PICS - a Performance-analysis-based Introspective

Control System to Steer Parallel Applications

Yanhua Sun, Laxmikant V. Kalé

University of lllinois at Urbana-Champaign

sunb1Qillinois.edu

November 26, 2014

Yanhua Sun U of lllinois at Urbana-Champaign



Parallel Programming Laboratory QUIUC

PPL : led by Professor Kalé
since 1985 (30 years)

Group of research staff,
post-doc, graduate students,
undergraduate (20+)

Charm++ programming model
and runtime system, real world

applications (open source)
12 Charm++ workshops
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Goal : Productivity 4+ Performance

@ Asynchronous, message driven, over-decomposition programming
model

@ More control: mapping, load balancing, memory management,
communication optimization

@ Observability and controllability

Most important feature : load balancing

Why not a general scheme to enhance the adaptivity?
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Goal : Productivity 4+ Performance

@ Asynchronous, message driven, over-decomposition programming
model

@ More control: mapping, load balancing, memory management,
communication optimization

@ Observability and controllability

Most important feature : load balancing

Why not a general scheme to enhance the adaptivity?
PICS : Control point centered introspective control system to steer
applications and runtime system
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Observation

Configurations of tunable parameters in the runtime system and
applications significantly affect the performance.

Ping time of using different number of messages to send data time of using different number of messages to send data
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Figure: Data transfer without

Figure: Data transfer with computation
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Principle of Persistence

Things rarely change suddenly
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Real-world
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Control Points

Control points

Control points are tunable parameters for application and runtime to
interact with control system. First proposed in Dooley’'s research.

@ Name, Values : default, min, max
@ Movement unit: +1, x2

© Associated function, object, array
@ Effects, directions
o Degree of parallelism
Grainsize
Priority
Memory usage
GPU load
Message size
Number of messages
other effects
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Application and Control Points

Application

© Application specific control points provided by users

@ Applications should be able to reconfigure to use new values

© Registered by runtime itself

@ Requires no change from applications

© Affect all applications

Control points Effects Use Cases
sub-block size parallelism, grain size Jacobi, Wave, stencil code
parallel threshold parallelism, overhead, grain size state space search
stages in pipeline number of messages, message size pipeline collectives
algorithm selection degree of parallelism, grain size 3D FFT decomposition (slab or pencil)
software cache size memory usage, amount of communication ChaNGa
ratio of GPU CPU load computation, load balance NAMD, ChaNGa
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serve Program Behaviors

@ Record all events

o Events : begin idle, end idle

e Functions: name, begin execution, end execution

e Communication : message creation, size, source/destination
e Hardware counters

@ Module link, no source code modification

@ Performance summary data
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Automatically Analyze the Performance

Many control points are registered. How to reduce the search space?
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Automatically Analyze the Performance

Many control points are registered. How to reduce the search space?
Performance analysis to identify program problems to narrow down the
control points
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Decision Tree Based Performance Analysis

@ Encoded in a plain text file
o Constructed at the beginning

@ Dynamic learning new rules
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Correlate Performance with Control Points

Traverse the tree using the performance summary results
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Control System APls

typedef struct ControlPoint_t
{
char name[30];
enum TP_DATATYPE datatype;
double defaultValue;
double currentValue;
double minValue;
double maxValue;
double bestValue;
double moveUnit;

int moveOP ;

int effect;

int effectDirection ;
int strategy;

int entryEP ;

int objectlD ;

}ControlPoint;
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APIs for applications

void registerControlPoint(ControlPoint xtp);

void startStep ();
void endStep ();

void startPhase(int phaseld);
void endPhase ();

double getTunedParameter(const char xname, bool xvalid);
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Jacobi3d Performance Steering

@ Control Points: sub-block size in each dimension
@ Three control points
@ Cache miss rate, high idle suggest decreases sub-block size
@ Overhead
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Figure: Jacobi3d performance steering on 64 cores for problem of
1024*1024*1024
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Communication Bottleneck in ChaNGa

@ Control points: number of mirrors

@ Ratio of maximum communication per object to average

tune mirrors with PICS =sstihss
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Figure: Time cost of calculating gravity for various mirrors and no mirror on 16k
cores on Blue Gene/Q
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Conclusion

@ Application developers can provide hints to help optimize applications
@ Automatic performance analysis helps guide performance steering

@ Steering both runtime system and applications is important

http://charm.cs.illinois.edu
mailing list: charm@cs.illinois.edu
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