 2009.

[11] Cray Inc., “Cray XE6 Specifications,” http://www.cray.com/Assets/PDF/products/
xe/CrayXE6Brochure.pdf, 2010.

[12] S. Kumar, A. Mamidala, D. Faraj, B. Smith, M. Blocksome, B. Cernohous, D. Miller,
J. Parker, J. Ratterman, P. Heidelberger, D. Chen, and B. Steinmacher-Burow,
“PAMI: A parallel active message interface for the BlueGene/Q supercomputer,” in
Proceedings of 26th IEEE International Parallel and Distributed Processing Symposium
(IPDPS), Shanghai, China, May 2012.

154

https://www.tacc.utexas.edu/systems/lonestar
https://www.tacc.utexas.edu/stampede/
http://en.wikipedia.org/wiki/Torus
http://www.cray.com/Assets/PDF/products/xe/CrayXE6Brochure.pdf
http://www.cray.com/Assets/PDF/products/xe/CrayXE6Brochure.pdf

[13] “Wikipedia article on torus interconnect,” https://en.wikipedia.org/wiki/Torus
interconnect.

[14] “Llnl page on bg/q,” https://computing.llnl.gov/tutorials/bgq/.

[15] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-scalable drag-
onfly topology,” SIGARCH Comput. Archit. News, vol. 36, pp. 77–88, June 2008.

[16] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson, T. Johnson,
J. Kopnick, M. Higgins, and J. Reinhard, “Cray cascade: A scalable hpc system based
on a dragonfly network,” in High Performance Computing, Networking, Storage and
Analysis (SC), 2012 International Conference for, Nov 2012.

[17] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Drerup, T. Hoefler,
J. Joyner, J. Lewis, J. Li, N. Ni, and R. Rajamony, “The PERCS High-Performance
Interconnect,” in 2010 IEEE 18th Annual Symposium on High Performance Intercon-
nects (HOTI), August 2010, pp. 75–82.

[18] Michalakes, J., J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock, and W.
Wang, “The Weather Research and Forecast Model: Software Architecture and Perfor-
mance,” in Proceedings of the 11th ECMWF Workshop on the Use of High Performance
Computing In Meteorology, October 2004.

[19] C. Bernard, T. Burch, T. A. DeGrand, C. DeTar, S. Gottlieb, U. M. Heller, J. E.
Hetrick, K. Orginos, B. Sugar, and D. Toussaint, “Scaling tests of the improved Kogut-
Susskind quark action,” Physical Review D, no. 61, 2000.

[20] C. H. Still, R. L. Berger, A. B. Langdon, D. E. Hinkel, L. J. Suter, and E. A. Williams,
“Filamentation and forward brillouin scatter of entire smoothed and aberrated laser
beams,” Physics of Plasmas, vol. 7, no. 5, p. 2023, 2000.

[21] X. Ni, L. V. Kale, and R. Tamstorf, “Scalable asynchronous contact mechanics using
charm++,” in Proceedings of the IEEE International Parallel & Distributed Processing
Symposium (to appear), ser. IPDPS ’15. IEEE Computer Society, May 2015, lLNL-
CONF-663041.

[22] R. V. Vadali, Y. Shi, S. Kumar, L. V. Kale, M. E. Tuckerman, and G. J. Martyna,
“Scalable fine-grained parallelization of plane-wave-based ab initio molecular dynamics
for large supercomputers,” Journal of Comptational Chemistry, vol. 25, no. 16, pp.
2006–2022, Oct. 2004.

[23] J. Phillips, G. Zheng, and L. V. Kalé, “Namd: Biomolecular simulation on thousands
of processors,” in Workshop: Scaling to New Heights, Pittsburgh, PA, May 2002.

155

https://en.wikipedia.org/wiki/Torus_interconnect
https://en.wikipedia.org/wiki/Torus_interconnect
https://computing.llnl.gov/tutorials/bgq/

[24] F. Gygi, E. W. Draeger, M. Schulz, B. R. de Supinski, J. A. Gunnels,
V. Austel, J. C. Sexton, F. Franchetti, S. Kral, C. W. Ueberhuber, and
J. Lorenz, “Large-scale electronic structure calculations of high-z metals on the
bluegene/l platform,” in Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, ser. SC ’06. New York, NY, USA: ACM, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1188455.1188502

[25] F. Ercal and J. Ramanujam and P. Sadayappan, “Task allocation onto a hypercube
by recursive mincut bipartitioning,” in Proceedings of the 3rd conference on Hypercube
concurrent computers and applications. ACM Press, 1988, pp. 210–221.

[26] S. Wayne Bollinger and Scott F. Midkiff, “Processor and Link Assignment in Multi-
computers Using Simulated Annealing,” in ICPP (1), 1988, pp. 1–7.

[27] Soo-Young Lee and J. K. Aggarwal, “A Mapping Strategy for Parallel Processing,”
IEEE Trans. Computers, vol. 36, no. 4, pp. 433–442, 1987.

[28] G. Bhanot, A. Gara, P. Heidelberger, E. Lawless, J. C. Sexton, and R. Walkup, “Op-
timizing task layout on the Blue Gene/L supercomputer,” IBM Journal of Research
and Development, vol. 49, no. 2/3, pp. 489–500, 2005.

[29] H. Yu, I.-H. Chung, and J. Moreira, “Topology mapping for Blue Gene/L supercom-
puter,” in SC ’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing.
New York, NY, USA: ACM, 2006, p. 116.

[30] T. Agarwal, A. Sharma, and L. V. Kalé, “Topology-aware task mapping for reduc-
ing communication contention on large parallel machines,” in Proceedings of IEEE
International Parallel and Distributed Processing Symposium 2006, April 2006.

[31] A. Bhatele, E. Bohm, and L. V. Kale, “Optimizing communication for charm++ ap-
plications by reducing network contention,” Concurrency and Computation: Practice
and Experience, vol. 23, no. 2, pp. 211–222, 2011.

[32] B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, T. J. C. Ward, M. Giampapa, and
M. C. Pitman, “Blue Matter: Approaching the Limits of Concurrency for Classical
Molecular Dynamics,” in SC ’06: Proceedings of the 2006 ACM/IEEE conference on
Supercomputing. New York, NY, USA: ACM Press, 2006.

[33] F. Gygi, E. W. Draeger, M. Schulz, B. R. D. Supinski, J. A. Gunnels, V. Austel, J. C.
Sexton, F. Franchetti, S. Kral, C. Ueberhuber, and J. Lorenz, “Large-Scale Electronic
Structure Calculations of High-Z Metals on the Blue Gene/L Platform,” in Proceedings
of the International Conference in Supercomputing. ACM Press, 2006.

[34] A. Bhatele, “Automating Topology Aware Mapping for Supercomputers,” Ph.D.
dissertation, Dept. of Computer Science, University of Illinois, August 2010, http:
//hdl.handle.net/2142/16578.

156

http://doi.acm.org/10.1145/1188455.1188502
http://hdl.handle.net/2142/16578
http://hdl.handle.net/2142/16578

[35] T. Hoefler and M. Snir, “Generic topology mapping strategies for large-scale parallel
architectures,” in Proceedings of the international conference on Supercomputing, ser.
ICS ’11. New York, NY, USA: ACM, 2011, pp. 75–84.

[36] R. A. Fiedler and S. Whalen, “Improving task placement for applications with 2d, 3d,
and 4d virtual cartesian topologies on 3d torus networks with service nodes,” in Cray
User Group Conference. The National Energy Research Scientific Computing Center,
CA, 2013.

[37] J. C. Phillips, Y. Sun, N. Jain, E. J. Bohm, and L. V. Kale, “Mapping to Irregular
Torus Topologies and Other Techniques for Petascale Biomolecular Simulation,” in
Proceedings of ACM/IEEE SC 2014, New Orleans, Louisiana, November 2014.

[38] A. Bhatele, T. Gamblin, S. H. Langer, P.-T. Bremer, E. W. Draeger, B. Hamann, K. E.
Isaacs, A. G. Landge, J. A. Levine, V. Pascucci, M. Schulz, and C. H. Still, “Mapping
applications with collectives over sub-communicators on torus networks,” in Proceed-
ings of the ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’12. IEEE Computer Society, Nov. 2012
(to appear), lLNL-CONF-556491.

[39] Aleliunas, R. and Rosenberg, A. L., “On Embedding Rectangular Grids in Square
Grids,” IEEE Trans. Comput., vol. 31, no. 9, pp. 907–913, 1982.

[40] S.-K. Lee and H.-A. Choi, “Embedding of complete binary trees into meshes with
row-column routing,” IEEE Trans. Parallel Distrib. Syst., vol. 7, pp. 493–497, May
1996.

[41] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramo-
nian, and T. von Eicken, “Logp: Towards a realistic model of parallel computation,” in
Fourth ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming
PPOPP, San Diego, CA, May 1993.

[42] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman, “Loggp:
incorporating long messages into the logp modelone step closer towards a realistic
model for parallel computation,” in Proceedings of the seventh annual ACM symposium
on Parallel algorithms and architectures, ser. SPAA ’95. New York, NY, USA: ACM,
1995. [Online]. Available: http://doi.acm.org/10.1145/215399.215427 pp. 95–105.

[43] M. I. Frank, A. Agarwal, and M. K. Vernon, “Lopc: modeling contention in parallel
algorithms,” in Proceedings of the sixth ACM SIGPLAN symposium on Principles
and practice of parallel programming, ser. PPOPP ’97. New York, NY, USA: ACM,
1997. [Online]. Available: http://doi.acm.org/10.1145/263764.263803 pp. 276–287.

[44] C. A. Moritz and M. I. Frank, “Logpc: Modeling network contention in message-
passing programs,” SIGMETRICS Perform. Eval. Rev., vol. 26, no. 1, pp. 254–263,
June 1998.

157

http://doi.acm.org/10.1145/215399.215427
http://doi.acm.org/10.1145/263764.263803

[45] C. Moritz and M. Frank, “Logpg: Modeling network contention in message-passing
programs,” Parallel and Distributed Systems, IEEE Transactions on, vol. 12, no. 4,
pp. 404 –415, apr 2001.

[46] W. Chen, J. Zhai, J. Zhang, and W. Zheng, “Loggpo: An accurate communication
model for performance prediction of mpi programs,” Science in China Series F: In-
formation Sciences, vol. 52, no. 10, pp. 1785–1791, 2009.

[47] D. Martinez, J. Cabaleiro, T. Pena, F. Rivera, and V. Blanco, “Accurate analytical
performance model of communications in mpi applications,” in Parallel Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on, May 2009, pp.
1–8.

[48] T. Hoefler, T. Schneider, and A. Lumsdaine, “LogGOPSim - Simulating Large-Scale
Applications in the LogGOPS Model,” in Proceedings of the 19th ACM International
Symposium on HPDC. ACM, Jun. 2010, pp. 597–604.

[49] G. Zheng, G. Kakulapati, and L. V. Kalé, “Bigsim: A parallel simulator for perfor-
mance prediction of extremely large parallel machines,” in 18th International Parallel
and Distributed Processing Symposium (IPDPS), Santa Fe, New Mexico, April 2004,
p. 78.

[50] K. Underwood, M. Levenhagen, and A. Rodrigues, “Simulating red storm: Challenges
and successes in building a system simulation,” in Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International, 2007, pp. 1 –10.

[51] “DUMPI: The mpi trace library,” http://sst.sandia.gov/about dumpi.html.

[52] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, J. Kim, and W. J.
Dally, “A detailed and flexible cycle-accurate network-on-chip simulator,” in IEEE
International Symposium on Performance Analysis of Systems and Software, 2013.

[53] P. Bohrer, J. Peterson, M. Elnozahy, R. Rajamony, A. Gheith, R. Rockhold, C. Le-
furgy, H. Shafi, T. Nakra, R. Simpson, E. Speight, K. Sudeep, E. V. Hensbergen, and
L. Zhang, “Mambo: a full system simulator for the PowerPC architecture,” SIGMET-
RICS Perform. Eval. Rev., vol. 31, no. 4, pp. 8–12, 2004.

[54] S. Bohm and C. Engelmann, “xSim: The extreme-scale simulator,” HPCS, 2011.

[55] S. Girona and J. Labarta, “Sensitivity of performance prediction of message passing
programs,” The Journal of Supercomputing, 2000.

[56] M. M. Tikir, M. A. Laurenzano, L. Carrington, and A. Snavely, “Psins: An open source
event tracer and execution simulator,” HPCMP Users Group Conference, vol. 0, pp.
444–449, 2009.

[57] B. Penoff, A. Wagner, M. Tuxen, and I. Rungeler, “Mpi-netsim: A network simulation
module for mpi,” in Parallel and Distributed Systems (ICPADS). IEEE, 2009.

158

http://sst.sandia.gov/about_dumpi.html

[58] C. Minkenberg and G. Rodriguez, “Trace-driven co-simulation of high-performance
computing systems using OMNeT++,” in Proceedings of the 2nd International Con-
ference on Simulation Tools and Techniques, 2009, p. 65.

[59] H. Casanova et al., “Versatile, scalable, and accurate simulation of distributed appli-
cations and platforms,” Journal of Parallel and Distributed Computing, June 2014.

[60] R. Rabenseifner, “Automatic Profiling of MPI Applications with Hardware Perfor-
mance Counters,” in 6th European PVM/MPI Users’ Group Meeting on Recent Ad-
vances in PVM and MPI, 1999, pp. 35–42.

[61] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of Collective Communica-
tion Operations in MPICH,” International Journal of High Performance Computing
Applications, vol. 19, no. 1, pp. 49–66, 2005.

[62] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “MPICH: A High-Performance, Portable
Implementation of the MPI Message Passing Interface Standard,” Parallel Computing,
vol. 22, no. 6, pp. 789–828, September 1996.

[63] M. Shroff and V. D. Geijn, “Collmark: Mpi collective communication benchmark,”
Tech. Rep., 2000.

[64] N. Jain and Y. Sabharwal, “Optimal bucket algorithms for large mpi collectives on
torus interconnects,” in Proceedings of the 24th ACM International Conference on
Supercomputing, ser. ICS ’10. New York, NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1810085.1810093 pp. 27–36.

[65] E. Chan, M. Heimlich, A. Purkayastha, and R. Geijn, “Collective Communication:
Theory, Practice, and Experience FLAME Working Note #22,” 2006.

[66] A. Faraj, S. Kumar, B. Smith, A. Mamidala, J. Gunnels, and P. Heidelberger, “Mpi
collective communications on the blue gene/p supercomputer: algorithms and opti-
mizations,” in Proceedings of the 23rd international conference on Supercomputing,
ser. ICS ’09, 2009, pp. 489–490.

[67] S. Kumar, Y. Sabharwal, R. Garg, and P. Heidelberger, “Optimization of
all-to-all communication on the blue gene/l supercomputer,” in Proceedings
of the 2008 37th International Conference on Parallel Processing, ser. ICPP
’08. Washington, DC, USA: IEEE Computer Society, 2008. [Online]. Available:
http://dx.doi.org/10.1109/ICPP.2008.83 pp. 320–329.

[68] M. Frigo and S. Johnson, “FFTW: an adaptive software architecture for the FFT,”
Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE Interna-
tional Conference on, vol. 3, pp. 1381–1384 vol.3, May 1998.

[69] M. Eleftheriou, B. G. Fitch, A. Rayshubskiy, T. J. C. Ward, and R. S. Germain,
“Scalable framework for 3D FFTs on the Blue Gene/L supercomputer: Implementation
and early performance measurements,” IBM Journal of Research and Development,
vol. 49, no. 2/3, 2005.

159

http://doi.acm.org/10.1145/1810085.1810093
http://dx.doi.org/10.1109/ICPP.2008.83

[70] A. Chan, P. Balaji, W. Gropp, and R. Thakur, “Communication analysis
of parallel 3d fft for flat cartesian meshes on large blue gene systems,” in
High Performance Computing - HiPC 2008, ser. Lecture Notes in Computer
Science, P. Sadayappan, M. Parashar, R. Badrinath, and V. Prasanna, Eds.
Springer Berlin Heidelberg, 2008, vol. 5374, pp. 350–364. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-89894-8 32

[71] C. Young, J. A. Bank, R. O. Dror, J. P. Grossman, J. K. Salmon, and D. E. Shaw, “A
32x32x32, spatially distributed 3D FFT in four microseconds on Anton,” in SC ’09:
Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis. New York, NY, USA: ACM, 2009, pp. 1–11.

[72] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes the neighborhood:
performance degradation due to nearby jobs,” in ACM/IEEE International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, ser. SC ’13.
IEEE Computer Society, Nov. 2013, LLNL-CONF-635776.

[73] A. Bhatele, N. Jain, W. D. Gropp, and L. V. Kale, “Avoiding hot-spots on two-level
direct networks,” in Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, ser. SC ’11. New York, NY,
USA: ACM, 2011, pp. 76:1–76:11.

[74] A. Bhatele, N. Jain, K. E. Isaacs, R. Buch, T. Gamblin, S. H. Langer, and L. V. Kale,
“Optimizing the performance of parallel applications on a 5D torus via task mapping,”
in Proceedings of IEEE International Conference on High Performance Computing (to
appear), ser. HiPC ’14. IEEE Computer Society, Dec. 2014, lLNL-CONF-655465.

[75] J. Vetter and C. Chambreau, “mpiP: Lightweight, Scalable MPI Profiling,” http://
mpip.sourceforge.net.

[76] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and
N. R. Tallent, “Hpctoolkit: Tools for performance analysis of optimized parallel pro-
grams,” Concurrency and Computation: Practice and Experience, vol. 22, no. 6, pp.
685–701, 2010.

[77] I.-H. Chung, R. E. Walkup, H.-F. Wen, and H. Yu, “Mpi performance analysis tools on
blue gene/l,” in Proceedings of the 2006 ACM/IEEE Conference on Supercomputing,
ser. SC ’06. New York, NY, USA: ACM, 2006.

[78] A. Bhatele, G. Gupta, L. V. Kale, and I.-H. Chung, “Automated Mapping of Regu-
lar Communication Graphs on Mesh Interconnects,” in Proceedings of International
Conference on High Performance Computing (HiPC), 2010.

[79] A. Bhatele and L. V. Kale, “Heuristic-based techniques for mapping irregular com-
munication graphs to mesh topologies,” in Proceedings of Workshop on Extreme Scale
Computing APplication Enablement - Modeling and Tools, September 2011.

160

http://dx.doi.org/10.1007/978-3-540-89894-8_32
http://mpip.sourceforge.net
http://mpip.sourceforge.net

[80] M. Deveci, S. Rajamanickam, V. J. Leung, K. Pedretti, S. L. Olivier, D. P. Bunde,
U. V. Çatalyürek, and K. Devine, “Exploiting geometric partitioning in task mapping
for parallel computers,” in Proceedings of the IEEE International Parallel & Distributed
Processing Symposium, ser. IPDPS ’14. IEEE Computer Society, May 2014.

[81] M. Collaboration, “MIMD Lattice Computation (MILC) Collaboration Home Page,”
http://www.physics.indiana.edu/∼sg/milc.html.

[82] N. Jain, A. Bhatele, M. P. Robson, T. Gamblin, and L. V. Kale, “Predicting application
performance using supervised learning on communication features,” in ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’13. IEEE Computer Society, Nov. 2013, lLNL-CONF-635857.

[83] “NERSC-8: Trinity Benchmarks.” [Online]. Available: https://www.nersc.gov/users/
computational-systems/cori/nersc-8-procurement

[84] A. G. Landge, J. A. Levine, K. E. Isaacs, A. Bhatele, T. Gamblin, M. Schulz, S. H.
Langer, P.-T. Bremer, and V. Pascucci, “Visualizing network traffic to understand the
performance of massively parallel simulations,” in IEEE Symposium on Information
Visualization (INFOVIS’12), Seattle, WA, October 14-19 2012, LLNL-CONF-543359.

[85] N. Jain, A. Bhatele, X. Ni, N. J. Wright, and L. V. Kale, “Maximizing
throughput on a dragonfly network,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’14. Piscataway, NJ, USA: IEEE Press, 2014. [Online]. Available:
http://dx.doi.org/10.1109/SC.2014.33 pp. 336–347.

[86] K. Antypas, J. Shalf, and H. Wasserman, “NERSC6 Workload Analysis and Bench-
mark Selection Process,” Lawrence Berkeley National Lab, Tech. Rep. LBNL-1014E,
2008.

[87] B. Austin, M. Cordery, H. Wasserman, and N. Wright, “Performance measurements
of the nersc cray cascade system.” Cray, Inc., May 2013.

[88] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau,
P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards,
A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale
computing study: Technology challenges in achieving exascale systems,” 2008.

[89] B. Prisacari, G. Rodriguez, P. Heidelberger, D. Chen, C. Minkenberg, and T. Hoefler,
“Efficient task placement and routing of nearest neighbor exchanges in dragonfly
networks,” in Proceedings of the 23rd International Symposium on High-performance
Parallel and Distributed Computing, ser. HPDC ’14. ACM, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2600212.2600225 pp. 129–140.

[90] C. Huang, O. Lawlor, and L. V. Kalé, “Adaptive MPI,” in Proceedings of the 16th
International Workshop on Languages and Compilers for Parallel Computing (LCPC
2003), LNCS 2958, College Station, Texas, October 2003, pp. 306–322.

161

http://www.physics.indiana.edu/~sg/milc.html
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement
http://dx.doi.org/10.1109/SC.2014.33
http://doi.acm.org/10.1145/2600212.2600225

[91] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé, “NAMD: Biomolecular simulation
on thousands of processors,” in Proceedings of the 2002 ACM/IEEE conference on
Supercomputing, Baltimore, MD, September 2002, pp. 1–18.

[92] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev.
B, vol. 47, p. 558, 1993.

[93] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and
J. G. Powers, “A description of the advanced research wrf version 2,” NCAR, Tech.
Rep. Technical Note NCAR/TN-468+STR, June 2005.

[94] A. Bhatele, A. R. Titus, J. J. Thiagarajan, N. Jain, T. Gamblin, P.-T. Bremer,
M. Schulz, and L. V. Kale, “Identifying the culprits behind network congestion,” in
Proceedings of the IEEE International Parallel & Distributed Processing Symposium
(to appear), ser. IPDPS ’15. IEEE Computer Society, May 2015, lLNL-CONF-663150.

[95] C. Hyatt and D. P. Agrawal, “Congestion control in the wormhole-routed torus with
clustering and delayed deflection,” in Parallel Computer Routing and Communication,
ser. Lecture Notes in Computer Science, S. Yalamanchili and J. Duato, Eds. Springer
Berlin Heidelberg, 1998, vol. 1417, pp. 33–38.

[96] A. Bhatelé and L. V. Kalé, “Quantifying Network Contention on Large Parallel Ma-
chines,” Parallel Processing Letters (Special Issue on Large-Scale Parallel Processing),
vol. 19, no. 4, pp. 553–572, 2009.

[97] J. Escudero-Sahuquillo, E. Gran, P. Garcia, J. Flich, T. Skeie, O. Lysne, F. Quiles,
and J. Duato, “Combining congested-flow isolation and injection throttling in hpc
interconnection networks,” in 2011 International Conference on Parallel Processing
(ICPP), Sept 2011, pp. 662–672.

[98] A. Bhatelé, L. V. Kalé, and S. Kumar, “Dynamic topology aware load balancing algo-
rithms for molecular dynamics applications,” in 23rd ACM International Conference
on Supercomputing, 2009.

[99] Shahid H. Bokhari, “On the Mapping Problem,” IEEE Trans. Computers, vol. 30,
no. 3, pp. 207–214, 1981.

[100] S. Langer, A. Bhatele, and C. H. Still, “pF3D simulations of laser-plasma
interactions in National Ignition Facility experiments,” Computing in Science
and Engineering, vol. 99, Aug. 2014, lLNL-JRNL-648736. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/MCSE.2014.79

[101] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[102] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

162

http://doi.ieeecomputersociety.org/10.1109/MCSE.2014.79

[103] J. H. Friedman, “Stochastic gradient boosting,” Computational Statistics & Data Anal-
ysis, vol. 38, no. 4, pp. 367–378, 2002.

[104] A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,” Frontiers in neu-
rorobotics, vol. 7, 2013.

[105] “Kendall tau rank correlation coefficient,” http://en.wikipedia.org/wiki/Kendall tau
rank correlation coefficient.

[106] J. Cope, N. Liu, S. Lang, P. Carns, C. Carothers, and R. Ross, “Codes: Enabling
co-design of multilayer exascale storage architectures,” in Proceedings of the Workshop
on Emerging Supercomputing Technologies, 2011.

[107] G. Zheng, T. Wilmarth, P. Jagadishprasad, and L. V. Kalé, “Simulation-based per-
formance prediction for large parallel machines,” in International Journal of Parallel
Programming, vol. 33, no. 2-3, 2005, pp. 183–207.

[108] C. D. Carothers, D. Bauer, and S. Pearce, “ROSS: A high-performance, low-memory,
modular Time Warp system,” Journal of Parallel and Distributed Computing, vol. 62,
no. 11, pp. 1648–1669, 2002.

[109] B. Acun, N. Jain, A. Bhatele, M. Mubarak, C. D. Carothers, and L. V. Kale, “Prelim-
inary evaluation of a parallel trace replay tool for hpc network simulations,” in Work-
shop on Parallel and Distributed Agent-Based Simulations, ser. PADABS, EURO-PAR,
Aug. 2015.

[110] L. V. Kale and A. Bhatele, Eds., Parallel Science and Engineering Applications: The
Charm++ Approach. Taylor & Francis Group, CRC Press, Nov. 2013.

[111] R. B. R. Misbah Mubarak, Christopher D. Carothers and P. Carns, “A case study
in using massively parallel simulation for extreme-scale torus network codesign,” in
Proceedings of the 2nd ACM SIGSIM PADS. ACM, 2014, pp. 27–38.

[112] P. D. Barnes, Jr., C. D. Carothers, and D. R. e. a. Jefferson, “Warp speed: Executing
time warp on 1,966,080 cores,” in Conference on Principles of Advanced Discrete
Simulation, ser. SIGSIM-PADS, New York, NY, USA, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2486092.2486134 pp. 327–336.

[113] L. Schwiebert and D. N. Jayasimha, “On measuring the performance of adaptive worm-
hole routing,” hipc, vol. 00, p. 336, 1997.

[114] D. Chen, N. Eisley, P. Heidelberger, S. Kumar, A. Mamidala, F. Petrini,
R. Senger, Y. Sugawara, R. Walkup, B. Steinmacher-Burow, A. Choudhury,
Y. Sabharwal, S. Singhal, and J. J. Parker, “Looking under the hood of the
ibm blue gene/q network,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC ’12. Los
Alamitos, CA, USA: IEEE Computer Society Press, 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389090 pp. 69:1–69:12.

163

http://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient
http://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient
http://doi.acm.org/10.1145/2486092.2486134
http://dl.acm.org/citation.cfm?id=2388996.2389090

[115] E. Zahavi, G. Johnson, D. J. Kerbyson, and M. Lang, “Optimized infinibandtm
fat-tree routing for shift all-to-all communication patterns,” Concurrency and
Computation: Practice and Experience, vol. 22, no. 2, pp. 217–231, 2010. [Online].
Available: http://dx.doi.org/10.1002/cpe.1527

[116] B. Prisacari, G. Rodriguez, C. Minkenberg, and T. Hoefler, “Fast pattern-specific
routing for fat tree networks,” ACM Trans. Archit. Code Optim., vol. 10, no. 4,
pp. 36:1–36:25, Dec. 2013. [Online]. Available: http://doi.acm.org/10.1145/2555289.
2555293

[117] S. Brookes and A. Roscoe, “Deadlock analysis in networks of communicating
processes,” Distributed Computing, vol. 4, no. 4, pp. 209–230, 1991. [Online].
Available: http://dx.doi.org/10.1007/BF01784721

[118] R. Cypher and L. Gravano, “Storage-efficient, deadlock-free packet routing algorithms
for torus networks,” Computers, IEEE Transactions on, vol. 43, no. 12, pp. 1376–1385,
Dec 1994.

[119] C. Carrion, R. Beivide, J. Gregorio, and F. Vallejo, “A flow control mechanism to
avoid message deadlock in k-ary n-cube networks,” in High-Performance Computing,
1997. Proceedings. Fourth International Conference on, Dec 1997, pp. 322–329.

[120] V. Puente, R. Beivide, J. Gregorio, J. Prellezo, J. Duato, and C. Izu, “Adaptive bubble
router: a design to improve performance in torus networks,” in Parallel Processing,
1999. Proceedings. 1999 International Conference on, 1999, pp. 58–67.

[121] A. Bhatele, S. Kumar, C. Mei, J. C. Phillips, G. Zheng, and L. V. Kale, “Overcoming
scaling challenges in biomolecular simulations across multiple platforms,” in Proceed-
ings of IEEE International Parallel and Distributed Processing Symposium 2008, April
2008.

[122] R. B. R. Misbah Mubarak, Christopher D. Carothers and P. Carns, “Modeling a
million-node dragonfly network using massively parallel discrete-event simulation,”
SCC, SC Companion, 2012.

[123] Cray T3D System Architecture Overview, Cray Research, Inc., March 1993.

[124] “MPI: A Message Passing Interface Standard,” in MPI Forum, http://www.mpi-
forum.org/.

[125] R. Rabenseifner, “A new optimized MPI reduce algorithm,” 1997.

[126] R. Thakur and W. D. Gropp, “Improving the Performance of Collective Operations in
MPICH,” Lecture Notes in Computer Science, vol. 2840, pp. 257–267, October 2003.

[127] M. Barnett, S. Gupta, D. G. Payne, L. Shuler, R. Geijn, and J. Watts, “Interprocessor
Collective Communication Library (InterCom),” in In Proceedings of the Scalable High
Performance Computing Conference, 1994, pp. 357–364.

164

http://dx.doi.org/10.1002/cpe.1527
http://doi.acm.org/10.1145/2555289.2555293
http://doi.acm.org/10.1145/2555289.2555293
http://dx.doi.org/10.1007/BF01784721

[128] S. Kumar, Y. Shi, E. Bohm, and L. V. Kale, “Scalable, fine grain, parallelization of
the car-parrinello ab initio molecular dynamics method,” UIUC, Dept. of Computer
Science, Tech. Rep., 2005.

[129] B. Fang, G. Martyna, and Y. Deng, “A fine grained parallel smooth particle mesh
ewald algorithm for biophysical simulation studies: Application to the 6-d torus
QCDOC supercomputer,” Computer Physics Communications, vol. 177, no. 4, pp.
362 – 377, 2007. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0010465507002445

165

http://www.sciencedirect.com/science/article/pii/S0010465507002445
http://www.sciencedirect.com/science/article/pii/S0010465507002445

	List of Figures
	List of Tables
	CHAPTER 1 Overview
	Thesis organization

	CHAPTER 2 Background and Related Work
	Topologies in HPC networks
	Interaction patterns
	Task mapping and job placement
	Indicators of performance
	Offline performance prediction
	Communication algorithms

	CHAPTER 3 Job Placement and Task Mapping
	Task mapping on torus
	Mapping, congestion and performance
	Experimental setup
	Mapping study of pF3D
	Mapping study of MILC
	Discussion and summary

	Job placement on the dragonfly network
	The dragonfly network
	Prediction methodology for link utilization
	Evaluation setup
	Predictions for single jobs
	Predictions for parallel workloads
	Summary

	CHAPTER 4 Causes of Network Congestion
	Contention on torus networks
	Message flow and resource contention
	Collecting hardware counters data
	Indicators of resource contention

	Experimental setup
	Communication kernels
	Prediction using ensemble methods

	Performance prediction of communication kernels
	Performance variation with mapping
	Prior features
	New features
	Hybrid features
	Results on 65,536 cores

	GBRT and production applications
	Identifying relevant feature subsets
	Feature selection from extreme quantiles
	Results and discussion

	Summary

	CHAPTER 5 TraceR: PDES Simulator
	Background
	Design and implementation of TraceR
	Running TraceR in optimistic mode

	Network models in CODES
	Fat-tree model
	Adaptive routing
	Deadlock avoidance

	Simulation configuration
	Impact of simulation configuration
	Experimental setup and configuration parameters
	Conservative versus optimistic simulation
	Effect of batch size and GVT interval
	Impact of number of LPs per KP

	Performance comparison
	Comparison with sequential executions
	Parallel scaling and validation of TraceR

	Summary

	CHAPTER 6 Comparison of Networks
	Network prototypes
	Torus
	Dragonfly
	Fat-tree

	Communication performance comparison
	Stencil
	Neighborhood communication
	Subset All-to-All
	Transpose communication
	Distributed communication

	Network cost comparison
	Cost models
	Router and cable cost
	Total cost comparison

	Performance Per Dollar
	Summary

	CHAPTER 7 Impact of Configuration on Performance
	Stencil with unbounded resources
	Stencil with practical resources
	Spread with unbounded resources
	Spread with practical resources
	Summary and discussion

	CHAPTER 8 Communication Algorithms
	Analysis of collectives on dragonfly networks
	Cost model and assumptions
	Two-tier algorithms
	Analysis of collectives

	Charm-FFT
	Overview
	Implementation details
	Performance of Charm-FFT

	Summary

	CHAPTER 9 Conclusion
	REFERENCES

