

Split-and-Merge Method for Accelerating Convergence of Stochastic Linear Programs

Akhil Langer and Udatta Palekar*

Department of Computer Science, *Department of Business

University of Illinois at Urbana-Champaign

RELATED WORK

- ☐ Magnanti and Wong, 1981
- > Add only dominating cuts
- Requires solving additional optimization problems
- ☐ Linderoth et al, 2003
- > Requires solving additional optimization problems to determine usability of cuts
- ☐ Trust Region, Ruszczynski, 1886 and Linderoth et al, 2003
- Add objective term to minimize movement of candidate solution
- Requires doing several minor iterations between major iterations
- ☐ Progressive Hedging Algorithm, 1991
- > Requires search for optimal Lagrangean multiplier which can be prohibitive

PROPOSED SPLIT-AND-MERGE (SAM) METHOD

Split original problem into many small subproblems each with a subset of scenarios

Perform stochastic linear optimization of subproblems (in parallel) until converged or until a specified number of iterations

Merge cuts from subproblems

Solve original problem with collected cuts

Input: S (**set** of scenarios), Original Stochastic Program (P) Divide S into n clusters, $S_1, S_2,, S_n$ Generate n stochastic programs, $P_1, P_2,, P_n$, with scenarios from $S_1, S_2,, S_n$, respectively Scale scenario probabilities **in** each of these subproblems such that they sum up to 1

#pragma omp parallel for for i in range(1,n): $scosts_i = []$ #scenario costs $cuts_i = []$ #scenarios cut constraints while $r_i < r$ or hasConverged(i): $x_i = solveStage1(P_i, scosts_i, cuts_i)$ $scosts_i, cuts_i = solveStage2(x_i)$ $r_i = r_i + 1$

end while

#wait until all the subproblems have returned cuts = [] scosts = [] for i in range(1,n): cuts.add(getCutConstraints(P_i))

#now solve the original problem
while not hasConverged(P):
 x = solveStage1(P, scosts, cuts)
 scosts, cuts = solveStage2(x)
end while

SAM BENEFITS

- ☐ Higher cut activity from initial iterations of Benders method
- ☐ Reduced Stage 1 bottleneck size
- ☐ Increased Parallelism in Stage 1
- ☐ Reduced total iterations and time to solution
- ☐ 58% improvement in time to solution compared with Benders method

FUTURE WORK

- ☐ Further exploration of HSAM method
- ☐ Automated determination of split-phase duration
- ☐ Determining optimal subproblem size

TAKEAWAYS

- ☐ Accelerated convergence by problem decomposition
- ☐ Enabled large-scale stochastic optimizations leading to
- robust planning of US AMC operations
- ☐ Reduced time to solution
- ☐ Asynchronous parallel programming model for maximum productivity and performance

REFERENCES

- Akhil Langer, Ramprasad Venkataraman, Udatta Palekar, and Laxmikant V. Kale. "Parallel branch-and-bound for two-stage stochastic integer optimization." In High Performance Computing (HiPC), 2013 20th International Conference on, pp. 266-275. IEEE, 2013. Best Paper Award.
- Langer, Akhil, Ramprasad Venkataraman, Udatta Palekar, Laxmikant Kale, and Steven Baker. "Performance Optimization of a Parallel, Two Stage Stochastic Linear Program." In 2012 IEEE 18th International Conference on Parallel and Distributed Systems, pp. 676-683. IEEE, 2012.
- Laxmikant Kale, Anshu Arya, Nikhil Jain, Akhil Langer, Jonathan Liander, Harshitha Menon, Xiang Ni, Yanhua Sun, Ehsan Totoni, Ramprasad Venkataraman, and Lukasz Wesolowski. Migratable Objects + Active Messages + Adaptive Runtime = Productivity + Performance A Submission to 2012 HPC Class II Challenge. Technical Report 12-47, Parallel Programming Laboratory, November 2012.
 HPCC 2012 Finalist.
 - Langer, Akhil, Ramprasad Venkataraman, Gagan Gupta, Laxmikant Kale, Udatta Palekar, Steven Baker, and Mark Surina. "Poster: enabling massive parallelism for stochastic optimization." In *Proceedings of the 2011 companion on High Performance Computing Networking, Storage and Analysis Companion*, pp. 89-90. ACM, 2011.