
Energy-­‐efficient	
 compu1ng	
 for	
 HPC	

workloads	
 on	
 Heterogeneous	
 Chips	

	
 Akhil	
 Langer,	
 Ehsan	
 Totoni,	
 Uda.a	
 Palekar*,	
 Laxmikant	
 (Sanjay)	
 V.	
 Kale	

Parallel	
 Programming	
 Laboratory,	
 Department	
 of	
 Computer	
 Science	

*Department	
 of	
 Business	
 AdministraJon	

University	
 of	
 Illinois	
 at	
 Urbana-­‐Champaign	

h?p://charm.cs.uiuc.edu/research/energy	

	

PMAM	
 2015	

6th	
 InternaJonal	
 Workshop	
 on	
 Programming	
 Models	
 and	
 	

ApplicaJons	
 for	
 MulJcores	
 and	
 Manycores 	
 	

February	
 7-­‐8,	
 2015	

	

	

Outline	

q IntroducJon	
 	

q Background	

q Problem	
 Statement	

q Approach	

q Results	

3/2/15	
 Energy-­‐efficient	
 operaJon	
 of	
 Heterogeneous	
 Manycore	
 Chips	
 2	

IntroducJon	

•  MoJvaJon	

– Huge	
 energy	
 consumpJon	
 of	
 data	
 centers	

– 20MW	
 power	
 @	
 $0.15	
 per	
 KWh,	
 costs	
 $2.2	
 M	
 per	

month	

– Energy	
 efficiency	
 idenJfied	
 as	
 a	
 major	
 exascale	

challenge	
 by	
 DoE	

– Consider	
 charging	
 users	
 in	
 energy	
 units	
 (KWh)	

instead	
 (or	
 in	
 addiJon)	
 of	
 SUs	

3/2/15	
 Energy-­‐efficient	
 operaJon	
 of	

Heterogeneous	
 Chips	
 3	

IntroducJon	

•  Low	
 voltage	
 operaJon	

–  For	
 high	
 energy	
 efficiency	

–  For	
 example,	
 10x	
 increase	
 in	
 energy	
 efficiency	
 near	

threshold	
 voltage	

•  But	

– VariaJon	
 in	
 CMOS	
 manufacturing	
 process	

–  Low	
 voltage	
 operaJon	
 introduces	
 variability	
 on	
 chip	

–  Cores	
 have	
 different	
 frequencies	
 and	
 power	

consumpJon	

3/2/15	
 Energy-­‐efficient	
 operaJon	
 of	

Heterogeneous	
 Chips	
 4	

Process	
 VariaJon	

•  Low	
 voltage	
 operaJon	

3/2/15	
 Energy-­‐efficient	
 operaJon	
 of	

Heterogeneous	
 Chips	
 5	

0.8f% f% 0.5f% 0.6f%

0.7f% 0.8f% f% 0.8f%

f% 0.7f% 0.6f% 0.9f%

0.5f% 0.8f% 0.5f% f%

Programming	
 Systems*	

•  Problem	

– HPC	
 applicaJons	
 are	
 highly	
 synchronized	

–  Speed	
 determined	
 by	
 speed	
 of	
 slowest	
 processor	

•  Solu+on	

– Do	
 overdecomposiJon	
 of	
 work	
 (e.g.	
 Charm++)	

–  Load	
 Balance	
 according	
 to	
 core	
 speeds	

•  Result	

– OverdecomposiJon	
 raJo	
 of	
 16	
 =>	
 2-­‐6%	
 load	
 imbalance	

–  	
 No	
 changes	
 required	
 in	
 applicaJon	
 code	

3/2/15	
 Energy-­‐efficient	
 operaJon	
 of	

Heterogeneous	
 Chips	
 6	

*Under	
 Review	

Problem	
 Statement	

•  Not	
 opJmal	
 to	
 use	
 all	
 cores	
 on	
 chip	
 for	
 execuJon	

–  Shared	
 resources	
 cause	
 contenJon	

– High	
 energy	
 consumpJon	

•  A	
 configuraJon	
 is	
 defined	
 as	
 the	
 cores	
 on	
 which	

the	
 applicaJon	
 is	
 run	

	

Determine	
 op+mal	
 configura+on	
 that	
 minimizes	

energy	
 consump+on	
 (with	
 op+onal	
 +ming	

constraints)	
 of	
 the	
 chip	
 for	
 a	
 given	
 applica+on	

	
 3/2/15	
 Energy-­‐efficient	
 operaJon	
 of	

Heterogeneous	
 Chips	
 7	

Performance	
 Modeling*	

•  ExhausJve	
 evaluaJon	
 of	
 configuraJons	
 infeasible	

•  Model	
 1	

– Sum	
 of	
 individual	
 core	
 performance	

– Memory	
 contenJon	
 not	
 modeled	

•  Model	
 2	

– Add	
 memory	
 access	
 Jme	

– #	
 of	
 acJve	
 cores	
 not	
 accounted	

3/2/15	
 Energy-­‐efficient	
 operaJon	
 of	

Heterogeneous	
 Chips	
 8	

*Under	
 Review	

individual cores in the configuration (c).

S =
X

i2c

si (1)

where, si is the performance (instructions per cycle) of core
i for the focal application when the application was run only
on core i, and S is the predicted performance (instructions
per cycle) for configuration c for the focal application. This
model will predict performance accurately only for compu-
tationally intensive applications in which there is no memory
contention. For memory-intensive applications, this perfor-
mance model will fail to predict the performance for a con-
figuration because it just adds the core performance which
was obtained when they were running individually, and does
not model the contention for the shared resources, e.g. mem-
ory, when multiple cores are running simultaneously.

Model 2: The application execution time is divided into
two components: Tcpu corresponding to CPU time and
Tmem corresponding to memory time (as in [14, 15, 21,
43]). And the performance is modeled as

T =
TcpuX

i2c

fi

+ Tmem (2)

where, fi is the frequency of core i, and T is the pre-
dicted execution time of the application. The weakness of
this model is that it fails to incorporate the number of cores
that are accessing the memory, and treats the memory time
as constant irrespective of the cores that are accessing the
memory.

Model 3: In this model, we construct as many model
functions as there are number of cores on the chip. There
is one model for all the configurations with the same num-
ber of cores. For instance, if there are 36 cores on a chip, 36
functions are developed. In this way, this model incorporates
the number of active cores in performance prediction. Each
of these functions is a linear function of the sum of frequen-
cies of the cores in the configuration. The performance (in-
structions per cycle) function for all the configurations with
k cores is modeled as:

S = ak(
X

i2c

fi) + bk (3)

where, ak, bk are line constants for all configurations with
k cores, and S is the instructions per cycle of the configu-
ration. Only two performance data samples are required to
get the value of the constants, ak and bk, for this function.
These samples correspond to instructions per cycle for any
two configurations with k cores. Since there are n functions,
2n samples are sufficient to develop the complete model for
an application (although more samples can increase the ac-
curacy of the model). The overhead of sampling the data to
generate the model is negligible as compared to the execu-
tion time of HPC applications, which can be from hours to

Table 1: Constrained Optimization Program Terminology

Symbol Description

N total number of cores on the chip
c a configuration
k number of cores in a configuration
nk binary variable indicating whether the selected

configuration has k cores
xi a binary variable indicating whether core i

is selected or not in a configuration
fi frequency of core i

si static power consumption of core i

a

t
k, b

t
k line constants for performance model

of configurations with k cores
a

p
k, b

p
k line constants for dynamic power model

of configurations with k cores
tmin minimum execution time of the application

across all the configurations on the chip
tp penalty in execution time, maximum allowed

execution time is (1 + tp
100)⇥ tmin

days. In previous work [47], it is shown that the prediction
accuracy of Model 3 is very high. The average prediction
error in performance is less than 1.6%, and 0.7% for a com-
putationally intensive and a memory intensive application,
respectively. Simulated performance was obtained using the
Sniper simulator, discussed in detail in Section 5. Similar to
performance, the dynamic power consumption of a configu-
ration could be modeled accurately using Model 3, that is,

P = Ak(
X

i2c

fi) +Bk

where P is the dynamic power of configuration c, Ak and Bk

are line constants. It has been shown in previous work [47]
that the maximum prediction error of Model 3 for dynamic
power is less than 2%.

4. Energy Optimization Approach
In this section, we describe our approach for optimizing
the energy consumption during application execution. The
total energy is computed as the power consumption inte-
grated over the duration of execution of the application, that
is, power consumption multiplied by the execution time of
the application. We use Model 3, described in the previous
section, to model the execution time and dynamic power
consumption of any configuration. According to Model 3,
the linear function for performance and dynamic power con-
sumption of a configuration depends on the number of cores
in the configuration. Therefore, the energy consumption can
be defined as
NX

k=1

(nk ⇤ (apk
X

i

xifi + b

p
k +

X

i

sixi) ⇤ (atk
X

i

xifi + b

t
k))

individual cores in the configuration (c).

S =
X

i2c

si (1)

where, si is the performance (instructions per cycle) of core
i for the focal application when the application was run only
on core i, and S is the predicted performance (instructions
per cycle) for configuration c for the focal application. This
model will predict performance accurately only for compu-
tationally intensive applications in which there is no memory
contention. For memory-intensive applications, this perfor-
mance model will fail to predict the performance for a con-
figuration because it just adds the core performance which
was obtained when they were running individually, and does
not model the contention for the shared resources, e.g. mem-
ory, when multiple cores are running simultaneously.

Model 2: The application execution time is divided into
two components: Tcpu corresponding to CPU time and
Tmem corresponding to memory time (as in [14, 15, 21,
43]). And the performance is modeled as

T =
TcpuX

i2c

fi

+ Tmem (2)

where, fi is the frequency of core i, and T is the pre-
dicted execution time of the application. The weakness of
this model is that it fails to incorporate the number of cores
that are accessing the memory, and treats the memory time
as constant irrespective of the cores that are accessing the
memory.

Model 3: In this model, we construct as many model
functions as there are number of cores on the chip. There
is one model for all the configurations with the same num-
ber of cores. For instance, if there are 36 cores on a chip, 36
functions are developed. In this way, this model incorporates
the number of active cores in performance prediction. Each
of these functions is a linear function of the sum of frequen-
cies of the cores in the configuration. The performance (in-
structions per cycle) function for all the configurations with
k cores is modeled as:

S = ak(
X

i2c

fi) + bk (3)

where, ak, bk are line constants for all configurations with
k cores, and S is the instructions per cycle of the configu-
ration. Only two performance data samples are required to
get the value of the constants, ak and bk, for this function.
These samples correspond to instructions per cycle for any
two configurations with k cores. Since there are n functions,
2n samples are sufficient to develop the complete model for
an application (although more samples can increase the ac-
curacy of the model). The overhead of sampling the data to
generate the model is negligible as compared to the execu-
tion time of HPC applications, which can be from hours to

Table 1: Constrained Optimization Program Terminology

Symbol Description

N total number of cores on the chip
c a configuration
k number of cores in a configuration
nk binary variable indicating whether the selected

configuration has k cores
xi a binary variable indicating whether core i

is selected or not in a configuration
fi frequency of core i

si static power consumption of core i

a

t
k, b

t
k line constants for performance model

of configurations with k cores
a

p
k, b

p
k line constants for dynamic power model

of configurations with k cores
tmin minimum execution time of the application

across all the configurations on the chip
tp penalty in execution time, maximum allowed

execution time is (1 + tp
100)⇥ tmin

days. In previous work [47], it is shown that the prediction
accuracy of Model 3 is very high. The average prediction
error in performance is less than 1.6%, and 0.7% for a com-
putationally intensive and a memory intensive application,
respectively. Simulated performance was obtained using the
Sniper simulator, discussed in detail in Section 5. Similar to
performance, the dynamic power consumption of a configu-
ration could be modeled accurately using Model 3, that is,

P = Ak(
X

i2c

fi) +Bk

where P is the dynamic power of configuration c, Ak and Bk

are line constants. It has been shown in previous work [47]
that the maximum prediction error of Model 3 for dynamic
power is less than 2%.

4. Energy Optimization Approach
In this section, we describe our approach for optimizing
the energy consumption during application execution. The
total energy is computed as the power consumption inte-
grated over the duration of execution of the application, that
is, power consumption multiplied by the execution time of
the application. We use Model 3, described in the previous
section, to model the execution time and dynamic power
consumption of any configuration. According to Model 3,
the linear function for performance and dynamic power con-
sumption of a configuration depends on the number of cores
in the configuration. Therefore, the energy consumption can
be defined as
NX

k=1

(nk ⇤ (apk
X

i

xifi + b

p
k +

X

i

sixi) ⇤ (atk
X

i

xifi + b

t
k))

Performance	
 Modeling*	

•  Model	
 3	

– One	
 model	
 each	
 for	
 configuraJons	
 with	
 same	
 number	

of	
 cores	

–  Performance	
 is	
 linear	
 funcJon	
 of	
 frequency	

–  Total	
 #cores	
 (n)	
 models	

•  k	
 is	
 number	
 of	
 cores	
 in	
 configuraJon	
 c	

•  ak,	
 bk	
 are	
 line	
 constants	

•  fi	
 is	
 frequency	
 of	
 core	
 i	

– Average	
 predicJon	
 error	
 less	
 than	
 1.6%	

– Dynamic	
 power	
 consumpJon	
 can	
 be	
 modeled	
 in	
 same	

way	

3/2/15	
 Energy-­‐efficient	
 operaJon	
 of	

Heterogeneous	
 Chips	
 9	

*Under	
 Review	

individual cores in the configuration (c).

S =
X

i2c

si (1)

where, si is the performance (instructions per cycle) of core
i for the focal application when the application was run only
on core i, and S is the predicted performance (instructions
per cycle) for configuration c for the focal application. This
model will predict performance accurately only for compu-
tationally intensive applications in which there is no memory
contention. For memory-intensive applications, this perfor-
mance model will fail to predict the performance for a con-
figuration because it just adds the core performance which
was obtained when they were running individually, and does
not model the contention for the shared resources, e.g. mem-
ory, when multiple cores are running simultaneously.

Model 2: The application execution time is divided into
two components: Tcpu corresponding to CPU time and
Tmem corresponding to memory time (as in [14, 15, 21,
43]). And the performance is modeled as

T =
TcpuX

i2c

fi

+ Tmem (2)

where, fi is the frequency of core i, and T is the pre-
dicted execution time of the application. The weakness of
this model is that it fails to incorporate the number of cores
that are accessing the memory, and treats the memory time
as constant irrespective of the cores that are accessing the
memory.

Model 3: In this model, we construct as many model
functions as there are number of cores on the chip. There
is one model for all the configurations with the same num-
ber of cores. For instance, if there are 36 cores on a chip, 36
functions are developed. In this way, this model incorporates
the number of active cores in performance prediction. Each
of these functions is a linear function of the sum of frequen-
cies of the cores in the configuration. The performance (in-
structions per cycle) function for all the configurations with
k cores is modeled as:

S = ak(
X

i2c

fi) + bk (3)

where, ak, bk are line constants for all configurations with
k cores, and S is the instructions per cycle of the configu-
ration. Only two performance data samples are required to
get the value of the constants, ak and bk, for this function.
These samples correspond to instructions per cycle for any
two configurations with k cores. Since there are n functions,
2n samples are sufficient to develop the complete model for
an application (although more samples can increase the ac-
curacy of the model). The overhead of sampling the data to
generate the model is negligible as compared to the execu-
tion time of HPC applications, which can be from hours to

Table 1: Constrained Optimization Program Terminology

Symbol Description

N total number of cores on the chip
c a configuration
k number of cores in a configuration
nk binary variable indicating whether the selected

configuration has k cores
xi a binary variable indicating whether core i

is selected or not in a configuration
fi frequency of core i

si static power consumption of core i

a

t
k, b

t
k line constants for performance model

of configurations with k cores
a

p
k, b

p
k line constants for dynamic power model

of configurations with k cores
tmin minimum execution time of the application

across all the configurations on the chip
tp penalty in execution time, maximum allowed

execution time is (1 + tp
100)⇥ tmin

days. In previous work [47], it is shown that the prediction
accuracy of Model 3 is very high. The average prediction
error in performance is less than 1.6%, and 0.7% for a com-
putationally intensive and a memory intensive application,
respectively. Simulated performance was obtained using the
Sniper simulator, discussed in detail in Section 5. Similar to
performance, the dynamic power consumption of a configu-
ration could be modeled accurately using Model 3, that is,

P = Ak(
X

i2c

fi) +Bk

where P is the dynamic power of configuration c, Ak and Bk

are line constants. It has been shown in previous work [47]
that the maximum prediction error of Model 3 for dynamic
power is less than 2%.

4. Energy Optimization Approach
In this section, we describe our approach for optimizing
the energy consumption during application execution. The
total energy is computed as the power consumption inte-
grated over the duration of execution of the application, that
is, power consumption multiplied by the execution time of
the application. We use Model 3, described in the previous
section, to model the execution time and dynamic power
consumption of any configuration. According to Model 3,
the linear function for performance and dynamic power con-
sumption of a configuration depends on the number of cores
in the configuration. Therefore, the energy consumption can
be defined as
NX

k=1

(nk ⇤ (apk
X

i

xifi + b

p
k +

X

i

sixi) ⇤ (atk
X

i

xifi + b

t
k))

individual cores in the configuration (c).

S =
X

i2c

si (1)

where, si is the performance (instructions per cycle) of core
i for the focal application when the application was run only
on core i, and S is the predicted performance (instructions
per cycle) for configuration c for the focal application. This
model will predict performance accurately only for compu-
tationally intensive applications in which there is no memory
contention. For memory-intensive applications, this perfor-
mance model will fail to predict the performance for a con-
figuration because it just adds the core performance which
was obtained when they were running individually, and does
not model the contention for the shared resources, e.g. mem-
ory, when multiple cores are running simultaneously.

Model 2: The application execution time is divided into
two components: Tcpu corresponding to CPU time and
Tmem corresponding to memory time (as in [14, 15, 21,
43]). And the performance is modeled as

T =
TcpuX

i2c

fi

+ Tmem (2)

where, fi is the frequency of core i, and T is the pre-
dicted execution time of the application. The weakness of
this model is that it fails to incorporate the number of cores
that are accessing the memory, and treats the memory time
as constant irrespective of the cores that are accessing the
memory.

Model 3: In this model, we construct as many model
functions as there are number of cores on the chip. There
is one model for all the configurations with the same num-
ber of cores. For instance, if there are 36 cores on a chip, 36
functions are developed. In this way, this model incorporates
the number of active cores in performance prediction. Each
of these functions is a linear function of the sum of frequen-
cies of the cores in the configuration. The performance (in-
structions per cycle) function for all the configurations with
k cores is modeled as:

S = ak(
X

i2c

fi) + bk (3)

where, ak, bk are line constants for all configurations with
k cores, and S is the instructions per cycle of the configu-
ration. Only two performance data samples are required to
get the value of the constants, ak and bk, for this function.
These samples correspond to instructions per cycle for any
two configurations with k cores. Since there are n functions,
2n samples are sufficient to develop the complete model for
an application (although more samples can increase the ac-
curacy of the model). The overhead of sampling the data to
generate the model is negligible as compared to the execu-
tion time of HPC applications, which can be from hours to

Table 1: Constrained Optimization Program Terminology

Symbol Description

N total number of cores on the chip
c a configuration
k number of cores in a configuration
nk binary variable indicating whether the selected

configuration has k cores
xi a binary variable indicating whether core i

is selected or not in a configuration
fi frequency of core i

si static power consumption of core i

a

t
k, b

t
k line constants for performance model

of configurations with k cores
a

p
k, b

p
k line constants for dynamic power model

of configurations with k cores
tmin minimum execution time of the application

across all the configurations on the chip
tp penalty in execution time, maximum allowed

execution time is (1 + tp
100)⇥ tmin

days. In previous work [47], it is shown that the prediction
accuracy of Model 3 is very high. The average prediction
error in performance is less than 1.6%, and 0.7% for a com-
putationally intensive and a memory intensive application,
respectively. Simulated performance was obtained using the
Sniper simulator, discussed in detail in Section 5. Similar to
performance, the dynamic power consumption of a configu-
ration could be modeled accurately using Model 3, that is,

P = Ak(
X

i2c

fi) +Bk

where P is the dynamic power of configuration c, Ak and Bk

are line constants. It has been shown in previous work [47]
that the maximum prediction error of Model 3 for dynamic
power is less than 2%.

4. Energy Optimization Approach
In this section, we describe our approach for optimizing
the energy consumption during application execution. The
total energy is computed as the power consumption inte-
grated over the duration of execution of the application, that
is, power consumption multiplied by the execution time of
the application. We use Model 3, described in the previous
section, to model the execution time and dynamic power
consumption of any configuration. According to Model 3,
the linear function for performance and dynamic power con-
sumption of a configuration depends on the number of cores
in the configuration. Therefore, the energy consumption can
be defined as
NX

k=1

(nk ⇤ (apk
X

i

xifi + b

p
k +

X

i

sixi) ⇤ (atk
X

i

xifi + b

t
k))

Energy	
 OpJmizaJon	
 Approach	

3/2/15	
 Energy-­‐efficient	
 operaJon	
 of	

Heterogeneous	
 Chips	
 10	

where, nk is a binary variable indicating whether the se-
lected configuration has k cores (nk can be 1 only for one
value of k) , xi is a binary variable indicating whether ith

core is selected, apk
X

i

xifi + b

p
k is the dynamic power con-

sumption of the configuration, si is the static power con-
sumption of core i,

X

i

sixi is the total static power con-

sumption, and a

t
k

X

i

xifi + b

t
k is the execution time of the

application. Energy minimization problem can then be for-
mulated as a constrained optimization problem. The formu-
lation is given below in Equations (4)-(8). Terminology used
in this section is defined in Table 1.
Objective Function

min

nX

k=1

nk ⇤ (apk
n�1X

i=0

xifi + b

p
k +

n�1X

i=0

sixi) ⇤ (atk
n�1X

i=0

xifi + b

t
k)

(4)

Select One Value of k

nX

k=1

nk = 1 (5)

Total Number of Cores Equals k

n�1X

i=0

xi =
nX

k=1

nkk (6)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (7)
8k 2 (0, n], nk 2 {0, 1} (8)

Constraints in the above formulation are linear constraints
that ensure that a valid configuration is selected. However,
the objective function has a cubic expression. This con-
strained optimization problem can be readily solved by solv-
ing n quadratic integer programs. Each of these quadratic
integer programs chooses the best configuration amongst all
the configurations with the same number of cores. The best
performing configuration is then chosen from amongst the
optimal configurations returned by the n quadratic integer
program optimizations. In this way, the global optimal con-
figuration can be found by optimizing n quadratic programs
(Algorithm 1). The quadratic program that selects the best
configuration from amongst all the configurations with k

cores is given below in Equations (9)-(11).
Objective Function

min (apK

n�1X

i=0

xifi + b

p
K +

n�1X

i=0

sixi) ⇤ (atK
n�1X

i=0

xifi + b

t
K)

(9)

Algorithm 1 Algorithm for obtaining the globally optimal
configuration by solving n quadratic programs

1 for k 2 [1, n]:
2 //Obtain the best configuration amongst
3 //all configurations with k cores
4 Ck = EnergyQP(k)
5
6 //energy(CK) is the total energy consumption of configuration Ck

7 Optimal Configuration
= {Ck|energy(Ck) is minimum for k 2 [1, n]}

Total Number of Cores Equals K

n�1X

i=0

xi = K (10)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (11)

Quadratic programs must have positive semi-definite ma-
trices to be solved using convex optimization. The resulting
quadratic programs above are not positive semi-definite and
hence can be computationally very hard to solve using non-
linear optimization methodologies.

In order to reduce the quadratic objective function to a
linear expression, we use the scheme proposed by Glover
and Woosley [19]. In this scheme, the cross-product terms
in the objective function are replaced by adding new contin-
uous variables. The value of these new variables are deter-
mined by adding new constraints. For example, a quadratic
product term x1x2, where x1, x2 are binary variables, can
be replaced by a new variable y12 such that y12  x1, y12 
x2, and y12 � x1 + x2 � 1. We multiply the terms in the ob-
jective function (Equation 9) and replace the product terms
of the form xixj with new continuous variables yij . The re-
sulting ILP is given below in Equations (12)-(15).
Objective Function

min

n�1X

i=0

n�1X

j=0

(apKfi + si)(a
t
Kfj)yij + b

t
K

n�1X

i=0

(apKfi + si)xi

+b

p
Ka

t
K

n�1X

j=0

fjxj + b

p
Kb

t
K

(12)

Total Number of Cores Equals K

n�1X

i=0

xi = K (13)

New variable constraints

yij  xi, 8i, j 2 [0, n), j  i

yij  xj , 8i, j 2 [0, n), j  i

yij � xi + xj � 1, 8i, j 2 [0, n), j  i (14)

where, nk is a binary variable indicating whether the se-
lected configuration has k cores (nk can be 1 only for one
value of k) , xi is a binary variable indicating whether ith

core is selected, apk
X

i

xifi + b

p
k is the dynamic power con-

sumption of the configuration, si is the static power con-
sumption of core i,

X

i

sixi is the total static power con-

sumption, and a

t
k

X

i

xifi + b

t
k is the execution time of the

application. Energy minimization problem can then be for-
mulated as a constrained optimization problem. The formu-
lation is given below in Equations (4)-(8). Terminology used
in this section is defined in Table 1.
Objective Function

min

nX

k=1

nk ⇤ (apk
n�1X

i=0

xifi + b

p
k +

n�1X

i=0

sixi) ⇤ (atk
n�1X

i=0

xifi + b

t
k)

(4)

Select One Value of k

nX

k=1

nk = 1 (5)

Total Number of Cores Equals k

n�1X

i=0

xi =
nX

k=1

nkk (6)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (7)
8k 2 (0, n], nk 2 {0, 1} (8)

Constraints in the above formulation are linear constraints
that ensure that a valid configuration is selected. However,
the objective function has a cubic expression. This con-
strained optimization problem can be readily solved by solv-
ing n quadratic integer programs. Each of these quadratic
integer programs chooses the best configuration amongst all
the configurations with the same number of cores. The best
performing configuration is then chosen from amongst the
optimal configurations returned by the n quadratic integer
program optimizations. In this way, the global optimal con-
figuration can be found by optimizing n quadratic programs
(Algorithm 1). The quadratic program that selects the best
configuration from amongst all the configurations with k

cores is given below in Equations (9)-(11).
Objective Function

min (apK

n�1X

i=0

xifi + b

p
K +

n�1X

i=0

sixi) ⇤ (atK
n�1X

i=0

xifi + b

t
K)

(9)

Algorithm 1 Algorithm for obtaining the globally optimal
configuration by solving n quadratic programs

1 for k 2 [1, n]:
2 //Obtain the best configuration amongst
3 //all configurations with k cores
4 Ck = EnergyQP(k)
5
6 //energy(CK) is the total energy consumption of configuration Ck

7 Optimal Configuration
= {Ck|energy(Ck) is minimum for k 2 [1, n]}

Total Number of Cores Equals K

n�1X

i=0

xi = K (10)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (11)

Quadratic programs must have positive semi-definite ma-
trices to be solved using convex optimization. The resulting
quadratic programs above are not positive semi-definite and
hence can be computationally very hard to solve using non-
linear optimization methodologies.

In order to reduce the quadratic objective function to a
linear expression, we use the scheme proposed by Glover
and Woosley [19]. In this scheme, the cross-product terms
in the objective function are replaced by adding new contin-
uous variables. The value of these new variables are deter-
mined by adding new constraints. For example, a quadratic
product term x1x2, where x1, x2 are binary variables, can
be replaced by a new variable y12 such that y12  x1, y12 
x2, and y12 � x1 + x2 � 1. We multiply the terms in the ob-
jective function (Equation 9) and replace the product terms
of the form xixj with new continuous variables yij . The re-
sulting ILP is given below in Equations (12)-(15).
Objective Function

min

n�1X

i=0

n�1X

j=0

(apKfi + si)(a
t
Kfj)yij + b

t
K

n�1X

i=0

(apKfi + si)xi

+b

p
Ka

t
K

n�1X

j=0

fjxj + b

p
Kb

t
K

(12)

Total Number of Cores Equals K

n�1X

i=0

xi = K (13)

New variable constraints

yij  xi, 8i, j 2 [0, n), j  i

yij  xj , 8i, j 2 [0, n), j  i

yij � xi + xj � 1, 8i, j 2 [0, n), j  i (14)

Power	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Time	

StaJc	
 Power	

Dynamic	
 Power	

Cubic	
 Objec1ve	

Func1on!	
 	

where, nk is a binary variable indicating whether the se-
lected configuration has k cores (nk can be 1 only for one
value of k) , xi is a binary variable indicating whether ith

core is selected, apk
X

i

xifi + b

p
k is the dynamic power con-

sumption of the configuration, si is the static power con-
sumption of core i,

X

i

sixi is the total static power con-

sumption, and a

t
k

X

i

xifi + b

t
k is the execution time of the

application. Energy minimization problem can then be for-
mulated as a constrained optimization problem. The formu-
lation is given below in Equations (4)-(8). Terminology used
in this section is defined in Table 1.
Objective Function

min

nX

k=1

nk ⇤ (apk
n�1X

i=0

xifi + b

p
k +

n�1X

i=0

sixi) ⇤ (atk
n�1X

i=0

xifi + b

t
k)

(4)

Select One Value of k

nX

k=1

nk = 1 (5)

Total Number of Cores Equals k

n�1X

i=0

xi =
nX

k=1

nkk (6)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (7)
8k 2 (0, n], nk 2 {0, 1} (8)

Constraints in the above formulation are linear constraints
that ensure that a valid configuration is selected. However,
the objective function has a cubic expression. This con-
strained optimization problem can be readily solved by solv-
ing n quadratic integer programs. Each of these quadratic
integer programs chooses the best configuration amongst all
the configurations with the same number of cores. The best
performing configuration is then chosen from amongst the
optimal configurations returned by the n quadratic integer
program optimizations. In this way, the global optimal con-
figuration can be found by optimizing n quadratic programs
(Algorithm 1). The quadratic program that selects the best
configuration from amongst all the configurations with k

cores is given below in Equations (9)-(11).
Objective Function

min (apK

n�1X

i=0

xifi + b

p
K +

n�1X

i=0

sixi) ⇤ (atK
n�1X

i=0

xifi + b

t
K)

(9)

Algorithm 1 Algorithm for obtaining the globally optimal
configuration by solving n quadratic programs

1 for k 2 [1, n]:
2 //Obtain the best configuration amongst
3 //all configurations with k cores
4 Ck = EnergyQP(k)
5
6 //energy(CK) is the total energy consumption of configuration Ck

7 Optimal Configuration
= {Ck|energy(Ck) is minimum for k 2 [1, n]}

Total Number of Cores Equals K

n�1X

i=0

xi = K (10)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (11)

Quadratic programs must have positive semi-definite ma-
trices to be solved using convex optimization. The resulting
quadratic programs above are not positive semi-definite and
hence can be computationally very hard to solve using non-
linear optimization methodologies.

In order to reduce the quadratic objective function to a
linear expression, we use the scheme proposed by Glover
and Woosley [19]. In this scheme, the cross-product terms
in the objective function are replaced by adding new contin-
uous variables. The value of these new variables are deter-
mined by adding new constraints. For example, a quadratic
product term x1x2, where x1, x2 are binary variables, can
be replaced by a new variable y12 such that y12  x1, y12 
x2, and y12 � x1 + x2 � 1. We multiply the terms in the ob-
jective function (Equation 9) and replace the product terms
of the form xixj with new continuous variables yij . The re-
sulting ILP is given below in Equations (12)-(15).
Objective Function

min

n�1X

i=0

n�1X

j=0

(apKfi + si)(a
t
Kfj)yij + b

t
K

n�1X

i=0

(apKfi + si)xi

+b

p
Ka

t
K

n�1X

j=0

fjxj + b

p
Kb

t
K

(12)

Total Number of Cores Equals K

n�1X

i=0

xi = K (13)

New variable constraints

yij  xi, 8i, j 2 [0, n), j  i

yij  xj , 8i, j 2 [0, n), j  i

yij � xi + xj � 1, 8i, j 2 [0, n), j  i (14)

Energy	
 OpJmizaJon	
 Approach	

3/2/15	
 Energy-­‐efficient	
 operaJon	
 of	

Heterogeneous	
 Chips	
 11	

Power	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Time	

StaJc	
 Power	

Dynamic	
 Power	

Quadra1c	
 Objec1ve	

Func1on!	
 	

where, nk is a binary variable indicating whether the se-
lected configuration has k cores (nk can be 1 only for one
value of k) , xi is a binary variable indicating whether ith

core is selected, apk
X

i

xifi + b

p
k is the dynamic power con-

sumption of the configuration, si is the static power con-
sumption of core i,

X

i

sixi is the total static power con-

sumption, and a

t
k

X

i

xifi + b

t
k is the execution time of the

application. Energy minimization problem can then be for-
mulated as a constrained optimization problem. The formu-
lation is given below in Equations (4)-(8). Terminology used
in this section is defined in Table 1.
Objective Function

min

nX

k=1

nk ⇤ (apk
n�1X

i=0

xifi + b

p
k +

n�1X

i=0

sixi) ⇤ (atk
n�1X

i=0

xifi + b

t
k)

(4)

Select One Value of k

nX

k=1

nk = 1 (5)

Total Number of Cores Equals k

n�1X

i=0

xi =
nX

k=1

nkk (6)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (7)
8k 2 (0, n], nk 2 {0, 1} (8)

Constraints in the above formulation are linear constraints
that ensure that a valid configuration is selected. However,
the objective function has a cubic expression. This con-
strained optimization problem can be readily solved by solv-
ing n quadratic integer programs. Each of these quadratic
integer programs chooses the best configuration amongst all
the configurations with the same number of cores. The best
performing configuration is then chosen from amongst the
optimal configurations returned by the n quadratic integer
program optimizations. In this way, the global optimal con-
figuration can be found by optimizing n quadratic programs
(Algorithm 1). The quadratic program that selects the best
configuration from amongst all the configurations with k

cores is given below in Equations (9)-(11).
Objective Function

min (apK

n�1X

i=0

xifi + b

p
K +

n�1X

i=0

sixi) ⇤ (atK
n�1X

i=0

xifi + b

t
K)

(9)

Algorithm 1 Algorithm for obtaining the globally optimal
configuration by solving n quadratic programs

1 for k 2 [1, n]:
2 //Obtain the best configuration amongst
3 //all configurations with k cores
4 Ck = EnergyQP(k)
5
6 //energy(CK) is the total energy consumption of configuration Ck

7 Optimal Configuration
= {Ck|energy(Ck) is minimum for k 2 [1, n]}

Total Number of Cores Equals K

n�1X

i=0

xi = K (10)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (11)

Quadratic programs must have positive semi-definite ma-
trices to be solved using convex optimization. The resulting
quadratic programs above are not positive semi-definite and
hence can be computationally very hard to solve using non-
linear optimization methodologies.

In order to reduce the quadratic objective function to a
linear expression, we use the scheme proposed by Glover
and Woosley [19]. In this scheme, the cross-product terms
in the objective function are replaced by adding new contin-
uous variables. The value of these new variables are deter-
mined by adding new constraints. For example, a quadratic
product term x1x2, where x1, x2 are binary variables, can
be replaced by a new variable y12 such that y12  x1, y12 
x2, and y12 � x1 + x2 � 1. We multiply the terms in the ob-
jective function (Equation 9) and replace the product terms
of the form xixj with new continuous variables yij . The re-
sulting ILP is given below in Equations (12)-(15).
Objective Function

min

n�1X

i=0

n�1X

j=0

(apKfi + si)(a
t
Kfj)yij + b

t
K

n�1X

i=0

(apKfi + si)xi

+b

p
Ka

t
K

n�1X

j=0

fjxj + b

p
Kb

t
K

(12)

Total Number of Cores Equals K

n�1X

i=0

xi = K (13)

New variable constraints

yij  xi, 8i, j 2 [0, n), j  i

yij  xj , 8i, j 2 [0, n), j  i

yij � xi + xj � 1, 8i, j 2 [0, n), j  i (14)

•  Convert	
 cubic	
 program	
 to	
 n	
 quadraJc	
 programs	

•  Each	
 corresponding	
 to	
 all	
 configuraJons	
 with	
 fixed	
 number	
 of	
 cores	

•  Select	
 best	
 configuraJon	
 across	
 n	
 quadraJc	
 programs	

Energy	
 OpJmizaJon	
 Approach	

3/2/15	
 Energy-­‐efficient	
 operaJon	
 of	

Heterogeneous	
 Chips	
 12	

•  QuadraJc	
 programs	
 hard	
 to	
 solve	
 using	
 non-­‐linear	
 methods	

•  Replace	
 quadraJc	
 terms	
 of	
 form	
 x1x2	
 with	
 binary	
 variables	
 y12	

and	
 add	
 following	
 constraints	

y12	
 ≤	
 x1	

y12	
 ≤	
 x2	

y12	
 ≥	
 x1+x2-­‐1	

•  Add	
 Jming	
 constraint	

aKtF	
 +	
 bKt	
 ≤	
 Ptmin,	
 	

where	
 F	
 is	
 sum	
 of	
 frequencies,	

and	
 P	
 is	
 allowed	
 Jme	
 penalty	

Setup	

•  Sniper	
 Simulator	

–  Vdd	
 =	
 0.765V	

–  36	
 cores	
 on	
 chip	

–  Results	
 across	
 25	
 chips	

•  ApplicaJons	

–  miniMD	

•  Molecular	
 dynamics	
 mini	
 applicaJon	
 	

•  ComputaJonally	
 intensive	

–  Jacobi	
 	

•  3D	
 stencil	
 code	

•  Memory	
 intensive	

•  HeurisJcs	

–  Min	
 heurisJc	

–  Max	
 heurisJc	

•  Integer	
 Linear	
 Program	
 (ILP)	
 Solver	

–  Gurobi	

–  Uses	
 variant	
 of	
 branch-­‐and-­‐bound	
 method	

3/2/15	
 Energy-­‐efficient	
 operaJon	
 of	

Heterogeneous	
 Chips	
 13	

Results	

3/2/15	
 Energy-­‐efficient	
 operaJon	
 of	

Heterogeneous	
 Chips	
 14	

(a) With no time constraint (b) Maximum 15% time penalty (c) Maximum 5% time penalty

Figure 3: Percentage savings in energy with MIN, MAX heuristics, and the ILP method for the two applications, miniMD
and Jacobi3d, with respect to the configuration with best execution time. The bars correspond to the average benefits, while
the vertical lines correspond to the minimum and maximum benefits obtained from the corresponding heuristic across the
25 chips. In (a), configuration that minimizes energy consumption is sought irrespective of penalty in execution time of the
application. In (b) and (c), the best configuration that minimizes energy while the execution time penalty is less than 15% and
5%, respectively, is sought using the MIN, MAX heuristic, and ILP method.

Figure 4: An example of a configuration selected by the ILP
optimization method for Jacobi application. Circle markers
correspond to the cores selected by ILP. A total of 21 cores
were selected by the ILP method. MIN, MAX heuristic se-
lected 26, 27 cores, respectively.

• Jacobi An average of 1.6%, 1.2%, 6.4% savings in
energy with MIN, MAX heuristic, ILP, respectively is
achieved.

Since miniMD is a computationally intensive application,
the number of cores in the optimal configuration selected for
miniMD are more than the number of cores in the optimal
configuration for Jacobi. In Jacobi, large number of cores
lead to increase in the memory contention and hence are sub-
optimal. Figure 4 shows an example solution obtained from
ILP optimization, MIN heuristic, and MAX heuristic.

6.2 Solution Time
The proposed methodology requires optimizing n�2 proper
ILPs, where n is the total number of cores on the chip. Each
ILP has 702 variables, and 2000 constraints. The ILP opti-
mizations are independent of each other and can therefore
be very easily parallelized by launching them in parallel on
multiple cores of a compute node and/or on multiple com-
pute nodes. For the experiments, we use a Dell 2.67 GHz
Dual Westmere Xeon E5640 processor with a total of 8 cores
and 16 SMT threads. The ILP optimizations required for a
given chip and a application were launched in parallel on the
machine. We now consider the solution time for each of the
three cases presented in Section 6.1.

1. When there is no execution time penalty constraint, it
took an average of 400 seconds and 1090 seconds for
obtaining the optimal result for miniMD and Jacobi, re-
spectively. An average of 4.08e7 and 3.27e8 simplex it-
erations (summed across all the BnB vertices explored)
were performed by the ILP solver for miniMD and Ja-
cobi, respectively.

2. When the maximum execution time penalty of 15% is en-
forced, the configuration search space for ILP optimiza-
tion is reduced significantly. It took an average of 14.8s,
37s to find the optimal solution for miniMD, Jacobi, re-
spectively.

3. With the maximum execution time penalty of 5%, the
search space is further reduced, and it took only 8s, 10.2s
to find the optimal solution for miniMD, Jacobi, respec-
tively.

We compare these results with exhaustive evaluation of
the performance and power models for all the configurations
on the same machine. The configurations can be evaluated in
parallel. The total number of configurations to be evaluated

Results	

3/2/15	
 Energy-­‐efficient	
 operaJon	
 of	

Heterogeneous	
 Chips	
 15	

(a) With no time constraint (b) Maximum 15% time penalty (c) Maximum 5% time penalty

Figure 3: Percentage savings in energy with MIN, MAX heuristics, and the ILP method for the two applications, miniMD
and Jacobi3d, with respect to the configuration with best execution time. The bars correspond to the average benefits, while
the vertical lines correspond to the minimum and maximum benefits obtained from the corresponding heuristic across the
25 chips. In (a), configuration that minimizes energy consumption is sought irrespective of penalty in execution time of the
application. In (b) and (c), the best configuration that minimizes energy while the execution time penalty is less than 15% and
5%, respectively, is sought using the MIN, MAX heuristic, and ILP method.

Figure 4: An example of a configuration selected by the ILP
optimization method for Jacobi application. Circle markers
correspond to the cores selected by ILP. A total of 21 cores
were selected by the ILP method. MIN, MAX heuristic se-
lected 26, 27 cores, respectively.

• Jacobi An average of 1.6%, 1.2%, 6.4% savings in
energy with MIN, MAX heuristic, ILP, respectively is
achieved.

Since miniMD is a computationally intensive application,
the number of cores in the optimal configuration selected for
miniMD are more than the number of cores in the optimal
configuration for Jacobi. In Jacobi, large number of cores
lead to increase in the memory contention and hence are sub-
optimal. Figure 4 shows an example solution obtained from
ILP optimization, MIN heuristic, and MAX heuristic.

6.2 Solution Time
The proposed methodology requires optimizing n�2 proper
ILPs, where n is the total number of cores on the chip. Each
ILP has 702 variables, and 2000 constraints. The ILP opti-
mizations are independent of each other and can therefore
be very easily parallelized by launching them in parallel on
multiple cores of a compute node and/or on multiple com-
pute nodes. For the experiments, we use a Dell 2.67 GHz
Dual Westmere Xeon E5640 processor with a total of 8 cores
and 16 SMT threads. The ILP optimizations required for a
given chip and a application were launched in parallel on the
machine. We now consider the solution time for each of the
three cases presented in Section 6.1.

1. When there is no execution time penalty constraint, it
took an average of 400 seconds and 1090 seconds for
obtaining the optimal result for miniMD and Jacobi, re-
spectively. An average of 4.08e7 and 3.27e8 simplex it-
erations (summed across all the BnB vertices explored)
were performed by the ILP solver for miniMD and Ja-
cobi, respectively.

2. When the maximum execution time penalty of 15% is en-
forced, the configuration search space for ILP optimiza-
tion is reduced significantly. It took an average of 14.8s,
37s to find the optimal solution for miniMD, Jacobi, re-
spectively.

3. With the maximum execution time penalty of 5%, the
search space is further reduced, and it took only 8s, 10.2s
to find the optimal solution for miniMD, Jacobi, respec-
tively.

We compare these results with exhaustive evaluation of
the performance and power models for all the configurations
on the same machine. The configurations can be evaluated in
parallel. The total number of configurations to be evaluated

26%	
 18.4%	
 13.4%	

Energy	
 Savings	

ILP	
 Solu+on	
 Time:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 745	
 seconds	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 26	
 seconds	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 9seconds	

vs	

Exhaus+ve	
 Evalua+on:	
 	
 74	
 hours	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Conclusions	
 	

•  Negligible	
 overhead	

– O(n)	
 samples	
 required	

–  Performance	
 models	
 developed	
 with	
 negligible	

overhead	

•  ILP	
 solvers	
 to	
 opJmize	
 energy	
 consumpJon	
 with	

Jming	
 constraints	

–  Significant	
 energy	
 savings	
 as	
 compared	
 to	
 sub-­‐opJmal	

heurisJcs	

•  No	
 extra	
 compute	
 resources	
 required	

–  Solve	
 ILPs	
 on	
 respecJve	
 chips	
 prior	
 to	
 job	
 execuJon	

3/2/15	
 Energy-­‐efficient	
 operaJon	
 of	

Heterogeneous	
 Chips	
 16	

Future	
 Work	

•  Further	
 improvement	
 of	
 performance	
 models	

•  Evaluate	
 approach	
 with	
 even	
 larger	
 number	
 of	

cores	

•  OpJmizaJon	
 methods	
 to	
 further	
 improve	

soluJon	
 Jme	

•  Apply	
 to	
 other	
 HPC	
 applicaJons	

3/2/15	
 Energy-­‐efficient	
 operaJon	
 of	

Heterogeneous	
 Chips	
 17	

Energy-­‐efficient	
 compu1ng	
 for	
 HPC	

workloads	
 on	
 Heterogeneous	
 Chips	

	
 Akhil	
 Langer,	
 Ehsan	
 Totoni,	
 Uda.a	
 Palekar*,	
 Laxmikant	
 V.	
 Kale	

Parallel	
 Programming	
 Laboratory,	
 Department	
 of	
 Computer	
 Science	

*Department	
 of	
 Business	
 AdministraJon	

University	
 of	
 Illinois	
 at	
 Urbana-­‐Champaign	

	

PMAM	
 2015	

6th	
 InternaJonal	
 Workshop	
 on	
 Programming	
 Models	
 and	
 	

ApplicaJons	
 for	
 MulJcores	
 and	
 Manycores 	
 	

February	
 7-­‐8,	
 2015	

San	
 Francisco	
 Bay	
 Area,	
 USA	

	

	

QUESTIONS!	

h?p://charm.cs.uiuc.edu/research/energy	

