
POWER-­‐AWARE	
 RESOURCE	
 MANAGER	

Maximizing	
 Data	
 Center	
 Performance	
 Under	
 Strict	
 Power	
 Budget	

Osman	
 Sarood,	
 Akhil	
 Langer*,	
 Abhishek	
 Gupta,	
 Laxmikant	
 Kale	

	

Parallel	
 Programming	
 Laboratory	

Department	
 of	
 Computer	
 Science	

University	
 of	
 Illinois	
 at	
 Urbana-­‐Champaign	

	

19th	
 November	

BoF:	
 Dynamic	
 Power	
 Management	
 for	
 MW-­‐sized	
 Supercomputer	
 Centers	

SupercompuOng	
 2014	

New	
 Orleans,	
 LA	

Major	
 Challenge	
 to	
 Achieve	
 Exascale	

Exascale	
 in	
 20MW!	

Power	
 consumpGon	
 for	
 Top500	

Data	
 Center	
 Power	

How	
 is	
 power	
 demand	
 of	
 data	
 center	
 calculated?	
 	

q Using	
 Thermal	
 Design	
 Power	
 (TDP)!	

However,	
 TDP	
 is	
 hardly	
 reached!!	

	

	

	

	

Constraining	
 CPU/Memory	
 power	

Intel	
 Sandy	
 Bridge	

q  Running	
 Average	
 Power	
 Limit	
 (RAPL)	
 library	

Ø measure	
 and	
 set	
 CPU/memory	
 power	

Constraining	
 CPU/Memory	
 power	

SoluOon	
 to	
 Data	
 Center	
 Power	

q Constrain	
 power	
 consumpGon	
 of	
 nodes	

q Overprovisioning	
 -­‐	
 Use	
 more	
 nodes	
 than	
 convenGonal	
 data	

center	
 for	
 same	
 power	
 budget	

	

	

	

Intel	
 Sandy	
 Bridge	

q  Running	
 Average	
 Power	
 Limit	
 (RAPL)	
 library	

Ø measure	
 and	
 set	
 CPU/memory	
 power	

Applica=on	
 Performance	
 with	
 Power	

(20x32,10)	
 	

(12x44,18)	
 	

ConfiguraOon	
 	

(n	
 x	
 pc,	
 pm	
)	

Performance	
 of	
 LULESH	
 at	
 different	

configuraGons	

pc:	
 CPU	
 power	
 cap	

pm:	
 Memory	
 power	
 cap	

ApplicaGon	
 performance	

does	
 not	
 improve	

proporGonately	
 with	

increase	
 in	
 power	
 cap	

Run	
 on	
 larger	
 number	
 of	

nodes	
 each	
 capped	
 at	

lower	
 power	
 level	

Problem	
 Statement	
 	

Data	
 center	
 capabiliOes	

q Power	
 capping	
 ability	

q Overprovisioning	

Job	
 features	
 (OpOonal)	

q Moldability	

q Malleability	

Ø Charm++	

Maximizing	
 Data	
 Center	
 Performance	
 Under	
 Strict	
 Power	
 Budget	

POWER-­‐AWARE	
 RESOURCE	
 MANAGER	

`	
 Job	
 Arrives	

Job	
 Ends/
Terminates	

Schedule	

Jobs	
 (LP)	

Update	

Queue	

Scheduler	

Launch	
 Jobs/	

Shrink-­‐Expand	

Ensure	
 Power	

Cap	

ExecuGon	

framework	

Triggers	

Profiler	

Strong	
 Scaling	
 Power	

Aware	
 Model	

Job	
 CharacterisGcs	

Database	

Time	
 vs	
 Scale	

Downey’s	
 strong	
 scaling	
 Time	
 vs	
 Frequency	

t = F(n,A,σ)

Execu=on	
 =me	
 as	
 a	
 func=on	
 of	
 power	
 and	
 number	
 of	
 nodes	
 	

q  n:	
 number	
 of	
 nodes	

q  A:	
 Average	
 Parallelism	

q  	
 σ	
 :	
 duraGon	
 of	
 parallelism	
 A	
 q Wcpu:	
 CPU	
 work	

q  Tmem:	
 memory	
 work	

q  Th	
 :	
 	
 	
 minimum	
 exec	
 Gme	
 	

q  pcore:	
 core	
 power	

q  gi:	
 cost	
 level	
 I	
 cache	
 access	

q  Li:	
 #level	
 I	
 accesses	

q  gm:	
 cost	
 of	
 mem	
 access	

q M:	
 #mem	
 accesses	

q  pbase:	
 idle	
 power	

	
 Power	
 Aware	
 Strong	
 Scaling	
 Model	

A. Strong Scaling Model

An application can be characterized by an average par-
allelism of A. The application’s parallelism remains equal
to A, except for some fraction � of the duration. Available
parallelism is 2A � 1 for �

2 fraction of the duration and just
1 for the remaining �

2 fraction of the duration. We adjust
Downey’s [26] model to satisfy the boundary conditions -
t(1) = T1, and t(n) = T1

A

for n � A, where t(n) is the
application time on n nodes, and T1 is the application time on
a single node. According to Downey’s model, the execution
time, t(n), of an application executing on n nodes can be
modeled as:

t(n) =

8
>>>>>><

>>>>>>:

T1 �
T1�

2A

n

+
T1�

2A
, 1  n  A (9)

�(T1 �
T1
2A)

n

+
T1

A

�

T1�

2A
A < n  2A� 1 (10)

T1

A

, n > 2A� 1 (11)

The first equation in this group represents the range of n

where the application is most scalable i.e. when the number
of nodes is less than A. The application’s scalability declines
significantly once n becomes larger than A because of lack
of parallelism for most of the duration. Finally, for n � 2A,
the execution time t(n) equals T1/A and does not decrease
further. Given application characteristics �, A, and T1, this
model can be used to estimate execution time for any number
of nodes n.

B. Adding Power Awareness to Strong Scaling Model

The effect of changing frequency on the execution time
varies from application to application [27] . In this section, we
model execution time as a function of CPU frequency. Since,
CPU frequency can be expressed as a function of CPU power,
we can finally express execution time as a function to CPU
power.

1) Execution Time as a Function of Frequency: Existing
work [4], [27] indicates that increase in CPU frequency beyond
a certain threshold frequency (let us call it f

h

) does not
reduce the execution time. The value of f

h

depends on the
memory bandwidth being used by the application. For f < f

h

,
execution time depends on the CPU-bounded and memory (off-
chip) bounded work of the application and can thus be modeled
as [5]–[7], [28]:

t(f) =

8
<

:

W

cpu

f

+ T

mem

, for f < f

h

(12)

T

h

, for f � f

h

(13)

where, W
cpu

and T

mem

are defined in Table III, and T

h

is the execution time at frequency f

h

. Let T
l

be the execution
time at frequency f

l

where f

l

is the minimum frequency at
which the CPU can operate. Parameter � characterizes the
frequency-sensitivity of an application and can be expressed
as:

� =
T

l

� T

h

T

l

(14)

Range of � depends on the frequency range supported by
the CPU vendor. Given the frequency range of (f

l

, f

max

),
�  1 �

f

l

f

max

. Typically, CPU-bound applications have
higher values for � whereas memory-intensive applications
have smaller � values.

Using Eq. 14 and applying boundary conditions, t(f
l

) = T

l

and t(f
h

) = T

h

, to Eq. 12, we get:

W

cpu

=
T

h

�f

l

f

h

(1� �)(f
h

� f

l

)
(15)

T

mem

= T

h

�

T

h

�f

l

(1� �)(f
h

� f

l

)
(16)

2) Frequency as a Function of CPU Power: Although Intel
has not released complete details of how the CPU power
consumption is ensured to be below the user specified CPU
power cap, it has been hinted that it is achieved using a
combination of DVFS and CPU throttling [2], [29].

Let p
l

denote the CPU power corresponding to f

l

, where
f

l

is the minimum frequency the CPU can operate at using
DVFS. To cap power below p

l

(p < p

l

), other architectural-
level mechanisms such as CPU throttling are used. We have
empirically observed that for p < p

l

, the application perfor-
mance degrades significantly even for very small savings in
power. Therefore, we restrict our study to power caps greater
than p

l

. The value of p

l

can be easily determined by setting
the CPU frequency at f

l

. CPU or the package power includes
the power consumption by its various components such as
cores, caches, memory controller, etc. The value of p

l

varies
depending on an application’s usage of these components.
In a CPU-bound application, a processor might be able to
cap power to lower values using DVFS, since only the cores
are consuming power. In contrast, for a memory intensive
application, p

l

might be higher, since the caches and memory
controller are also consuming significant power in addition to
the cores.

The major part of the dynamic CPU power consumption
can be attributed to the cores, on-chip caches and memory
controller. Power consumption of the core, p

core

, is often
modeled as p

core

= Cf

3 + Df , where C and D are some
constants [30]. Power consumption due to cache and memory
accesses is modeled as,

P3
i=1 giLi

+ g

m

M , where, L

i

is
accesses per second to level i cache, g

i

is the cost of a level i
cache access, M is the number of memory accesses per second,
g

m

is the cost per memory access. The total CPU power can
then be expressed as [31]:

p = p

core

+
3X

i=1

g

i

L

i

+ g

m

M + p

base

(17)

where, p

base

is the base/static package power consumption.
Since number of cache and memory accesses is proportional
to the CPU frequency, Eq. 17 can be written as:

p = F (f) = af

3 + bf + c (18)

where a, b, and c are constants. bf corresponds to the cores’
leakage power and power consumption of caches and memory
controller. The term af

3 represents the dynamic power of the
cores, whereas, c = p

base

represents the base CPU power. The
constants a and b are application dependent since the cache and
memory behavior can be different across applications. Eq. 18
can be rewritten as a depressed cubic equation and solved using
Fermat’s Last Theorem to get F�1:

f = F

�1(p) =
3

s
p� c

2a
+

r
(p� c)2

4a2
+

b

3

27a3

+
3

s
c� p

2a
+

r
(p� c)2

4a2
+

b

3

27a3
(19)

TABLE III: Power Aware Strong Scaling Model Terminology

��� ��� � ����������

A Average parallelism in the application
� fraction of the duration when application parallelism

is not A, parallelism is 2A� 1 for �

2 fraction and 1 for
�

2 fraction of the duration
T1 Application execution time on 1 node
f CPU Frequency
f

h

Threshold frequency beyond which application
execution time does not reduce

f

l

�f
min

Minimum CPU frequency supported by vendor
f

max

Maximum CPU frequency supported by vendor
T

l

Execution time at CPU frequency f

l

T

h

Execution time at CPU frequency f

h

W

cpu

on-chip workload in terms of CPU cycles
T

mem

Time for off-chip work in the application that is unaffected
by CPU frequency

model or PASS model. The model parameters are specific to
the application and the input dataset with which the application
will be executed. Applying mathematical regression to applica-
tion’s profile data for different resource combinations enables
PASS to estimate important power characteristics. PASS model
extends Downey’s [27] strong scaling model by making it
power aware. Table III gives the terminology used in this
section.

A. Strong Scaling Model

An application can be characterized by an average par-
allelism of A. The application’s parallelism remains equal
to A, except for some fraction � of the duration. Available
parallelism is 2A � 1 for �

2 fraction of the duration and just
1 for the remaining �

2 fraction of the duration. We adjust
Downey’s [27] model to satisfy the boundary conditions -
t(1) = T1, and t(n) = T1

A

for n � A, where t(n) is the
application time on n nodes, and T1 is the application time on
a single node. According to Downey’s model, the execution
time, t(n), of an application executing on n nodes can be
modeled as:

t(n) =

8
>>>>>><

>>>>>>:

T1 �
T1�

2A

n

+
T1�

2A
, 1  n  A (9)

�(T1 �
T1
2A)

n

+
T1

A

�

T1�

2A
A < n  2A� 1 (10)

T1

A

, n > 2A� 1 (11)

The first equation in this group represents the range of n

where the application is most scalable i.e. when the number
of nodes is less than A. The application’s scalability declines
significantly once n becomes larger than A because of lack
of parallelism for most of the duration. Finally, for n � 2A,
the execution time t(n) equals T1/A and does not decrease
further. Given application characteristics �, A, and T1, this
model can be used to estimate execution time for any number
of nodes n.

B. Adding Power Awareness to Strong Scaling Model

The effect of changing frequency on the execution time
varies from application to application [28] . In this section, we
model execution time as a function of CPU frequency. Since,
CPU frequency can be expressed as a function of CPU power,
we can finally express execution time as a function to CPU
power.

1) Execution Time as a Function of Frequency: Existing
work [4], [28] indicates that increase in CPU frequency beyond
a certain threshold frequency (let us call it f

h

) does not
reduce the execution time. The value of f

h

depends on the
memory bandwidth being used by the application. For f < f

h

,
execution time depends on the CPU-bounded and memory (off-
chip) bounded work of the application and can thus be modeled
as [5]–[7], [29]:

t(f) =

8
<

:

W

cpu

f

+ T

mem

, for f < f

h

(12)

T

h

, for f � f

h

(13)

where, W
cpu

and T

mem

are defined in Table III, and T

h

is the execution time at frequency f

h

. Let T
l

be the execution
time at frequency f

l

where f

l

is the minimum frequency at
which the CPU can operate. Parameter � characterizes the
frequency-sensitivity of an application and can be expressed
as:

� =
T

l

� T

h

T

l

(14)

Range of � depends on the frequency range supported by
the CPU vendor. Given the frequency range of (f

l

, f

max

),
�  1 �

f

l

f

max

. Typically, CPU-bound applications have
higher values for � whereas memory-intensive applications
have smaller � values.

Using Eq. 14 and applying boundary conditions, t(f
l

) = T

l

and t(f
h

) = T

h

, to Eq. 12, we get:

W

cpu

=
T

h

�f

l

f

h

(1� �)(f
h

� f

l

)
(15)

T

mem

= T

h

�

T

h

�f

l

(1� �)(f
h

� f

l

)
(16)

2) Frequency as a Function of CPU Power: Although Intel
has not released complete details of how the CPU power
consumption is ensured to be below the user specified CPU
power cap, it has been hinted that it is achieved using a
combination of DVFS and CPU throttling [2], [30].

Let p
l

denote the CPU power corresponding to f

l

, where
f

l

is the minimum frequency the CPU can operate at using
DVFS. To cap power below p

l

(p < p

l

), other architectural-
level mechanisms such as CPU throttling are used. We have
empirically observed that for p < p

l

, the application perfor-
mance degrades significantly even for very small savings in
power. Therefore, we restrict our study to power caps greater
than p

l

. The value of p

l

can be easily determined by setting
the CPU frequency at f

l

. CPU or the package power includes
the power consumption by its various components such as
cores, caches, memory controller, etc. The value of p

l

varies
depending on an application’s usage of these components.

Power	
 vs	
 Frequency	

POWER-­‐AWARE	
 RESOURCE	
 MANAGER	

`	
 Job	
 Arrives	

Job	
 Ends/
Terminates	

Schedule	

Jobs	
 (ILP)	

Update	

Queue	

Scheduler	

Launch	
 Jobs/	

Shrink-­‐Expand	

Ensure	
 Power	

Cap	

ExecuGon	

framework	

Triggers	

Profiler	

Strong	
 Scaling	
 Power	

Aware	
 Model	

Job	
 CharacterisGcs	

Database	

`"Job"Arrives" Job"Ends/
Terminates"

Schedule"
Jobs"(LP)"

Update"
Queue"

Scheduler"

Launch"Jobs/"
ShrinkAExpand"

Ensure"Power"
Cap"

ExecuEon"
framework"

Triggers"

Profiler"

Strong"Scaling"
Power"Aware"Model"

Job"CharacterisEcs"
Database"

Power"Aware"Resource"Manager"
(PARM)"

Fig. 1: A high level overview of PARM

scaling power aware model described in § V. The scheduler’s
decisions are fed as input to the execution framework which
implements/enforces them by launching new jobs, shrink-
ing/expanding running jobs, and/or setting the power caps on
the nodes.

The scheduler is triggered whenever a new job arrives or
when a running job ends or abruptly terminates due to an
error or any other reason (‘Triggers’ box in Figure 1). At each
trigger, the scheduler tries to re-optimize resource allocation
to the set of pending as well as currently running jobs with
the objective of maximizing overall throughput. Our scheduler
uses both CPU power capping and moldability/malleability
features for throughput maximization. We formulate this
resource optimization problem as an Integer Linear Program
(ILP). The relevant terminology is described in Table I. Our
scheduling scheme can be summarized as:
Input: A set of jobs that are currently executing or are
ready to be executed (J) with their expected execution time
corresponding to a set of resource combinations (n, p), where
n 2 N

j

and p 2 P

j

.
Objective: Maximize data center throughput.
Output: Allocation of resources to jobs at each trigger event,
i.e., identifying the jobs that should be executed along with
their resource combination (n,p).

A. Integer Linear Program Formulation

We make the following assumptions and simplifications in
the formulation:

• All nodes allocated to a given job operate at the same power.
• We do not include cooling power of the data center in our

calculations.
• Job characteristics do not change significantly during the

course of its execution. By relaxing this assumption we can
benefit from the different phases in an application. However,
that is out of the scope of this study.

• The network power consumption stays constant. It is a rea-
sonable assumption since network power does not fluctuate
much for most interconnect technologies.

• Expected wall clock time represents a good estimate of the
actual execution time that the scheduler uses for decision
making.

• W

base

, that includes power for all the components of a node
other than the CPU and memory subsystems, is assumed to
be constant.

Objective Function
X

j2J

X

n2N

j

X

p2P

j

w

j

⇤ s

j,n,p

⇤ x

j,n,p

(1)

Select One Resource Combination Per Job
X

n2N

j

X

p2P

j

x

j,n,p

 1 8j 2 I (2)

X

n2N

j

X

p2P

j

x

j,n,p

= 1 8j 2 I (3)

Bounding total nodes
X

j2J

X

p2P

j

X

n2N

j

nx

j,n,p

 N (4)

Bounding power consumption
X

j2J

X

n2N

j

X

p2P

j

(n ⇤ (p+W

base

))x
j,n,p

 W

max

(5)

Disable Malleability (Optional)
X

n2N

j

X

p2P

j

nx

j,n,p

= n

j

8j 2 I (6)

Fig. 2: Integer Linear Program formulation of PARM scheduler

TABLE I: Integer Linear Program Terminology

Symbol Description
N total number of nodes in the data center
J set of all jobs
I set of jobs that are currently running
I set of jobs in the pending queue
J set of jobs which have already arrived

and have not yet been completed i.e they
are either pending or currently running, J = I [I

N

j

set of node counts on which job j can be run
P

j

set of power levels at which job j should be run or
in other words, the power levels at which job j’s
performance is known

n

j

number of nodes at which job j is currently running
w

j

weighing factor to set job priorities
α a constant in w

j

used to tradeoff job fairness/priority vs
data center throughput

x

j,n,p

binary variable, 1 if job j should run
on n nodes at power p, otherwise 0

t

now

current time
t

a

j

arrival time of job j

W

base

base machine power that includes everything
other than CPU and memory

t

j,n,p

execution time for job j running on n

nodes with power cap of p
s

j,n,p

strong scaling power aware speedup of application j

running on n nodes with power cap of p

• A job once selected for execution is not stopped until its
completion, although the resources assigned to it can change
during its execution.

• All jobs are from a single user (or have the same priority).
This is assumed just to keep the focus of the paper on other
issues. This assumption can be very easily relaxed by setting
w

j

proportional to the user/job-queue priority.

Scheduling problems are framed as ILPs and ILPs are NP-hard
problems. Maximizing throughput in the objective function
requires introducing variables for the start and end time of jobs.
These variables make the ILP computationally very intensive
and thus impractical for online scheduling in many cases.

Maximizing	
 throughput	

makes	
 online	
 ILP	

opGmizaGon	
 intractable,	

instead	
 	

	

maximize	
 sum	
 of	
 	

power-­‐aware	
 speedup	
 of	

selected	
 jobs	

Scheduler	
 -­‐	
 Integer	
 Linear	
 Program	
 (ILP)	
 Formula=on	

POWER-­‐AWARE	
 RESOURCE	
 MANAGER	

`	
 Job	
 Arrives	

Job	
 Ends/
Terminates	

Schedule	

Jobs	
 (ILP)	

Update	

Queue	

Scheduler	

Launch	
 Jobs/	

Shrink-­‐Expand	

Ensure	
 Power	

Cap	

Execu=on	

framework	

Triggers	

Profiler	

Strong	
 Scaling	
 Power	

Aware	
 Model	

Job	
 CharacterisGcs	

Database	

SetL SetH
0

50

100

150

200

250

300

A
ve

ra
g

e
 c

o
m

p
le

tio
n

 t
im

e
 (

m
in

s)

SLURM
noMM
noSE
wSE

(a) Average completion time

SetL SetH
0

50

100

150

200

250

300

A
ve

ra
g

e
 r

e
sp

o
n

se
 t

im
e

 (
m

in
s)

SLURM
noMM
noSE
wSE

(b) Average response time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

SetL SetH
 0

 10

 20

 30

 40

 50

A
ve

ra
ge

 n
um

. o
f n

od
es

A
ve

ra
ge

 C
P

U
 p

ow
er

 (W
)

Avg. nodes noMM
Avg. nodes noSE
Avg. nodes wSE

Avg. CPU power noMM
Avg CPU power noSE
Avg CPU power wSE

(c) Average nodes and average power per node

Fig. 4: Comparing performance of SLURM with noMM, noSE, and wSE versions of PARM.

nodes at the cost of decreasing the CPU power are smaller. The
flexibility to increase the number of nodes gives PARM higher
benefit over SLURM when � is small as compared to the case
when � is large. This is corroborated with the observation
(Figure 4) that the benefits of using PARM as compared to
SLURM are much higher with dataset SetL (� = 0.1) as
compared to dataset SetH (� = 0.27). PARM’s intelligent
allocation of power can significantly improve completion and
response times. These can be further improved by using job
moldability and malleability features.

VII. LARGE SCALE PROJECTIONS

After experimentally showing the benefits of PARM on a
real cluster, we now analyze its benefit on very large machines.
Since it was practically infeasible for us to do actual job
scheduling on very large machine, we use the SLURM simu-
lator [36] which is a wrapper around SLURM. This simulator
gives us information about SLURM’s scheduling decisions
without actually executing the jobs. To make analysis of PARM
more reliable, we develop a model to estimate the cost of
shrinking and expanding jobs. We then give the experimental
setup and present a comparison of PARM scheduling with
baseline scheduling policy. Since noMM version of PARM was
inferior to both wSE and noSE, we concentrate on wSE and
noSE schemes in this section.

A. Modeling Cost of Shrinking and Expanding Jobs

Constriction and expansion of jobs has an overhead associ-
ated with it. These overheads come from data communication
done to balance the load across the new set of processors
assigned to the job and from the boot time of nodes.

For demonstrating our system using real experiments
(§ VI), we used the existing malleability support in
Charm++ [22]. However, the approach in [22] is practical only
for small clusters as it starts processes on as many nodes
as the job can run on. Inter-job interference and security
concerns make that approach impractical for large-clusters,
where many jobs run simultaneously. Charm++ researchers
have recently proposed a new approach which eliminates the
need of spawning processes on all nodes and does not leave any
residual processes after shrink. Hence, for more practical and
accurate large-scale projections, we model an approach which
would require dynamic process spawning when expanding.
Hence, we consider boot times in our model.

A scheduler typically makes two decisions: 1) how many
nodes to assign to each job, and 2) which nodes to assign

to each job. We address the first decision in this paper and
defer the second for future work. Let us say that job j

with a total memory of m

j

MB, has to expand from n

f

nodes to n

t

nodes. For simplification of analysis, we assume
that each job is initially allocated a cuboid of nodes (with
dimensions- 3

p

n

f

⇥

3
p

n

f

⇥

3
p

n

f

) interconnected through a 3D
torus. After the expand operation, size of the cuboid becomes
3
p

n

f

⇥

3
p

n

f

⇥

n

t

2
3
p
n

f

. For load balance, the data in memory
(m

j

MB) will be distributed equally amongst the n

t

nodes.
Hence, the communication cost for the data transfer can be
expressed as (secs):

t

c

=
(mj

n

f

�

m

j

n

t

) ⇤ n
f

2 ⇤ b ⇤ n
2
3
f

(20)

where b is the per link bandwidth in MB/sec. The numerator
in Eq. 20 represents the total data to be transferred whereas
the denominator represents the bisection bandwidth of the
cuboid. Similarly, the cost of shrinking a job is determined by
computing the cost of distributing the data of n

f

� n

t

nodes
equally across the final n

t

nodes.

Boot times can be significant for some supercomputers.
Since many supercomputers in Top500 [37] belong to the
Blue Gene family, we include their boot time when evaluating
our scheme. We adopt the following simple linear model to
calculate the boot time (t

b

) for expand operation based on
Intrepid boot time data [38]:

t

b

(in seconds) = (n
t

� n

f

) ⇤ 0.01904 + 72.73 (21)

In an expand operation, communication phase can start only
after additional nodes become available. These additional
nodes might have to be booted. Therefore the total cost of
a shrink or expand operation is the sum of boot time and data
transfer time, i.e., t

se

= t

c

+ t

b

. A job set for expansion might
receive additional nodes from a job undergoing constriction
in the same scheduling decision. Therefore, an expanding
job has to wait until the shrinking job has released the
additional resources. To simplify this analysis, we determine
the maximum t

se

from amongst the shrinking/expanding jobs
(tmax

se

) and add 2tmax

se

to the execution times of all the jobs
shrinking or expanding during the current scheduling decision.
To control the frequency of constriction or expansion of a job,
and consequently its cost, we define a parameter f

se

(in secs).
f

se

is the time after which a job can shrink or expand. i.e. if
a job was shrunk or expanded at t secs, then it can be shrunk
or expanded only after t+f

se

secs. This condition is enforced
using Eq. 6.

Descrip2on	

q  noMM:	
 without	
 Malleability	
 and	
 Moldability	

q  noSE:	
 	
 	
 	
 with	
 Moldability	
 but	
 no	
 Malleability	

q wSE:	
 	
 	
 	
 	
 	
 with	
 Moldability	
 and	
 Malleability	

1.7X	
 improvement	
 in	
 throughput	

Lulesh,	
 AMR,	
 LeanMD,	
 Jacobi	
 and	
 Wave2D	

38-­‐node	
 Intel	
 Sandy	
 Bridge	
 Cluster,	
 3000W	
 budget	

Performance	
 Results	

Takeaways	

Significant	
 improvement	
 in	
 throughputs	

Ø Power-­‐aware	
 characterisGcs	
 (PASS	
 model)	

Ø CPU	
 power	
 capping	

Ø Overprovisioning	

SophisGcated	
 ILP	
 scheduling	
 methodology	
 useful	
 for	

resource	
 assignment	

AdapGve	
 runGme	
 system	
 further	
 increases	
 benefits	
 by	

allowing	
 malleability	

	

Talk:	
 Maximizing	
 Throughput	
 of	
 Overprovisioned	
 HPC	
 Data	
 centers	
 Under	
 a	

Strict	
 Power	
 Budget.	
 SC	
 ’14.	

Thursday	
 (tomorrow)	
 10:30	
 am,	
 393-­‐94-­‐95.	

POWER-­‐AWARE	
 RESOURCE	
 MANAGER	

Maximizing	
 Data	
 Center	
 Performance	
 Under	
 Strict	
 Power	
 Budget	

Osman	
 Sarood,	
 Akhil	
 Langer*,	
 Abhishek	
 Gupta,	
 Laxmikant	
 Kale	

	

Parallel	
 Programming	
 Laboratory	

Department	
 of	
 Computer	
 Science	

University	
 of	
 Illinois	
 at	
 Urbana-­‐Champaign	

	

19th	
 November	

SupercompuOng	
 2014	

New	
 Orleans,	
 LA	

	

	

THANK	
 YOU!	

