
Energy-­‐efficient	
  compu1ng	
  for	
  HPC	
  
workloads	
  on	
  Heterogeneous	
  Chips	
  
	
  Akhil	
  Langer,	
  Ehsan	
  Totoni,	
  Uda.a	
  Palekar*,	
  Laxmikant	
  (Sanjay)	
  V.	
  Kale	
  

Parallel	
  Programming	
  Laboratory,	
  Department	
  of	
  Computer	
  Science	
  
*Department	
  of	
  Business	
  AdministraJon	
  
University	
  of	
  Illinois	
  at	
  Urbana-­‐Champaign	
  
h?p://charm.cs.uiuc.edu/research/energy	
  

	
  
PMAM	
  2015	
  

6th	
  InternaJonal	
  Workshop	
  on	
  Programming	
  Models	
  and	
  	
  
ApplicaJons	
  for	
  MulJcores	
  and	
  Manycores 	
  	
  

February	
  7-­‐8,	
  2015	
  
	
  
	
  



Outline	
  

q IntroducJon	
  	
  
q Background	
  
q Problem	
  Statement	
  
q Approach	
  
q Results	
  

3/2/15	
   Energy-­‐efficient	
  operaJon	
  of	
  Heterogeneous	
  Manycore	
  Chips	
   2	
  



IntroducJon	
  

•  MoJvaJon	
  
– Huge	
  energy	
  consumpJon	
  of	
  data	
  centers	
  
– 20MW	
  power	
  @	
  $0.15	
  per	
  KWh,	
  costs	
  $2.2	
  M	
  per	
  
month	
  

– Energy	
  efficiency	
  idenJfied	
  as	
  a	
  major	
  exascale	
  
challenge	
  by	
  DoE	
  

– Consider	
  charging	
  users	
  in	
  energy	
  units	
  (KWh)	
  
instead	
  (or	
  in	
  addiJon)	
  of	
  SUs	
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IntroducJon	
  

•  Low	
  voltage	
  operaJon	
  
–  For	
  high	
  energy	
  efficiency	
  
–  For	
  example,	
  10x	
  increase	
  in	
  energy	
  efficiency	
  near	
  
threshold	
  voltage	
  

•  But	
  
– VariaJon	
  in	
  CMOS	
  manufacturing	
  process	
  
–  Low	
  voltage	
  operaJon	
  introduces	
  variability	
  on	
  chip	
  
–  Cores	
  have	
  different	
  frequencies	
  and	
  power	
  
consumpJon	
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Process	
  VariaJon	
  

•  Low	
  voltage	
  operaJon	
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Programming	
  Systems*	
  

•  Problem	
  
– HPC	
  applicaJons	
  are	
  highly	
  synchronized	
  
–  Speed	
  determined	
  by	
  speed	
  of	
  slowest	
  processor	
  

•  Solu+on	
  
– Do	
  overdecomposiJon	
  of	
  work	
  (e.g.	
  Charm++)	
  
–  Load	
  Balance	
  according	
  to	
  core	
  speeds	
  

•  Result	
  
– OverdecomposiJon	
  raJo	
  of	
  16	
  =>	
  2-­‐6%	
  load	
  imbalance	
  
–  	
  No	
  changes	
  required	
  in	
  applicaJon	
  code	
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Problem	
  Statement	
  

•  Not	
  opJmal	
  to	
  use	
  all	
  cores	
  on	
  chip	
  for	
  execuJon	
  
–  Shared	
  resources	
  cause	
  contenJon	
  
– High	
  energy	
  consumpJon	
  

•  A	
  configuraJon	
  is	
  defined	
  as	
  the	
  cores	
  on	
  which	
  
the	
  applicaJon	
  is	
  run	
  

	
  
Determine	
  op+mal	
  configura+on	
  that	
  minimizes	
  
energy	
  consump+on	
  (with	
  op+onal	
  +ming	
  
constraints)	
  of	
  the	
  chip	
  for	
  a	
  given	
  applica+on	
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Performance	
  Modeling*	
  

•  ExhausJve	
  evaluaJon	
  of	
  configuraJons	
  infeasible	
  
•  Model	
  1	
  
– Sum	
  of	
  individual	
  core	
  performance	
  
– Memory	
  contenJon	
  not	
  modeled	
  

•  Model	
  2	
  
– Add	
  memory	
  access	
  Jme	
  
– #	
  of	
  acJve	
  cores	
  not	
  accounted	
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individual cores in the configuration (c).

S =
X

i2c

si (1)

where, si is the performance (instructions per cycle) of core
i for the focal application when the application was run only
on core i, and S is the predicted performance (instructions
per cycle) for configuration c for the focal application. This
model will predict performance accurately only for compu-
tationally intensive applications in which there is no memory
contention. For memory-intensive applications, this perfor-
mance model will fail to predict the performance for a con-
figuration because it just adds the core performance which
was obtained when they were running individually, and does
not model the contention for the shared resources, e.g. mem-
ory, when multiple cores are running simultaneously.

Model 2: The application execution time is divided into
two components: Tcpu corresponding to CPU time and
Tmem corresponding to memory time (as in [14, 15, 21,
43]). And the performance is modeled as

T =
TcpuX

i2c

fi

+ Tmem (2)

where, fi is the frequency of core i, and T is the pre-
dicted execution time of the application. The weakness of
this model is that it fails to incorporate the number of cores
that are accessing the memory, and treats the memory time
as constant irrespective of the cores that are accessing the
memory.

Model 3: In this model, we construct as many model
functions as there are number of cores on the chip. There
is one model for all the configurations with the same num-
ber of cores. For instance, if there are 36 cores on a chip, 36
functions are developed. In this way, this model incorporates
the number of active cores in performance prediction. Each
of these functions is a linear function of the sum of frequen-
cies of the cores in the configuration. The performance (in-
structions per cycle) function for all the configurations with
k cores is modeled as:

S = ak(
X

i2c

fi) + bk (3)

where, ak, bk are line constants for all configurations with
k cores, and S is the instructions per cycle of the configu-
ration. Only two performance data samples are required to
get the value of the constants, ak and bk, for this function.
These samples correspond to instructions per cycle for any
two configurations with k cores. Since there are n functions,
2n samples are sufficient to develop the complete model for
an application (although more samples can increase the ac-
curacy of the model). The overhead of sampling the data to
generate the model is negligible as compared to the execu-
tion time of HPC applications, which can be from hours to

Table 1: Constrained Optimization Program Terminology

Symbol Description

N total number of cores on the chip
c a configuration
k number of cores in a configuration
nk binary variable indicating whether the selected

configuration has k cores
xi a binary variable indicating whether core i

is selected or not in a configuration
fi frequency of core i

si static power consumption of core i

a

t
k, b

t
k line constants for performance model

of configurations with k cores
a

p
k, b

p
k line constants for dynamic power model

of configurations with k cores
tmin minimum execution time of the application

across all the configurations on the chip
tp penalty in execution time, maximum allowed

execution time is (1 + tp
100 )⇥ tmin

days. In previous work [47], it is shown that the prediction
accuracy of Model 3 is very high. The average prediction
error in performance is less than 1.6%, and 0.7% for a com-
putationally intensive and a memory intensive application,
respectively. Simulated performance was obtained using the
Sniper simulator, discussed in detail in Section 5. Similar to
performance, the dynamic power consumption of a configu-
ration could be modeled accurately using Model 3, that is,

P = Ak(
X

i2c

fi) +Bk

where P is the dynamic power of configuration c, Ak and Bk

are line constants. It has been shown in previous work [47]
that the maximum prediction error of Model 3 for dynamic
power is less than 2%.

4. Energy Optimization Approach
In this section, we describe our approach for optimizing
the energy consumption during application execution. The
total energy is computed as the power consumption inte-
grated over the duration of execution of the application, that
is, power consumption multiplied by the execution time of
the application. We use Model 3, described in the previous
section, to model the execution time and dynamic power
consumption of any configuration. According to Model 3,
the linear function for performance and dynamic power con-
sumption of a configuration depends on the number of cores
in the configuration. Therefore, the energy consumption can
be defined as
NX

k=1

(nk ⇤ (apk
X

i

xifi + b

p
k +

X

i

sixi) ⇤ (atk
X

i

xifi + b

t
k))

individual cores in the configuration (c).

S =
X

i2c

si (1)

where, si is the performance (instructions per cycle) of core
i for the focal application when the application was run only
on core i, and S is the predicted performance (instructions
per cycle) for configuration c for the focal application. This
model will predict performance accurately only for compu-
tationally intensive applications in which there is no memory
contention. For memory-intensive applications, this perfor-
mance model will fail to predict the performance for a con-
figuration because it just adds the core performance which
was obtained when they were running individually, and does
not model the contention for the shared resources, e.g. mem-
ory, when multiple cores are running simultaneously.

Model 2: The application execution time is divided into
two components: Tcpu corresponding to CPU time and
Tmem corresponding to memory time (as in [14, 15, 21,
43]). And the performance is modeled as

T =
TcpuX

i2c

fi

+ Tmem (2)

where, fi is the frequency of core i, and T is the pre-
dicted execution time of the application. The weakness of
this model is that it fails to incorporate the number of cores
that are accessing the memory, and treats the memory time
as constant irrespective of the cores that are accessing the
memory.

Model 3: In this model, we construct as many model
functions as there are number of cores on the chip. There
is one model for all the configurations with the same num-
ber of cores. For instance, if there are 36 cores on a chip, 36
functions are developed. In this way, this model incorporates
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X

i2c
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where, ak, bk are line constants for all configurations with
k cores, and S is the instructions per cycle of the configu-
ration. Only two performance data samples are required to
get the value of the constants, ak and bk, for this function.
These samples correspond to instructions per cycle for any
two configurations with k cores. Since there are n functions,
2n samples are sufficient to develop the complete model for
an application (although more samples can increase the ac-
curacy of the model). The overhead of sampling the data to
generate the model is negligible as compared to the execu-
tion time of HPC applications, which can be from hours to

Table 1: Constrained Optimization Program Terminology
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c a configuration
k number of cores in a configuration
nk binary variable indicating whether the selected

configuration has k cores
xi a binary variable indicating whether core i

is selected or not in a configuration
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si static power consumption of core i
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t
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t
k line constants for performance model

of configurations with k cores
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k, b

p
k line constants for dynamic power model

of configurations with k cores
tmin minimum execution time of the application

across all the configurations on the chip
tp penalty in execution time, maximum allowed

execution time is (1 + tp
100 )⇥ tmin

days. In previous work [47], it is shown that the prediction
accuracy of Model 3 is very high. The average prediction
error in performance is less than 1.6%, and 0.7% for a com-
putationally intensive and a memory intensive application,
respectively. Simulated performance was obtained using the
Sniper simulator, discussed in detail in Section 5. Similar to
performance, the dynamic power consumption of a configu-
ration could be modeled accurately using Model 3, that is,

P = Ak(
X

i2c

fi) +Bk

where P is the dynamic power of configuration c, Ak and Bk

are line constants. It has been shown in previous work [47]
that the maximum prediction error of Model 3 for dynamic
power is less than 2%.

4. Energy Optimization Approach
In this section, we describe our approach for optimizing
the energy consumption during application execution. The
total energy is computed as the power consumption inte-
grated over the duration of execution of the application, that
is, power consumption multiplied by the execution time of
the application. We use Model 3, described in the previous
section, to model the execution time and dynamic power
consumption of any configuration. According to Model 3,
the linear function for performance and dynamic power con-
sumption of a configuration depends on the number of cores
in the configuration. Therefore, the energy consumption can
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X
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X
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Performance	
  Modeling*	
  

•  Model	
  3	
  
– One	
  model	
  each	
  for	
  configuraJons	
  with	
  same	
  number	
  
of	
  cores	
  

–  Performance	
  is	
  linear	
  funcJon	
  of	
  frequency	
  
–  Total	
  #cores	
  (n)	
  models	
  

•  k	
  is	
  number	
  of	
  cores	
  in	
  configuraJon	
  c	
  
•  ak,	
  bk	
  are	
  line	
  constants	
  
•  fi	
  is	
  frequency	
  of	
  core	
  i	
  

– Average	
  predicJon	
  error	
  less	
  than	
  1.6%	
  
– Dynamic	
  power	
  consumpJon	
  can	
  be	
  modeled	
  in	
  same	
  
way	
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individual cores in the configuration (c).

S =
X

i2c

si (1)

where, si is the performance (instructions per cycle) of core
i for the focal application when the application was run only
on core i, and S is the predicted performance (instructions
per cycle) for configuration c for the focal application. This
model will predict performance accurately only for compu-
tationally intensive applications in which there is no memory
contention. For memory-intensive applications, this perfor-
mance model will fail to predict the performance for a con-
figuration because it just adds the core performance which
was obtained when they were running individually, and does
not model the contention for the shared resources, e.g. mem-
ory, when multiple cores are running simultaneously.

Model 2: The application execution time is divided into
two components: Tcpu corresponding to CPU time and
Tmem corresponding to memory time (as in [14, 15, 21,
43]). And the performance is modeled as

T =
TcpuX

i2c

fi

+ Tmem (2)

where, fi is the frequency of core i, and T is the pre-
dicted execution time of the application. The weakness of
this model is that it fails to incorporate the number of cores
that are accessing the memory, and treats the memory time
as constant irrespective of the cores that are accessing the
memory.

Model 3: In this model, we construct as many model
functions as there are number of cores on the chip. There
is one model for all the configurations with the same num-
ber of cores. For instance, if there are 36 cores on a chip, 36
functions are developed. In this way, this model incorporates
the number of active cores in performance prediction. Each
of these functions is a linear function of the sum of frequen-
cies of the cores in the configuration. The performance (in-
structions per cycle) function for all the configurations with
k cores is modeled as:

S = ak(
X

i2c

fi) + bk (3)

where, ak, bk are line constants for all configurations with
k cores, and S is the instructions per cycle of the configu-
ration. Only two performance data samples are required to
get the value of the constants, ak and bk, for this function.
These samples correspond to instructions per cycle for any
two configurations with k cores. Since there are n functions,
2n samples are sufficient to develop the complete model for
an application (although more samples can increase the ac-
curacy of the model). The overhead of sampling the data to
generate the model is negligible as compared to the execu-
tion time of HPC applications, which can be from hours to

Table 1: Constrained Optimization Program Terminology

Symbol Description

N total number of cores on the chip
c a configuration
k number of cores in a configuration
nk binary variable indicating whether the selected

configuration has k cores
xi a binary variable indicating whether core i

is selected or not in a configuration
fi frequency of core i

si static power consumption of core i

a

t
k, b

t
k line constants for performance model

of configurations with k cores
a

p
k, b

p
k line constants for dynamic power model

of configurations with k cores
tmin minimum execution time of the application

across all the configurations on the chip
tp penalty in execution time, maximum allowed

execution time is (1 + tp
100 )⇥ tmin

days. In previous work [47], it is shown that the prediction
accuracy of Model 3 is very high. The average prediction
error in performance is less than 1.6%, and 0.7% for a com-
putationally intensive and a memory intensive application,
respectively. Simulated performance was obtained using the
Sniper simulator, discussed in detail in Section 5. Similar to
performance, the dynamic power consumption of a configu-
ration could be modeled accurately using Model 3, that is,

P = Ak(
X

i2c

fi) +Bk

where P is the dynamic power of configuration c, Ak and Bk

are line constants. It has been shown in previous work [47]
that the maximum prediction error of Model 3 for dynamic
power is less than 2%.

4. Energy Optimization Approach
In this section, we describe our approach for optimizing
the energy consumption during application execution. The
total energy is computed as the power consumption inte-
grated over the duration of execution of the application, that
is, power consumption multiplied by the execution time of
the application. We use Model 3, described in the previous
section, to model the execution time and dynamic power
consumption of any configuration. According to Model 3,
the linear function for performance and dynamic power con-
sumption of a configuration depends on the number of cores
in the configuration. Therefore, the energy consumption can
be defined as
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individual cores in the configuration (c).

S =
X

i2c

si (1)

where, si is the performance (instructions per cycle) of core
i for the focal application when the application was run only
on core i, and S is the predicted performance (instructions
per cycle) for configuration c for the focal application. This
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where, ak, bk are line constants for all configurations with
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get the value of the constants, ak and bk, for this function.
These samples correspond to instructions per cycle for any
two configurations with k cores. Since there are n functions,
2n samples are sufficient to develop the complete model for
an application (although more samples can increase the ac-
curacy of the model). The overhead of sampling the data to
generate the model is negligible as compared to the execu-
tion time of HPC applications, which can be from hours to
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c a configuration
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xi a binary variable indicating whether core i
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fi frequency of core i
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a

t
k, b

t
k line constants for performance model
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p
k line constants for dynamic power model

of configurations with k cores
tmin minimum execution time of the application

across all the configurations on the chip
tp penalty in execution time, maximum allowed
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100 )⇥ tmin

days. In previous work [47], it is shown that the prediction
accuracy of Model 3 is very high. The average prediction
error in performance is less than 1.6%, and 0.7% for a com-
putationally intensive and a memory intensive application,
respectively. Simulated performance was obtained using the
Sniper simulator, discussed in detail in Section 5. Similar to
performance, the dynamic power consumption of a configu-
ration could be modeled accurately using Model 3, that is,

P = Ak(
X

i2c

fi) +Bk

where P is the dynamic power of configuration c, Ak and Bk

are line constants. It has been shown in previous work [47]
that the maximum prediction error of Model 3 for dynamic
power is less than 2%.

4. Energy Optimization Approach
In this section, we describe our approach for optimizing
the energy consumption during application execution. The
total energy is computed as the power consumption inte-
grated over the duration of execution of the application, that
is, power consumption multiplied by the execution time of
the application. We use Model 3, described in the previous
section, to model the execution time and dynamic power
consumption of any configuration. According to Model 3,
the linear function for performance and dynamic power con-
sumption of a configuration depends on the number of cores
in the configuration. Therefore, the energy consumption can
be defined as
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(nk ⇤ (apk
X

i

xifi + b

p
k +

X
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X
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Energy	
  OpJmizaJon	
  Approach	
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where, nk is a binary variable indicating whether the se-
lected configuration has k cores (nk can be 1 only for one
value of k) , xi is a binary variable indicating whether ith

core is selected, apk
X

i

xifi + b

p
k is the dynamic power con-

sumption of the configuration, si is the static power con-
sumption of core i,

X

i

sixi is the total static power con-

sumption, and a

t
k

X

i

xifi + b

t
k is the execution time of the

application. Energy minimization problem can then be for-
mulated as a constrained optimization problem. The formu-
lation is given below in Equations (4)-(8). Terminology used
in this section is defined in Table 1.
Objective Function

min

nX

k=1

nk ⇤ (apk
n�1X

i=0

xifi + b

p
k +

n�1X

i=0

sixi) ⇤ (atk
n�1X

i=0

xifi + b

t
k)

(4)

Select One Value of k

nX

k=1

nk = 1 (5)

Total Number of Cores Equals k

n�1X

i=0

xi =
nX

k=1

nkk (6)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (7)
8k 2 (0, n], nk 2 {0, 1} (8)

Constraints in the above formulation are linear constraints
that ensure that a valid configuration is selected. However,
the objective function has a cubic expression. This con-
strained optimization problem can be readily solved by solv-
ing n quadratic integer programs. Each of these quadratic
integer programs chooses the best configuration amongst all
the configurations with the same number of cores. The best
performing configuration is then chosen from amongst the
optimal configurations returned by the n quadratic integer
program optimizations. In this way, the global optimal con-
figuration can be found by optimizing n quadratic programs
(Algorithm 1). The quadratic program that selects the best
configuration from amongst all the configurations with k

cores is given below in Equations (9)-(11).
Objective Function

min (apK

n�1X

i=0

xifi + b

p
K +

n�1X

i=0

sixi) ⇤ (atK
n�1X

i=0

xifi + b

t
K)

(9)

Algorithm 1 Algorithm for obtaining the globally optimal
configuration by solving n quadratic programs

1 for k 2 [1, n]:
2 //Obtain the best configuration amongst
3 //all configurations with k cores
4 Ck = EnergyQP(k)
5
6 //energy(CK) is the total energy consumption of configuration Ck

7 Optimal Configuration
= {Ck|energy(Ck) is minimum for k 2 [1, n]}

Total Number of Cores Equals K

n�1X

i=0

xi = K (10)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (11)

Quadratic programs must have positive semi-definite ma-
trices to be solved using convex optimization. The resulting
quadratic programs above are not positive semi-definite and
hence can be computationally very hard to solve using non-
linear optimization methodologies.

In order to reduce the quadratic objective function to a
linear expression, we use the scheme proposed by Glover
and Woosley [19]. In this scheme, the cross-product terms
in the objective function are replaced by adding new contin-
uous variables. The value of these new variables are deter-
mined by adding new constraints. For example, a quadratic
product term x1x2, where x1, x2 are binary variables, can
be replaced by a new variable y12 such that y12  x1, y12 
x2, and y12 � x1 + x2 � 1. We multiply the terms in the ob-
jective function (Equation 9) and replace the product terms
of the form xixj with new continuous variables yij . The re-
sulting ILP is given below in Equations (12)-(15).
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where, nk is a binary variable indicating whether the se-
lected configuration has k cores (nk can be 1 only for one
value of k) , xi is a binary variable indicating whether ith

core is selected, apk
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k is the dynamic power con-

sumption of the configuration, si is the static power con-
sumption of core i,
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k is the execution time of the

application. Energy minimization problem can then be for-
mulated as a constrained optimization problem. The formu-
lation is given below in Equations (4)-(8). Terminology used
in this section is defined in Table 1.
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Constraints in the above formulation are linear constraints
that ensure that a valid configuration is selected. However,
the objective function has a cubic expression. This con-
strained optimization problem can be readily solved by solv-
ing n quadratic integer programs. Each of these quadratic
integer programs chooses the best configuration amongst all
the configurations with the same number of cores. The best
performing configuration is then chosen from amongst the
optimal configurations returned by the n quadratic integer
program optimizations. In this way, the global optimal con-
figuration can be found by optimizing n quadratic programs
(Algorithm 1). The quadratic program that selects the best
configuration from amongst all the configurations with k

cores is given below in Equations (9)-(11).
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Algorithm 1 Algorithm for obtaining the globally optimal
configuration by solving n quadratic programs

1 for k 2 [1, n]:
2 //Obtain the best configuration amongst
3 //all configurations with k cores
4 Ck = EnergyQP(k)
5
6 //energy(CK) is the total energy consumption of configuration Ck

7 Optimal Configuration
= {Ck|energy(Ck) is minimum for k 2 [1, n]}
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8i 2 [0, n), xi 2 {0, 1} (11)

Quadratic programs must have positive semi-definite ma-
trices to be solved using convex optimization. The resulting
quadratic programs above are not positive semi-definite and
hence can be computationally very hard to solve using non-
linear optimization methodologies.

In order to reduce the quadratic objective function to a
linear expression, we use the scheme proposed by Glover
and Woosley [19]. In this scheme, the cross-product terms
in the objective function are replaced by adding new contin-
uous variables. The value of these new variables are deter-
mined by adding new constraints. For example, a quadratic
product term x1x2, where x1, x2 are binary variables, can
be replaced by a new variable y12 such that y12  x1, y12 
x2, and y12 � x1 + x2 � 1. We multiply the terms in the ob-
jective function (Equation 9) and replace the product terms
of the form xixj with new continuous variables yij . The re-
sulting ILP is given below in Equations (12)-(15).
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where, nk is a binary variable indicating whether the se-
lected configuration has k cores (nk can be 1 only for one
value of k) , xi is a binary variable indicating whether ith
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application. Energy minimization problem can then be for-
mulated as a constrained optimization problem. The formu-
lation is given below in Equations (4)-(8). Terminology used
in this section is defined in Table 1.
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8i 2 [0, n), xi 2 {0, 1} (7)
8k 2 (0, n], nk 2 {0, 1} (8)

Constraints in the above formulation are linear constraints
that ensure that a valid configuration is selected. However,
the objective function has a cubic expression. This con-
strained optimization problem can be readily solved by solv-
ing n quadratic integer programs. Each of these quadratic
integer programs chooses the best configuration amongst all
the configurations with the same number of cores. The best
performing configuration is then chosen from amongst the
optimal configurations returned by the n quadratic integer
program optimizations. In this way, the global optimal con-
figuration can be found by optimizing n quadratic programs
(Algorithm 1). The quadratic program that selects the best
configuration from amongst all the configurations with k

cores is given below in Equations (9)-(11).
Objective Function
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Algorithm 1 Algorithm for obtaining the globally optimal
configuration by solving n quadratic programs

1 for k 2 [1, n]:
2 //Obtain the best configuration amongst
3 //all configurations with k cores
4 Ck = EnergyQP(k)
5
6 //energy(CK) is the total energy consumption of configuration Ck

7 Optimal Configuration
= {Ck|energy(Ck) is minimum for k 2 [1, n]}
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xi = K (10)
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8i 2 [0, n), xi 2 {0, 1} (11)

Quadratic programs must have positive semi-definite ma-
trices to be solved using convex optimization. The resulting
quadratic programs above are not positive semi-definite and
hence can be computationally very hard to solve using non-
linear optimization methodologies.

In order to reduce the quadratic objective function to a
linear expression, we use the scheme proposed by Glover
and Woosley [19]. In this scheme, the cross-product terms
in the objective function are replaced by adding new contin-
uous variables. The value of these new variables are deter-
mined by adding new constraints. For example, a quadratic
product term x1x2, where x1, x2 are binary variables, can
be replaced by a new variable y12 such that y12  x1, y12 
x2, and y12 � x1 + x2 � 1. We multiply the terms in the ob-
jective function (Equation 9) and replace the product terms
of the form xixj with new continuous variables yij . The re-
sulting ILP is given below in Equations (12)-(15).
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where, nk is a binary variable indicating whether the se-
lected configuration has k cores (nk can be 1 only for one
value of k) , xi is a binary variable indicating whether ith

core is selected, apk
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sumption of the configuration, si is the static power con-
sumption of core i,

X

i

sixi is the total static power con-

sumption, and a
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k is the execution time of the

application. Energy minimization problem can then be for-
mulated as a constrained optimization problem. The formu-
lation is given below in Equations (4)-(8). Terminology used
in this section is defined in Table 1.
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8i 2 [0, n), xi 2 {0, 1} (7)
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Constraints in the above formulation are linear constraints
that ensure that a valid configuration is selected. However,
the objective function has a cubic expression. This con-
strained optimization problem can be readily solved by solv-
ing n quadratic integer programs. Each of these quadratic
integer programs chooses the best configuration amongst all
the configurations with the same number of cores. The best
performing configuration is then chosen from amongst the
optimal configurations returned by the n quadratic integer
program optimizations. In this way, the global optimal con-
figuration can be found by optimizing n quadratic programs
(Algorithm 1). The quadratic program that selects the best
configuration from amongst all the configurations with k

cores is given below in Equations (9)-(11).
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Algorithm 1 Algorithm for obtaining the globally optimal
configuration by solving n quadratic programs

1 for k 2 [1, n]:
2 //Obtain the best configuration amongst
3 //all configurations with k cores
4 Ck = EnergyQP(k)
5
6 //energy(CK) is the total energy consumption of configuration Ck

7 Optimal Configuration
= {Ck|energy(Ck) is minimum for k 2 [1, n]}

Total Number of Cores Equals K

n�1X

i=0

xi = K (10)

Variables Range

8i 2 [0, n), xi 2 {0, 1} (11)

Quadratic programs must have positive semi-definite ma-
trices to be solved using convex optimization. The resulting
quadratic programs above are not positive semi-definite and
hence can be computationally very hard to solve using non-
linear optimization methodologies.

In order to reduce the quadratic objective function to a
linear expression, we use the scheme proposed by Glover
and Woosley [19]. In this scheme, the cross-product terms
in the objective function are replaced by adding new contin-
uous variables. The value of these new variables are deter-
mined by adding new constraints. For example, a quadratic
product term x1x2, where x1, x2 are binary variables, can
be replaced by a new variable y12 such that y12  x1, y12 
x2, and y12 � x1 + x2 � 1. We multiply the terms in the ob-
jective function (Equation 9) and replace the product terms
of the form xixj with new continuous variables yij . The re-
sulting ILP is given below in Equations (12)-(15).
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min
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New variable constraints

yij  xi, 8i, j 2 [0, n), j  i

yij  xj , 8i, j 2 [0, n), j  i

yij � xi + xj � 1, 8i, j 2 [0, n), j  i (14)
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(a) With no time constraint (b) Maximum 15% time penalty (c) Maximum 5% time penalty

Figure 3: Percentage savings in energy with MIN, MAX heuristics, and the ILP method for the two applications, miniMD
and Jacobi3d, with respect to the configuration with best execution time. The bars correspond to the average benefits, while
the vertical lines correspond to the minimum and maximum benefits obtained from the corresponding heuristic across the
25 chips. In (a), configuration that minimizes energy consumption is sought irrespective of penalty in execution time of the
application. In (b) and (c), the best configuration that minimizes energy while the execution time penalty is less than 15% and
5%, respectively, is sought using the MIN, MAX heuristic, and ILP method.

Figure 4: An example of a configuration selected by the ILP
optimization method for Jacobi application. Circle markers
correspond to the cores selected by ILP. A total of 21 cores
were selected by the ILP method. MIN, MAX heuristic se-
lected 26, 27 cores, respectively.

• Jacobi An average of 1.6%, 1.2%, 6.4% savings in
energy with MIN, MAX heuristic, ILP, respectively is
achieved.

Since miniMD is a computationally intensive application,
the number of cores in the optimal configuration selected for
miniMD are more than the number of cores in the optimal
configuration for Jacobi. In Jacobi, large number of cores
lead to increase in the memory contention and hence are sub-
optimal. Figure 4 shows an example solution obtained from
ILP optimization, MIN heuristic, and MAX heuristic.

6.2 Solution Time
The proposed methodology requires optimizing n�2 proper
ILPs, where n is the total number of cores on the chip. Each
ILP has 702 variables, and 2000 constraints. The ILP opti-
mizations are independent of each other and can therefore
be very easily parallelized by launching them in parallel on
multiple cores of a compute node and/or on multiple com-
pute nodes. For the experiments, we use a Dell 2.67 GHz
Dual Westmere Xeon E5640 processor with a total of 8 cores
and 16 SMT threads. The ILP optimizations required for a
given chip and a application were launched in parallel on the
machine. We now consider the solution time for each of the
three cases presented in Section 6.1.

1. When there is no execution time penalty constraint, it
took an average of 400 seconds and 1090 seconds for
obtaining the optimal result for miniMD and Jacobi, re-
spectively. An average of 4.08e7 and 3.27e8 simplex it-
erations (summed across all the BnB vertices explored)
were performed by the ILP solver for miniMD and Ja-
cobi, respectively.

2. When the maximum execution time penalty of 15% is en-
forced, the configuration search space for ILP optimiza-
tion is reduced significantly. It took an average of 14.8s,
37s to find the optimal solution for miniMD, Jacobi, re-
spectively.

3. With the maximum execution time penalty of 5%, the
search space is further reduced, and it took only 8s, 10.2s
to find the optimal solution for miniMD, Jacobi, respec-
tively.

We compare these results with exhaustive evaluation of
the performance and power models for all the configurations
on the same machine. The configurations can be evaluated in
parallel. The total number of configurations to be evaluated
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Figure 4: An example of a configuration selected by the ILP
optimization method for Jacobi application. Circle markers
correspond to the cores selected by ILP. A total of 21 cores
were selected by the ILP method. MIN, MAX heuristic se-
lected 26, 27 cores, respectively.

• Jacobi An average of 1.6%, 1.2%, 6.4% savings in
energy with MIN, MAX heuristic, ILP, respectively is
achieved.

Since miniMD is a computationally intensive application,
the number of cores in the optimal configuration selected for
miniMD are more than the number of cores in the optimal
configuration for Jacobi. In Jacobi, large number of cores
lead to increase in the memory contention and hence are sub-
optimal. Figure 4 shows an example solution obtained from
ILP optimization, MIN heuristic, and MAX heuristic.

6.2 Solution Time
The proposed methodology requires optimizing n�2 proper
ILPs, where n is the total number of cores on the chip. Each
ILP has 702 variables, and 2000 constraints. The ILP opti-
mizations are independent of each other and can therefore
be very easily parallelized by launching them in parallel on
multiple cores of a compute node and/or on multiple com-
pute nodes. For the experiments, we use a Dell 2.67 GHz
Dual Westmere Xeon E5640 processor with a total of 8 cores
and 16 SMT threads. The ILP optimizations required for a
given chip and a application were launched in parallel on the
machine. We now consider the solution time for each of the
three cases presented in Section 6.1.

1. When there is no execution time penalty constraint, it
took an average of 400 seconds and 1090 seconds for
obtaining the optimal result for miniMD and Jacobi, re-
spectively. An average of 4.08e7 and 3.27e8 simplex it-
erations (summed across all the BnB vertices explored)
were performed by the ILP solver for miniMD and Ja-
cobi, respectively.

2. When the maximum execution time penalty of 15% is en-
forced, the configuration search space for ILP optimiza-
tion is reduced significantly. It took an average of 14.8s,
37s to find the optimal solution for miniMD, Jacobi, re-
spectively.

3. With the maximum execution time penalty of 5%, the
search space is further reduced, and it took only 8s, 10.2s
to find the optimal solution for miniMD, Jacobi, respec-
tively.

We compare these results with exhaustive evaluation of
the performance and power models for all the configurations
on the same machine. The configurations can be evaluated in
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Conclusions	
  	
  

•  Negligible	
  overhead	
  
– O(n)	
  samples	
  required	
  
–  Performance	
  models	
  developed	
  with	
  negligible	
  
overhead	
  

•  ILP	
  solvers	
  to	
  opJmize	
  energy	
  consumpJon	
  with	
  
Jming	
  constraints	
  
–  Significant	
  energy	
  savings	
  as	
  compared	
  to	
  sub-­‐opJmal	
  
heurisJcs	
  

•  No	
  extra	
  compute	
  resources	
  required	
  
–  Solve	
  ILPs	
  on	
  respecJve	
  chips	
  prior	
  to	
  job	
  execuJon	
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Future	
  Work	
  

•  Further	
  improvement	
  of	
  performance	
  models	
  
•  Evaluate	
  approach	
  with	
  even	
  larger	
  number	
  of	
  
cores	
  

•  OpJmizaJon	
  methods	
  to	
  further	
  improve	
  
soluJon	
  Jme	
  

•  Apply	
  to	
  other	
  HPC	
  applicaJons	
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