PICS - a Performance-analysis-based Introspective

Control System to Steer Parallel Applications

Yanhua Sun, Laxmikant V. Kalé

University of lllinois at Urbana-Champaign

sunb1Qillinois.edu

November 26, 2014

Yanhua Sun U of lllinois at Urbana-Champaign

Parallel Programming Laboratory QUIUC

PPL : led by Professor Kalé
since 1985 (30 years)

Group of research staff,
post-doc, graduate students,
undergraduate (20+)

Charm++ programming model
and runtime system, real world

applications (open source)
12 Charm++ workshops

Yanhua Sun U of lllinois at Urbana-Champaign 2/18

Charm-++

R D

‘ Fault Tolerance

P
I ‘ Load Balancing
C d
; S Power/Energy
Saving

LRTS

Machine Layers (uGNI, PAMI, Verbs

Yanhua Sun U of lllinois at Urbana-Champaign

Goal : Productivity 4+ Performance

@ Asynchronous, message driven, over-decomposition programming
model

@ More control: mapping, load balancing, memory management,
communication optimization

@ Observability and controllability

Most important feature : load balancing

Why not a general scheme to enhance the adaptivity?

AELLITERTI U of lllinois at Urbana-Champaign 4/18

Goal : Productivity 4+ Performance

@ Asynchronous, message driven, over-decomposition programming
model

@ More control: mapping, load balancing, memory management,
communication optimization

@ Observability and controllability

Most important feature : load balancing

Why not a general scheme to enhance the adaptivity?
PICS : Control point centered introspective control system to steer
applications and runtime system

AELLITERTI U of lllinois at Urbana-Champaign 4/18

Observation

Configurations of tunable parameters in the runtime system and
applications significantly affect the performance.

Ping time of using different number of messages to send data time of using different number of messages to send data

T T T T T T T - 512 T T T T T
M data - 1M (£:0.03125) -
1024 S
512
x
] R M £ o
128 .
*
*
64 -
K
32 L . .
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64
Number of messages Number of messages

Figure: Data transfer without

Figure: Data transfer with computation
computation

Yanhua Sun U of lllinois at Urbana-Champaign

Principle of Persistence

Things rarely change suddenly

Yanhua Sun U of lllinois at Urbana-Champaign

Principle of Persistence

Things rarely change suddenly

Yanhua Sun U of lllinois at Urbana-Champaign

Principle of Persistence

Things rarely change suddenly

Yanhua Sun U of lllinois at Urbana-Champaign

Real-world

Mini apps applications
applications T
Application N Application
control points reconfiguration

Automatic performance

Controller € .
analysis
PICS
Expert
Performance
Performance

instrumentation data ‘ knowledge)
WY W ot mm ot omm ot omm s owm ot owm s omm s o s e omm h o s ommsomms o s owm s SRR R S u] rUIeS 4/

. . Runtime control Runtime

Adaptive runtime system points reconfiguration

Yanhua Sun U of lllinois at Urbana-Champaign

Control Points

Control points

Control points are tunable parameters for application and runtime to
interact with control system. First proposed in Dooley’'s research.

@ Name, Values : default, min, max
@ Movement unit: +1, x2

© Associated function, object, array
@ Effects, directions
o Degree of parallelism
Grainsize
Priority
Memory usage
GPU load
Message size
Number of messages
other effects

AELLTERSTT U of lllinois at Urbana-Champaign

Application and Control Points

Application

© Application specific control points provided by users

@ Applications should be able to reconfigure to use new values

© Registered by runtime itself

@ Requires no change from applications

© Affect all applications

Control points Effects Use Cases
sub-block size parallelism, grain size Jacobi, Wave, stencil code
parallel threshold parallelism, overhead, grain size state space search
stages in pipeline number of messages, message size pipeline collectives
algorithm selection degree of parallelism, grain size 3D FFT decomposition (slab or pencil)
software cache size memory usage, amount of communication ChaNGa
ratio of GPU CPU load computation, load balance NAMD, ChaNGa

Yanhua Sun U of lllinois at Urbana-Champaign 9/18

serve Program Behaviors

@ Record all events

o Events : begin idle, end idle

e Functions: name, begin execution, end execution

e Communication : message creation, size, source/destination
e Hardware counters

@ Module link, no source code modification

@ Performance summary data

Yanhua Sun U of lllinois at Urbana-Champaign

Automatically Analyze the Performance

Many control points are registered. How to reduce the search space?

Yanhua Sun U of lllinois at Urbana-Champaign

Automatically Analyze the Performance

Many control points are registered. How to reduce the search space?
Performance analysis to identify program problems to narrow down the
control points

Expert >
~ knowledge N)
¢ rules databa/s\e/w/

Performance
summary data

Bus Interconnect

Yanhua Sun U of lllinois at Urbana-Champaign

Decision Tree Based Performance Analysis

@ Encoded in a plain text file
o Constructed at the beginning

@ Dynamic learning new rules

Yanhua Sun U of lllinois at Urbana-Champaign

Correlate Performance with Control Points

Traverse the tree using the performance summary results

Idle time > 10% /]
A\ A
w AL _
Number of tasks
Max load/AVG \ Steermg
< number of
load > 1.2
/ COI‘ES
Increase
load Decrease Increase
balancing grain size parallelism
freq

N
4
=

AELLITERTIT U of lllinois at Urbana-Champaign 13/18

Control System APls

typedef struct ControlPoint_t
{
char name[30];
enum TP_DATATYPE datatype;
double defaultValue;
double currentValue;
double minValue;
double maxValue;
double bestValue;
double moveUnit;

int moveOP ;

int effect;

int effectDirection ;
int strategy;

int entryEP ;

int objectlD ;

}ControlPoint;

Yanhua Sun U of lllinois at Urbana-Champaign

APIs for applications

void registerControlPoint(ControlPoint xtp);

void startStep ();
void endStep ();

void startPhase(int phaseld);
void endPhase ();

double getTunedParameter(const char xname, bool xvalid);

Yanhua Sun U of lllinois at Urbana-Champaign

Jacobi3d Performance Steering

@ Control Points: sub-block size in each dimension
@ Three control points
@ Cache miss rate, high idle suggest decreases sub-block size
@ Overhead
. —
total time —<—
idle time ---x---
35 runtime vamend
3
g 25 \)‘/N/\
g 15
1
0.5
o R R Homaten’ NONVEVEVIVEVIVIVEVIVIIVIVE
5 10 15 20 25 30 35 40

step

Figure: Jacobi3d performance steering on 64 cores for problem of
1024*1024*1024

Yanhua Sun U of lllinois at Urbana-Champaign

Communication Bottleneck in ChaNGa

@ Control points: number of mirrors

@ Ratio of maximum communication per object to average

tune mirrors with PICS =sstihss
1.9 N0 MIrTOrs =—gpm=
1.8
1.7
1.6 3 A A
8 s \ / \ ™\ ~A
CEUL SR S A W
1.4 :‘ * \
H \‘ l
1.3 0 Q’"x
H
1.2 -3
5
1.1 "‘ « .
1 eartogtee” ey F VOt o
5 10 15 20 25
steps

Figure: Time cost of calculating gravity for various mirrors and no mirror on 16k
cores on Blue Gene/Q

Yanhua Sun

U of lllinois at Urbana-Champaign

Conclusion

@ Application developers can provide hints to help optimize applications
@ Automatic performance analysis helps guide performance steering

@ Steering both runtime system and applications is important

http://charm.cs.illinois.edu
mailing list: charm@cs.illinois.edu

Yanhua Sun U of lllinois at Urbana-Champaign

