
Menon et al.

RESEARCH

Adaptive Techniques for Clustered N-Body
Cosmological Simulations
Harshitha Menon1*, Lukasz Wesolowski1, Gengbin Zheng1, Pritish Jetley1, Laxmikant Kale1, Thomas

Quinn2 and Fabio Governato2

*Correspondence:

gplkrsh2@illinois.edu
1Department of Computer

Science, University of Illinois at

Urbana-Champaign, USA

Full list of author information is

available at the end of the article

Abstract

ChaNGa is an N-body cosmology simulation application implemented using
Charm++. In this paper, we present the parallel design of ChaNGa and
address many challenges arising due to the high dynamic ranges of clustered
datasets. We propose optimizations based on adaptive techniques. We evaluate
the performance of ChaNGa on highly clustered datasets: a z ∼ 0 snapshot of a
2 billion particle realization of a 25 Mpc volume, and a 52 million particle
multi-resolution realization of a dwarf galaxy. For the 25 Mpc volume, we show
strong scaling on up to 128K cores of Blue Waters. We also demonstrate scaling
up to 128K cores of a multi-stepping run of the 2 billion particle simulation.
While the scaling of the multi-stepping run is not as good as single stepping, the
throughput at 128K cores is greater by a factor of 2. We also demonstrate strong
scaling on up to 512K cores of Blue Waters for two large, uniform datasets with
12 and 24 billion particles.

Keywords: Computational Cosmology; Scalability; Performance Analysis; Dark
Matter

Introduction
Simulating the process of cosmological structure formation with enough resolution

to determine galaxy morphologies requires an enormous dynamic range in space

and time. Star formation (SF) is concentrated in dense gas clouds the size of just a

few parsecs, while the assembly of galaxies happens over billion of years, driven by

large scale structures extending over megaparsecs.

Constraints on cosmology are tightest on scales of tens of megaparsecs and larger

due to observations of the Cosmic Microwave Background, giving us detailed initial

conditions [1]; however our knowledge of the nonlinear evolution of the Universe

and of the properties of galaxies is still imperfect, because the detailed properties

of Dark Matter [2] and of SF [3] remain only partially understood. On the other

hand, simulations of large volumes of the Universe [4, 5], and of individual galaxies

at high resolution [6, 7] have been fundamental in putting the standard hierarchi-

cal, Cold Dark Matter dominated model (ΛCDM) on a robust footing [8]. Further

understanding requires numerical simulations of increasing dynamical range, mass

and spatial resolution and physical complexity, providing a powerful incentive to

develop ever more sophisticated parallel codes [9, 10].

Scaling such codes to large processor count requires overcoming not only spatial

resolution challenges, but also large ranges in timescales. In this paper, we compare

two approaches to handling this problem. The first approach involves using different

mailto:gplkrsh2@illinois.edu

Menon et al. Page 2 of 25

time steps for different particles in relation to their dynamical time scales, leading to

an algorithm that is challenging to parallelize effectively. An alternative approach,

using a single, uniformly small time step for all particles, leads to more computation,

but is simpler to parallelize.

This paper presents the design of ChaNGa, a parallel n-body+SPH cosmology

code for the simulation of astrophysical systems on a wide range of spatial and time

scales. Most of the physical modules of ChaNGa have been imported from the well

established tree+SPH code GASOLINE and we refer the readers to the existing

literature [11, 12, 13] for more details.

In this paper we focus on the optimizations implemented in ChaNGa that allow

it to scale to large numbers of processors, and address the challenges brought on by

the high dynamic ranges of clustered datasets. We will begin with an overview of the

field and place the approach taken by ChaNGa in the context of published mate-

rial. We then briefly summarize some specific features of ChaNGa (some imported

from GASOLINE), including force softening, smooth particle hydrodynamics, star

formation, and multi-stepping. The parallel design of ChaNGa, based on over-

decomposition of work, allowing a parallel run-time system to dynamically balance

the load, is presented next, along with descriptions of the phases of the computa-

tion. To set the context, and a baseline, for the optimizations presented, we first

describe the single-stepping performance on relatively uniform data-sets. The clus-

tered data-sets are then introduced, and a series of performance challenges along

with strategies and optimizations developed to overcome them are described. These

are accompanied by detailed performance analysis using the Projections perfor-

mance visualization tool [14]. As of Spring 2014 our performance evaluation runs

demonstrate scalability to over 131,000 processor cores on NCSA’s Blue Waters and

up to a 3x speedup over the single-stepping algorithm 1.

Current State of the Art
Because of the computational challenge and the non-trivial algorithms involved, cos-

mological N-body simulations have been an extensively studied topic over the years.

In order to frame our work in ChaNGa, we review some of the recent successes

in scaling cosmological simulations on the current generations of supercomputers.

However, direct comparison of the absolute performance among different codes is

difficult. Different choices of accuracy criteria for the force evaluations and the time

integration will have a big impact on performance, and the choices for these criteria

will be determined by the various scientific goals of the simulation. For example,

understanding the development of structures at very high redshift (e.g. [15]) will

present different parameter and algorithm choices than simulations that model the

observations of current large scale structure (e.g. [16]).

2HOT[17] is an improved version of the HOT code which has been developed over

the past two decades. It uses an Oct-tree for gravity, and its gravity algorithm is

very similar to that of ChaNGa. This code demonstrates near perfect strong scaling

up to 262 thousand cores on Jaguar with a 128 billion particle simulation, implying

500,000 particles per core at the largest core count. The actual size of the scaling

simulation (in Gigaparsecs) was not reported, but can be presumed to be a box of

order 1 Gigaparsec based on the other simulations presented in [17]. 2HOT does

Menon et al. Page 3 of 25

implement a multi-step time-stepping algorithm, although it is not clear whether

particles have individual time steps, and performance for the multi-step method

was not presented.

The HACC [16] framework scales to millions of cores on a diverse set of archi-

tectures. It uses a modified TreePM algorithm: an FFT based particle-mesh on the

large scales, a tree algorithm on intermediate scales and particle-particle on the

smallest scales. HACC has been demonstrated to scale with near perfect parallel ef-

ficiency up to 16384 nodes on Titan with 1.1 trillion particles, and up to 1.6 million

cores on Sequoia with 3.6 trillion particles. These are weak scaling results, typically

with millions of particles per core. They also demonstrated strong scaling up to

8182 nodes on Titan and 16384 cores on Sequoia.

The GreeM code [15] demonstrates scaling of a trillion particle simulation to

82944 nodes (663522 cores) of the K computer, implying 1.5 million particles per

core. This code also uses a TreePM algorithm with a hand-optimized particle force

loop and a novel method to parallelize the FFT. They report that despite the

new parallelization method, the FFT remains the bottleneck in their TreePM code.

They also employ a multi-step method that splits the PM and particle forces, but

the particles do not have individual time steps.

The GADGET-3 TreePM code (based on GADGET-2 [18]) was used to perform

a large scale structure, DM-only simulation (the “Millenium XXL”) on 12288 cores

using 303 billion particles [19]. With over 16 million particles per core, special effort

was needed to optimize the memory usage of the code because the simulation was

limited by memory resources.

Most of these cosmological N-body codes with published performance data scale

to millions of cores with almost perfect parallel efficiency, given very large problem

size (typically trillions of particles). However, it becomes even more challenging to

simulate a relatively smaller problem size with higher resolution using large num-

bers of cores. This is due to the fact that the distribution of clusters of the particles

in the simulated system tends to become more non-uniform as resolution increases,

leading to load imbalance and difficult scaling. The addition of hydrodynamics and

cooling only exacerbates this problem. Recent projects that coupled gravity with hy-

drodynamics in galaxy formation simulations and scaled past a few thousand cores

include EAGLE and Illustris. The codes used (GADGET-3 and AREPO [20]) share

many of the features of ChaNGa that are necessary for galaxy formation, includ-

ing individual time steps for particles, gas dynamics, and star formation/feedback

prescriptions [21, 22]. While some codes handle non-uniform distributions well (e.g.

GADGET-3) they have not been shown yet to scale to large (100,000 or greater)

core counts. Hence, to our knowledge, ChaNGa is the first code to explicitly tackle

both the uniform and highly clustered simulations with extremely large scaling. This

is achieved by several techniques including multi-stepping and large scale dynamic

load balancing described below.

ChaNGa
The N-body/Smooth Particle Hydrodynamics (SPH) code ChaNGa [23, 24], is an

application implemented using Charm++. ChaNGa includes a number of fea-

tures appropriate for the simulation of cosmological structure formation, including

Menon et al. Page 4 of 25

high force accuracy, periodic boundary conditions, evolution in comoving coordi-

nates, adaptive time-stepping, equation of state solvers and subgrid recipes for star

formation and supernovae feedback. The code is also being compared with simi-

lar codes in the AGORA comparison project [25]. Cosmology research based on

ChaNGa includes modeling the impact of a dwarf galaxy on the Milky Way [26],

modeling the intracluster gas properties in merging galaxy clusters [27] and distin-

guishing the role of Warm Dark Matter in dwarf galaxy formation and structure

[13]. In this section we describe the features of ChaNGa, particularly as they relate

to cosmological structure formation. In addition to the physics features described

below, ChaNGa has a number of usability features required for pushing a large sim-

ulation through a production system, such as the ability to efficiently checkpoint

and restart on a different number of processors.

0.1 Gravitational Force Calculation

The gravitational force calculation is based on a modified version of the classic

Barnes-Hut algorithm [28]. Details of our modifications are described in section 0.6,

and many of our optimizations are taken from PKDGRAV [29], upon which our

gravity calculation is based. As in PKDGRAV, we choose to expand to hexadecapole

order the multipoles used for evaluating the far field due to a mass distribution

within a tree node. For the force accuracies required for cosmological simulations,

better than 1 percent [30, 31], this higher order expansion is more efficient [32].

0.2 Force Softening

When simulating dark matter and stars, the goal is to understand the evolution of a

smooth distribution function that closely approaches a Boltzmann collisionless fluid.

As the N-body code is sampling this distribution using particles, a more accurate

representation of the underlying mass distribution is obtained if the particles are

not treated as point masses, but instead have their potential softened [33]. Softened

forces are also of practical use since they limit the magnitude of the inter-particle

force. Typically, the softening length is set at the inter-particle separation at the

center of DM (Dark Matter) halos [30].

Calculating the non-Newtonian forces introduced by softening adds a complica-

tion to the multipole calculation: Newtonian forces have symmetries which greatly

reduce the complexity of higher order multipoles, and the number of components

of the multipole moments that need to be stored. ChaNGa implements softening

using a cubic spline kernel, whose compact support means this complexity is not

needed beyond a specified separation (convergence with Newtonian gravity is for-

mally achieved at two softening lengths). Furthermore, rather than evaluating the

more complex multipoles when softening is involved, ChaNGa evaluates all forces

involving softening using only the monopole moments, using a stricter opening cri-

terion to maintain accuracy.

0.3 Periodic boundary conditions

In order to efficiently and accurately simulate a portion of an infinite Universe, we

perform the calculation assuming periodic boundary conditions. Because of the long

range nature of gravity, the sum over the infinite number of periodic replicas con-

verges very slowly. ChaNGa accelerates this convergence using Ewald summation

Menon et al. Page 5 of 25

[34], implemented similarly to [35] as more fully described in [29]. This technique

has the advantage that the non-periodic force calculated from the tree-walk is not

modified, and therefore is simple and fast. We have demonstrated in [31] that, with

suitable choices of the accuracy criterion, the force errors from this method do not

compromise the growth of large scale structure.

0.4 Multi-stepping

In order to efficiently handle the wide range of timescales in a non-uniform cosmo-

logical simulation, ChaNGa allows each particle to have its own time step. In order

to amortize overheads associated with the force calculation, such as tree building,

the time steps are restricted to be power-of-two subdivisions of the base time step.

Details of this scheme, including how to integrate the equations of motion in coordi-

nates that follow the expansion of the Universe, are described in [36]. This scheme is

also identical to that implemented in GADGET-2; see [18] for tests of its accuracy.

0.5 Smooth Particle Hydrodynamics

Despite being a small fraction of the energy density of the Universe, baryons play a

significant role in the evolution of structure. Not only are they the means by which

we can measure structure (e.g. via star light), they can also directly influence the

structure of the dark matter via gravitational coupling [37]. Therefore, following

the physics of the baryonic gas is essential for accurate modeling of structure for-

mation. ChaNGa uses Smooth Particle Hydrodynamics (SPH) to solve the Euler

equations with an implementation that closely follows [11]. Since SPH is based on

particles, implementing it is a natural extension of the algorithms to calculate grav-

ity on a set of particles. In particular, the tree structure used for the Barnes-Hut

algorithm is used to find the near neighbor particles needed for the SPH kernel

sums. SPH is also relatively communication intensive compared to gravity, so we

utilize the Charm++ runtime system to adaptively overlap the communication la-

tencies from SPH with the floating point operations needed by gravity. The current

implementation of SPH in ChaNGa closely follows techniques already published

by independent groups and includes an updated treatment of entropy and thermal

diffusion [12, 38], pressure gradients2 and timestepping [39]. This last features en-

sures that sudden changes in the particle internal energy, e.g. caused by feedback,

are captured and propagated to neighboring particles by shortening their time step.

These improvements lead to a marked improvements in the treatment of shocks

(as in the Sedov-Taylor blastwave test), and cold-hot gas instabilities. A qualitative

example is shown in figure 1, where the classic “blob” test compares ChaNGa with

GADGET-2.

As this paper focuses specifically on the scaling performance of ChaNGa we

refer to existing works [11, 13] and Wadsley et al. (in prep.) for tests of this SPH

implementation.

0.6 Star Formation and Feedback

Again, a necessary component of simulating structure formation is predicting the

light distribution. Hence, we need a prescription for where the stars are forming.

Furthermore, it is clear that star formation is a self-regulating process due to the

Menon et al. Page 6 of 25

Figure 1: Updated modeling of gas physics in ChaNGa. Central density

slices of the time evolution of a high density cloud in pressure equilibrium in a

wind. Time is in units of the Kelvin-Helmholtz growth time. ChaNGa (top) vs

GADGET-2 [18] (bottom). The color density map shows how with the new SPH

formulation of pressure gradients, artificial surface tension is suppressed and

instabilities rapidly mix the “blob” with the surrounding medium, while poor

handling of contact discontinuities preserve the blob in the now obsolete SPH

implementation of GADGET-2. We have verified that ChaNGa gives results

quite similar to alternative hydro codes, as the adaptive mesh refinement code

ENZO [47]. This figure was produced with Pynbody [48].

injection of energy from supernova, ionizing radiation and stellar winds into the star-

forming gas. These processes are all happening well below the resolution scale of

even the highest resolution cosmological simulations, so a sub-grid model is needed

to include their effects. ChaNGa includes the physics of metal lines and molecular

hydrogen cooling [38, 40] and feedback from supernovae (SNe). In ChaNGa, we

have implemented the “blast-wave” and “superbubbles” feedback models described

in [41] and [42], respectively. In both models SF occurs in high gas density regions,

and the time and distance scales for energy injection into the gas is determined

by physically motivated models. The “blastwave” prescription follows an analytic

model of the Sedov blast wave, and it has allowed us to successfully model a number

of trends in galaxy populations including the Tully-Fisher relation [43], the mass-

metallicity relation [44], the stellar mass-halo mass relation [45] and the formation

of DM cores in dwarf galaxies [46].

Parallelization Approach

In ChaNGa, the particle distribution in space is organized in a hierarchical tree

structure where each node represents a portion of the 3D space containing the

particles in that volume. The root node represents the entire simulation space and

the children represent sub-regions. The leaf nodes of the tree are buckets containing

a small set of particles.

Menon et al. Page 7 of 25

0.7 Domain Decomposition

During domain decomposition, particles are divided among objects called tree pieces

(or chares in the context of Charm++) which are mapped onto processors by the

runtime system. Typically, there are more tree pieces than the number of processors,

and this over-decomposition allows the benefits of the overlapping of communication

with computation and the load balancing features of Charm++.

ChaNGa supports various domain decomposition techniques, which have been

evaluated previously [49]. We used space-filling curve (SFC) decomposition for the

results in this paper as that is the method currently used for most scientific studies

with ChaNGa.

The goal of this scheme is to identify a set of splitting points (splitters) along the

space filling curve such that each range contains approximately equal numbers of

particles. The algorithm used to identify the splitter keys is similar to the parallel

histogram sort [50]. First, a single master object calculates a set of splitters along

the SFC that partition the simulation domain into disjoint areas of roughly equal

volume. It then broadcasts the splitter keys to all the tree pieces. The tree pieces

evaluate the count of particles for each bin, which is reduced across all tree pieces

back to the master process. The candidate keys are then adjusted based on the

contributions received, and new splitters are broadcast for any bins that are not

sufficiently close to an optimal partition. This process is repeated until a suitable set

of splitter keys is determined such that all the bins have roughly equal numbers of

particles. After the splitter keys are identified, the particles are globally distributed

to tree pieces according to the splitters, where each bin corresponds to one tree

piece.

0.8 Tree Build

After the particles have migrated and domain decomposition is finished, each tree

piece builds its tree independently. The tree build is done in a top-down manner.

The algorithm starts from the root, which contains the entire simulation space, and

proceeds downwards to the leaves, which are buckets containing a small number of

particles, typically 8 to 12. A tree piece has information about the extent of the

domain held by other tree pieces; this information is used in the tree building pro-

cess. A spatial binary tree is constructed by bisecting the bounding box containing

particles in the given volume. The tree building process bisects each node, starting

at the root, into children, which represent sub-regions within the space, until a leaf

node is constructed. If a node in the tree held by a tree piece contains particles in

another tree piece, then that node becomes a boundary node.

We also take advantage of the fact that a tree piece can access other tree pieces

within the same address space. All the tree pieces within the same address space

are merged. After the merge, each tree piece has read-only access to the tree data

structure that is constructed by merging multiple tree pieces. For additional details,

we refer the reader to [23].

0.9 Tree Traversal and Gravity

The goal of tree traversal is to identify for each bucket of particles in the tree the list

of nodes and particles whose information is needed for the gravity calculation. These

Menon et al. Page 8 of 25

SMP$Node$Start$Computa0on$

End$Computa0on$

TreePieceA
TreePieceB

TreePieceC

PE$CacheManager$J$Leader$

Local$Work$

RemoteWork$

Present?$

TreePieceon
Another$Node$

Buffer$

Remote$
Request$

Yes$Return$

Reply$with$
Requested$
Data$

Callback$

No,$Fetch$

Figure 2: An overview of the gravity force calculation in ChaNGa with a soft-

ware cache.

interaction lists are constructed on a per bucket basis to amortize the overhead of

the tree traversal.

Another optimization that is implemented in ChaNGa to improve the perfor-

mance of the gravity phase is based on the observation that nearby buckets tend to

have similar interaction lists [29]. The algorithm constructs the interaction list of

a parent node before proceeding to the children, and maintains a checklist, passed

down the tree, that reduces the number of nodes that need to be evaluated at each

level.

Tree traversal requires remotely accessing nodes which are part of tree pieces

on other processors. To optimize this remote data access, we have implemented a

software cache, as shown in Figure 2. The Cache Manager serves node and particle

requests made by a tree piece. If a node request is missed in the cache, then a

request is sent to the corresponding tree piece. If there is already an outstanding

request in the cache, no additional request is sent. When the response arrives, the

requestors are informed and the walk resumes. This improves the performance by

hiding the latency of remote requests and reducing the number of messages sent

and received for the remote node. To further reduce cache misses, we also perform

a prefetch walk which obtains remote node information.

To effectively overlap communication and computation, we divide the tree traver-

sal into local and remote parts. A local traversal is done on the portion of the tree

which is within the local address space whereas a remote traversal is done on the

remaining part of the tree and requires communication between the tree pieces. We

use prioritization to give precedence to the remote traversal, which requires commu-

nication, over the computation-dominated local traversal. When the remote walk

has sent out requests for the node and is waiting for the response, the local walk

can be done. This enables overlap of communication with local computation and

helps mask message latency. Figure 2 diagrams the gravity calculation in ChaNGa

with a software cache.

Sequential code in ChaNGa is also well optimized. In particular, we take advan-

tage of single-instruction, multiple-data (SIMD) parallelism inherent in the force

Menon et al. Page 9 of 25

calculation to accelerate that part of the computation using FMA or SSE vector

instructions.

Datasets and Systems
We first describe the datasets used for our experiments and their characteristics.

We have two large, uniform (Poisson distributed) datasets with 12 and 24 billion

particles. Other than having periodic boundary conditions these two datasets are

not particularly interesting for cosmology. We include them here to demonstrate the

scaling of ChaNGa to large core counts. cosmo25 is a more challenging dataset:

it is a 2 billion particle snapshot taken from the end (i.e. representing the current,

z ∼ 0, very clustered, structure of the Universe) of a dark matter simulation of

a 25 Megaparsec cube in a ΛCDM Universe. The force softening is 340 parsecs,

and the simulation represents a challenge for load balancing. This simulation was

evolved using ChaNGa from initial conditions at z = 109 based on cosmological

parameters derived from the Planck data[1]. The version of this simulation with gas

dynamics and star formation is able to resolve the disks of spiral galaxies within

this volume [Anderson et al, in preparation]. dwarf is our most challenging dataset:

while it contains only 52 million particles spread throughout a 28.5 Megaparsec

volume, most of the particles are in a single high resolution region in which a dwarf

galaxy is forming. The mass resolution in this region is equivalent to having 230

billion particles in the entire volume, and the force resolution within this region is 52

parsecs. This is a high resolution version of the DWF1 simulation discussed in [43].

See the description of DWF1 in that paper for more details about the galactic and

cosmological parameters of this simulation. While, as described above, ChaNGa is

capable of handling hydrodynamics and star formation, in the benchmarks below

we show the performance of dark matter only simulations. We will comment on

SPH performance in the discussion.

We show the performance of ChaNGa on Blue Waters. Blue Waters is a hybrid

Cray XE/XK system located at the National Center for Supercomputing Applica-

tions (NCSA). It contains 22, 640 Cray XE6 nodes and 4, 224 Cray XK7 nodes that

include NVIDIA GPUs. Each dual-socket XE6 compute nodes contains two AMD

Interlagos 6276 processors with a clock speed of 2.3 GHz and 64 GB of RAM.

Single Stepping
We now describe essential optimizations required for scaling the simpler datasets

that are not highly clustered, and evaluate their performance. Later sections will

describe optimizations for clustered datasets.

0.10 Single Stepping Improvements

We observed that from-scratch domain decomposition is not required at every step,

especially for datasets which are not highly clustered. After the initial domain de-

composition, it needs to be performed only when there is an imbalance in the

load of tree pieces. By reusing the previously determined splitters, we reduce the

overhead incurred in finding the splitters as well as the number of particle migra-

tions. We use an adaptive mechanism to determine when to perform the domain

decomposition. In this approach, load statistics of the tree pieces are collected and

Menon et al. Page 10 of 25

#cores Gravity DD TB LB Total Time
16384 77.556 1.299 0.729 0.128 79.712
32768 39.254 0.698 0.617 0.136 40.705
65536 19.876 0.496 0.367 0.062 20.801

131072 9.967 0.181 0.138 0.027 10.313
262144 5.051 0.109 0.076 0.013 5.249
524288 2.569 0.073 0.034 0.008 2.684

32768 75.090 1.553 0.735 0.186 77.564
65536 37.941 0.787 0.462 0.111 39.301

131072 19.062 0.428 0.245 0.063 19.798
262144 9.682 0.232 0.152 0.042 10.108
524288 4.903 0.146 0.095 0.022 5.166

Table 1: Breakdown of time for 1 step in seconds for 12 billion particle (top

half) and 24 billion particle (bottom half) datasets run on Blue Waters with the

proposed optimizations.

#cores Gravity DD TB LB Total Time
16384 82.424 2.81 0.995 7.79 94.019
32768 42.712 1.966 1.005 6.854 52.537
65536 21.438 1.731 0.729 6.482 30.38

131072 12.162 1.674 0.803 5.718 20.357

32768 80.144 2.859 1.366 16.173 100.542
65536 41.279 2.356 1.032 9.338 54.005

131072 22.958 2.142 1.018 8.854 34.972

Table 2: Breakdown of time for 1 step in seconds for 12 billion particles (top

half) and 24 billion particles (bottom half) dataset run on blue waters without

the proposed optimizations.

domain decomposition is only performed if an imbalance is detected. Otherwise,

only particle migration is done based on the previous splitters. We use the quies-

cence detection [51] mechanism implemented in Charm++ to determine when all

the migrations are finished.

In the unoptimized version of the code, the tree build requires all tree pieces to

send the information about the first and the last particle in their domain, subject to

the SFC. This information is used to determine ownership of nodes in the tree but

requires heavy communication. We avoid this by using the boundary information

to determine a set of candidate tree pieces which may have information about the

required node. One of them is then queried and in case that tree piece does not

have the information, it forwards it to the appropriate tree piece.

Since load balancing incurs overhead, it should be done sparingly. We use the

MetaBalancer [52] framework in Charm++ to determine when to invoke the load

balancer. MetaBalancer monitors the application characteristics and predicts when

the load balancing should be done. MetaBalancer invokes the load balancer when:

1) an imbalance is detected and 2) the benefit of load balancing is more than the

cost incurred due to load balancing.

0.11 Performance

Figure 3 shows strong scaling results on up to 512K cores on Blue Waters evolving

12 and 24 billion particles. Our application exhibits almost perfect scaling up to

the maximum number of cores. Each iteration consists of domain decomposition,

load balancing, tree building and the force calculation. Table 1 shows the break

down of the time per step into the different phases. For the simulation evolving

Menon et al. Page 11 of 25

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 16384 32768 65536 131072 262144 524288
 0

 20

 40

 60

 80

 100

 120

T
im

e
pe

r
St

ep
 (

s)

Pa
ra

lle
l E

ffi
ci

en
cy

 (
%

)

Number of Cores

12G Time per Step
24G Time per Step

12G Parallel Efficiency
24G Parallel Efficiency

Figure 3: Time per step and parallel efficiency for 12 and 24 billion particles on

Blue Waters. Both the cases scale well achieving a parallel efficiency of 93%.

12 billion particles, we achieve 93% parallel efficiency at 512K cores with the time

per step being 2.6 seconds. For the 24 billion particle simulation, we achieve 93.8%

parallel efficiency with a time per step of 5.1 seconds. The efficiency is calculated

with respect to 16K cores and 32K cores for 12 and 24 billion particles, respectively.

The good scaling of the gravity phase is due to the overlap of communication

and computation, the improved tree walk algorithm using an interaction list, the

software request cache, prefetching, and other optimizations. The time for domain

decomposition also scales with the increase in number of cores. Table 1 shows, for

the 12 billion particles at 512K cores on Blue Waters, that domain decomposition

takes on average 73 ms per step. At 128K cores the domain decomposition is 9

times faster in comparison to the unoptimized version. This is due to the use of

the adaptive technique to determine when to perform full domain decomposition.

The tree build time also scales well and takes 34 ms at 512K cores. At 128K cores,

the tree build is approximately 6 times faster than the unoptimized version. Similar

trends are seen in the 24 billion particle simulation.

Table 2 contains the breakdown of the total time per step for the unoptimized

version of the code. Comparing the results with table 1, for the 12 billion parti-

cle simulation, we reduce the total time by 15 to 49%. For the 24 billion particle

simulation, we reduce the total time per step by 22 to 43%. The reduction in time

occurs for all phases of the application.

Figure 4 shows the time profile graph obtained using Projections [14]. This shows

the average processor utilization over the course of one time step evolving 12 billion

particles on 16K cores of Blue Waters. We can see that the local work, which

is given a lower priority, overlaps with the communication needed for the higher-

priority remote work, resulting in close to 100% processor utilization.

Clustered Dataset Challenges

Menon et al. Page 12 of 25

Remote$Work$ Ewald$Local$Work$

Figure 4: Time profile graph which shows processor utilization over time for 16K

cores on Blue Waters for 12 billion particles. This shows overlap of communica-

tion with computation to achieve high utilization.

 0

 7500

 15000

 22500

 30000

 37500

 0 2000 4000 6000 8000

N
um

be
r

of
 M

es
sa

ge
s

Processors

(a) Without replication

 0

 1000

 2000

 3000

 4000

 5000

 0 2000 4000 6000 8000

N
um

be
r

of
 M

es
sa

ge
s

Processors

(b) With replication

Figure 5: Number of messages received by processors for a simulation of the

dwarf dataset on 8K cores on Blue Waters. Note that replication reduces the

maximum requests received by a processor from 30K to 4.5K.

For datasets such as dwarf, the particle distribution is concentrated at the center of

the simulation volume and therefore highly clustered. This creates many challenges

in scaling, of which one of the most significant is communication imbalance. During

the gravity phase, remote requests are sent for tree nodes that are not present in the

local cache. In a clustered dataset, some tree nodes are requested many more times

than others. This results in the tree pieces owning those tree nodes receiving a large

volume of node request messages. Figure 5a shows the number of requests received

by processors for the dwarf simulation at 8K cores on Blue Waters. We can see

that a handful of processors receive as many as 30K messages. Even though there

is overlap of communication with computation, this causes significant performance

degradation. This is because, at this scale, there is not enough local computation to

overlap seconds of delay in receiving messages. One way to mitigate this problem

is to replicate the information that is being requested to prevent a few processors

from being the bottleneck.

We replicate the information about the tree nodes on multiple processors ensuring

that no single processor becomes overloaded. Before the gravity phase begins, tree

Menon et al. Page 13 of 25

Local$ Ewald$ Remote$Idle$0me$

(a) Without replication

Local$ Ewald$Remote$

(b) With replication

Figure 6: Time profile graph showing processor utilization over time for simula-

tion of the dwarf dataset on 8K cores. Note the idle time without replication

which is removed by the replication and the gravity time is improved from 2.4

seconds to 1.7 seconds.

 0.5

 1

 2

 4

 8

 16

 32

 64

 1024 2048 4096 8192 16384
 0

 20

 40

 60

 80

 100

 120

 140

G
ra

vi
ty

 T
im

e
(s

)

Ef
fic

ie
nc

y

Number of Cores

With Replication Time
Parallel Efficiency

Without Replication Time
Parallel Efficiency

Figure 7: Gravity time for the dwarf simulation on 8K cores on Blue Waters

with and without the replication optimization.

pieces send their node information to a set of tree piece proxies on other processors.

The responsibility of the tree piece proxy is to store the node information sent

to it and handle requests for those nodes. When a tree piece needs to request

for a remote node, it chooses randomly one of the tree piece proxies to send the

request to. Figure 5b shows the number of messages received by the processors

when four tree piece proxies are created for each tree piece. For an 8K core run

on Blue Waters, replication reduces the maximum number of messages received

from 32K to 4.2K, and the requests are better distributed among all processors.

Figure 6 shows the time-profile graph where the x-axis is the time and y-axis is the

processor utilization. Here, yellow regions constitute the local work, blue the Ewald

and maroon the remote work. Note the idle time, in figure 6a, before the remote

work begins which is due to the delay in receiving messages and with the lack of

local work overlap. Figure 6b shows the impact of replication. The remote work can

start earlier due to a smaller delay in request messages. The local work overlaps

Menon et al. Page 14 of 25

with the communication until remote work is ready to start. This is a very good

example that shows prioritization of remote work over local work and the overlap of

communication with computation. Figure 7 shows the strong scaling performance

for this dataset on core counts ranging from 1K to 16K. We compare the time for

the gravity phase because the rest of the phases are the same in both cases. The

gravity time is improved from 2.4 seconds to 1.7 seconds for 8K cores and from 2.1

seconds to 0.99 seconds on 16K cores. At 16K cores the parallel efficiency without

replication is 48% cores whereas replication helps achieve an efficiency of 98%.

Multi-stepping Challenges
A wide variation in mass densities can result in particles having dynamical times

that vary by a large factor. In a single-stepping mode, good accuracy can only

be achieved by performing the force calculation and particle position and velocity

updates at the smallest timescale. However, hierarchical time stepping schemes can

be used for a large dynamic range in densities at a small additional cost. We use

adaptive time scales where forces are evaluated only on relevant particles instead

of evaluating forces on all the particles at the smallest time scale. In a multi-step

simulation, particles are assigned to time step rungs corresponding to the shortest

time scale required for an accurate simulation. Rungs corresponding to short time

scales are evaluated more frequently than those for long time scales.

Using multi-stepping for clustered datasets introduces a variety of challenges.

The irregular distribution of particles in the simulation space as well as the division

of particles into rungs creates severe load imbalance. In general, the challenge is

higher for datasets with fewer particles. We discuss various optimizations that en-

able ChaNGa to scale a medium-sized 2 billion particle clustered dataset, cosmo25,

on up to 128K cores on Blue Waters. Reaching this level of performance required

overcoming challenges related to load imbalance, communication overhead with a

decrease in computation per processor as well as the scalability of other phases of

the simulation. Strong scaling of this nature will be required to run clustered cos-

mological simulations on future machines with hundreds of Petaflop/s performance,

and presents a realistic proving ground for parallel strategy innovations.

0.12 Optimizations for the Gravity Phase

In a multiple time step simulation, the number of particles active in the fastest

rung is typically only a fraction of the total number of particles being simulated.

These active particles tend to be clustered, and therefore the distribution of par-

ticles among the tree pieces is highly imbalanced. One may consider performing

from-scratch domain decomposition based on the active set of particles for these

time steps but that results in large jumps of the domain boundaries. To prevent

such sudden large variations of the boundaries, we perform from-scratch domain de-

composition only when there is a significant number of particles active for that time

step. But as one can imagine, this will result in tree pieces with a large variation in

active particles and load. Figure 8 shows the distribution of the load on tree pieces

for the fastest rung (rung 4) and the slowest rung (rung 0) of the cosmo25 dataset.

The slowest rung has tree pieces with loads distributed around the mean. But the

fastest rung has only 2405 tree pieces with active particles and some of them have

Menon et al. Page 15 of 25

�

����

�����

�����

�����

�����

�����

�����

� ��� � ��� �

��
		

�
	�
	

����

(a) Rung 0

�

���

���

���

���

������

� ��� � ��� �

	

��

�
��
��

����

(b) Rung 4

Figure 8: Distribution of tree piece load for rung 0 (slowest) and rung 4 (fastest).

Rung 0 has loads distributed around the mean. Rung 4 has only 2405 active tree

pieces with a maximum load of 2.3

a load which is 3000 times the average load of tree pieces and 40 times the average

load of the system. Even though periodic load balancing is performed to distribute

the load, the maximum load of the system will be limited by the most overloaded

processor which in this case is the one having the most loaded tree piece. At larger

scales of 128K cores there is not enough work to be distributed among all the cores

which results in significant degradation of performance. We propose two adaptive

strategies to overcome this problem.

Intra-node Work Pushing

We use the SMP mode of Charm++ to take advantage of the shared memory

multiprocessor nodes used in HPC systems [53]. The SMP mode supports multi-

threading, where one Charm++ process is assigned per SMP node, with a single

thread mapped to each physical core. One thread within a node is normally assigned

as a communication thread responsible for internode communication, while the rest

are used as worker threads that implement processing elements (PEs).

Within a Charm++ SMP process, data can be shared via pointers. The load

balancing strategy works in a hierarchical fashion. Details are given in Section 0.15

but in essence it first tries to achieve load balance among the SMP processes and

then balances the load among cores within the SMP process.

LBManager , which is an object present on each PE, has information about the

average load of the system and the load of other PEs on the same SMP process.

The LBManager , on identifying that a PE is overloaded, instructs overloaded tree

pieces at that PE to distribute the work among other less loaded PEs within the

SMP process. A tree piece is responsible for calculating forces on a set of particles in

its domain, grouped into buckets. We consider the bucket to be the smallest entity

of work that can be distributed. PEs receiving a foreign bucket have access to the

tree and all the data structures of the owner tree piece so that they can perform the

tree traversal and gravity force calculations for the foreign bucket. Once the force

Menon et al. Page 16 of 25
Menon et al. Page 16 of 23

(a) Without work pushing (b) With work pushing

Figure 9: Time line profile for all the PEs (rows) on a SMP process for the 16K

cores run. White shows idle time and colored bars indicate busy time. Work

pushing achieves better distribution of work among PEs. The total time per

step reduces from 2.3 seconds to 0.3 seconds.

(a) Without dynamic rebalancing (b) With dynamic rebalancing

Figure 10: Time line profile for all the PEs (rows) on a SMP process for the 16K

cores run. White shows idle time and colored bars indicate busy time. Dynamic

rebalancing eliminates trailing idle time resulting in better utilization. The total

time per step reduces from 9.8 seconds to 8.5 seconds.

misprediction of load or inability of the load balancer to balance the load perfectly.

Figure 10a shows the Projections time-line view for this scenario where the colored

bars indicate busy work while the white shows idle time. We found that such slight

load imbalance in the application can be mitigated by more fine-grained parallelism

within the SMP process. We use an intra-node dynamic rebalancing scheme where

the idle PEs within the node pick work from the busy ones. The scheme is im-

plemented using the CkLoop library [51] in Charm++, which enables fine-grained

parallelism within a SMP process.

As with the work-pushing scheme, buckets are the smallest entity of work that

can be reassigned.

If all the tree pieces residing on a PE have finished their work, then the PE

becomes idle. At each PE, the LBManager maintains a PE-private variable which

keeps track of its status. Since the memory address is shared among the PEs on a

SMP process, the LBManager can access the status variable of all the PEs within

the SMP process. Whenever there is a significant number of idle PEs, the dynamic

rebalancing scheme kicks in. Tree pieces then create chunks of work out of the

unfinished buckets and add these to the node-level queue. The idle processors access

the node-level queue and pick up work to execute. Due to the overhead associated

with the node-level queue we only use the work-stealing scheme adaptively for the

trailing end of the computation.

Time in ms

Pr
oc

es
so

rs

Pr
oc

es
so

rs

62518 62638 62758 62878 63180 63780 64380 64980

Time in ms

Figure 9: Performance analysis with and without work pushing. Time

line profile for all the PEs (rows) on a SMP process for the 16K cores run. White

shows idle time and colored bars indicate busy time. Work pushing achieves

better distribution of work among PEs. The total time per step reduces from

2.3 seconds to 0.3 seconds.

Menon et al. Page 16 of 23

(a) Without work pushing (b) With work pushing

Figure 9: Time line profile for all the PEs (rows) on a SMP process for the 16K

cores run. White shows idle time and colored bars indicate busy time. Work

pushing achieves better distribution of work among PEs. The total time per

step reduces from 2.3 seconds to 0.3 seconds.

(a) Without dynamic rebalancing (b) With dynamic rebalancing

Figure 10: Time line profile for all the PEs (rows) on a SMP process for the 16K

cores run. White shows idle time and colored bars indicate busy time. Dynamic

rebalancing eliminates trailing idle time resulting in better utilization. The total

time per step reduces from 9.8 seconds to 8.5 seconds.

misprediction of load or inability of the load balancer to balance the load perfectly.

Figure 10a shows the Projections time-line view for this scenario where the colored

bars indicate busy work while the white shows idle time. We found that such slight

load imbalance in the application can be mitigated by more fine-grained parallelism

within the SMP process. We use an intra-node dynamic rebalancing scheme where

the idle PEs within the node pick work from the busy ones. The scheme is im-

plemented using the CkLoop library [51] in Charm++, which enables fine-grained

parallelism within a SMP process.

As with the work-pushing scheme, buckets are the smallest entity of work that

can be reassigned.

If all the tree pieces residing on a PE have finished their work, then the PE

becomes idle. At each PE, the LBManager maintains a PE-private variable which

keeps track of its status. Since the memory address is shared among the PEs on a

SMP process, the LBManager can access the status variable of all the PEs within

the SMP process. Whenever there is a significant number of idle PEs, the dynamic

rebalancing scheme kicks in. Tree pieces then create chunks of work out of the

unfinished buckets and add these to the node-level queue. The idle processors access

the node-level queue and pick up work to execute. Due to the overhead associated

with the node-level queue we only use the work-stealing scheme adaptively for the

trailing end of the computation.

Time in ms

Pr
oc

es
so

rs

Pr
oc

es
so

rs

 131700 134200 136700 139200 154750 157750 160750 163750

Time in ms

Figure 10: Performance analysis with and without dynamic rebalancing.

Time line profile for all the PEs (rows) on a SMP process for the 16K cores run.

White shows idle time and colored bars indicate busy time. Dynamic rebalancing

eliminates trailing idle time resulting in better utilization. The total time per

step reduces from 9.8 seconds to 8.5 seconds.

calculations are done, the foreign bucket is marked as complete and the original PE

is informed. Once all the foreign and local buckets are completed, the tree piece is

done with the gravity calculations.

This work pushing adaptive strategy reaps the most benefit for time steps where

the fastest rung is active. For the slowest rung, the forces on all the particles need

to be calculated, and the load balancing is very similar to that in single stepping

runs. Figure 9(a) shows the time-line view from the projections tool [14] for rung

4 (the fastest rung). Here, each line corresponds to a PE and colored bars indicate

busy time while white shows idle time. This plot is for a 32K core run on Blue

Waters, and we have chosen the PE and the corresponding SMP process with the

maximum load. We can see that the most loaded PE, which also contains the most

loaded tree piece, is busy for about 2 seconds while other PEs are idle. Figure 9(b)

shows the time line for the work pushing strategy for a set of PEs in the SMP

process where one of the PEs is assigned the most loaded tree piece. With the

work pushing strategy, we are able to successfully distribute the work load among

other PEs within the node. This results in a reduction of the gravity time from 2.3

seconds to 0.3 seconds for the fastest rung.

Menon et al. Page 17 of 25

Intra-node Dynamic Rebalancing

For clustered datasets, it is often the case at the trailing end of the gravity calcu-

lation that some of the PEs are idle while others are busy. This could be due to

misprediction of load or inability of the load balancer to balance the load perfectly.

Figure 10(a) shows the Projections time-line view for this scenario where the col-

ored bars indicate busy work while the white shows idle time. We found that such

slight load imbalances in the application can be mitigated by more fine-grained

parallelism within the SMP process. We use an intra-node dynamic rebalancing

scheme where the idle PEs within the node pick work from the busy ones. The

scheme is implemented using the CkLoop library [53] in Charm++, which enables

fine-grained parallelism within an SMP process.

As with the work-pushing scheme, buckets are the smallest entity of work that

can be reassigned.

If all the tree pieces residing on a PE have finished their work, then the PE

becomes idle. At each PE, the LBManager maintains a PE-private variable which

keeps track of its status. Since the memory address is shared among the PEs on a

SMP process, the LBManager can access the status variable of all the PEs within

the SMP process. Whenever there is a significant number of idle PEs, the dynamic

rebalancing scheme kicks in. Tree pieces then create chunks of work out of the

unfinished buckets and add these to the node-level queue. The idle processors access

the node-level queue and pick up work to execute. Due to the overhead associated

with the node-level queue we only use the work-stealing scheme adaptively for the

trailing end of the computation.

Figure 10(a) shows the time-line for the slowest rung, rung 0, of cosmo25 dataset

simulation for a 32K core run on Blue Waters. We pick a subset of PEs to show this

problem. We can see that the load is almost balanced, but towards the end of the

step there are some PEs which are idle while others are busy. Figure 10(b) shows the

time-line with dynamic rebalancing. It is able to successfully handle small amounts

of load imbalance and reduce the gravity time from 9.8 seconds to 8.5 seconds for

rung 0.

0.13 SMP Request Cache

Data reuse can be critical in determining the performance of tree-based algo-

rithms [54]. Modern SMP-based supercomputers offer several levels at which data

sharing can be effective. One possibility is that requests for the same remote ele-

ments from two traversals on a core can be merged. The fetched data can then be

reused by all traversals on the core. Similarly, cores in the same SMP domain can

share remotely fetched data. In the following we describe a two-level caching scheme

that enables the data reuse across traversals on a core, as well as across cores on

an SMP processor. This caching mechanism is transparent to the traversal code.

Each core on the SMP has a private cache, which stores pointers to remotely

fetched data. There also exists one cache at the level of the SMP that is shared by

all cores in the SMP. The shared cache contains the union of all the entries in the

private caches of these PEs.

Briefly, the algorithm funnels all requests for remote data through the cache. If

the data are found in the private cache, then they are immediately passed into

Menon et al. Page 18 of 25

the requesting traversal’s visitor code. If the data are not found on the PE, we

check whether some other piece on the PE has requested them previously. If so, a

lightweight continuation is created to resume the traversal at the requested node

upon its receipt. Otherwise, the more expensive, SMP-wide table lookup is per-

formed.

We devised a scheme to manage concurrent accesses of the shared, SMP-wide

cache table, where all requests for remote data generated by traversals on the SMP

processor are funneled through a single core, which is termed the fetcher for that

SMP processor. Cheap, intra-node messaging between PEs is used for efficiency.

0.14 Domain Decomposition

Simulations of datasets with nonuniform distributions are characterized by extensive

movement of particles across tree piece boundaries over time. When unchecked, this

leads to an increasingly nonuniform distribution of particles across tree pieces and

eventually precludes a good balance of load across processors. In such scenarios, it

becomes useful to repeat the full domain decomposition more frequently.

The first stage of domain decomposition, as described in Section 0.6, involves

a series of histogramming steps to determine a set of splitters that partition the

simulation domain into tree pieces of roughly uniform particle count. This is imple-

mented in terms of broadcasts from a single sorter object, which refines the splitters,

to the tree pieces, and reductions of particle counts for each bin back to the sorter

process. In strong scaling scenarios for highly clustered datasets, domain decompo-

sition may become a performance bottleneck, as the number of splitters generally

depends on the number of processors used in the run. Therefore, we implemented

a number of optimizations aimed at improving the SFC domain decomposition

performance. First, we replaced the broadcast of SFC keys from the sorter object

with the broadcast of a bit vector indicating which of the bins evaluated in the

previous step need further refinement. From the bit vector, the set of splitters to

evaluate is determined once at each SMP node, and delivered to all tree pieces at

that node for evaluation. This optimization greatly reduced the size of the buffers

being broadcast. Secondly, we noticed that some histogramming steps were much

more expensive than others, due to involving more splitters. This was particularly

true for the first and last steps. The first histogramming step involved a full set of

splitters due to none having been finalized yet. For this step, we were able to remove

the broadcast of splitters by having tree pieces reuse the splitters determined the

last time domain decomposition was done. We were also able to eliminate the last

histogramming step in the original algorithm, in which the final set of splitters was

broadcast to the tree pieces to collect a full histogram of particle counts. Instead,

we modified the sorter object to preserve particle counts for all previously finalized

splitters, so as to have the full set of counts at the end.

These optimizations significantly improved domain decomposition performance.

For runs of the cosmo25 dataset on Blue Waters, the time for a full domain decom-

position was reduced from 3.22 s to 1.52 s on 1024 nodes, a speedup of 2.1.

0.15 Hierarchical Multistep Load Balancer

Even if domain decomposition assigns almost equal number of particles to tree

pieces, density variations in different regions of the simulated space can result in

Menon et al. Page 19 of 25

load imbalance. We experimented with domain decomposition based on load, but

the basic approach was not ideal for multi-stepping simulations as it led to large

jumps in boundaries and significant movement of particles. Since execution time is

determined by the most loaded processor, it becomes important to address the load

imbalance problem without significant additional overhead.

Load balancing in Charm++ applications like ChaNGa is normally achieved by

over-decomposing the problem into many more objects than processors and letting

the Charm++ dynamic load balancing framework balance the load by mapping the

objects to processors [55]. The framework can automatically instrument the com-

putation load and communication pattern of tree pieces and other objects and store

it in a distributed database. This information is then used by the load balancing

strategies, which we optimized for ChaNGa, to map the objects to processors. Once

the decision has been made, the load balancing framework migrates the objects to

newly assigned processors. Alternatively, the load of the objects and their commu-

nication pattern can be determined using a model based on a priori knowledge.

But for ChaNGa, we find that determining the load based on a heuristic called

the principle of persistence is more accurate. Based on this heuristic we use re-

cent history to determine the load of near-future iterations. This scheme works well

for single-stepping simulations at a relatively small scale. However, multi-stepping

simulations at very large scale impose several new challenges.

First, multi-stepped execution introduces some challenges in the measurement

based load balancing to obtain accurate load information. Substeps within a big

step in a multi-step run have selected number of active particles. Predicting the load

of a tree piece based on the preceding substep will result in discrepancy between

the expected load and the actual load. Therefore, we instrument and store the

load of the tree pieces for different substeps/rungs separately. Whenever particles

migrate from one tree piece to another, they carry a fraction of their load for the

corresponding rungs for which they were active and contribute that to the new tree

piece. This enables us to achieve very accurate prediction of the load of a tree piece

for each substep even with migrations and multi-stepping.

Secondly, it is very challenging to collect communication pattern information in

ChaNGa, even at small core count, due to a very large number of messages in

the simulation, which may incur significant overhead on memory when performing

load balancing. Therefore, we used an alternate strategy to implicitly take commu-

nication into account during load balancing by using an ORB-based (Orthogonal

Recursive Bipartitioning) strategy, which preserves the communication locality.

Lastly, in extremely large scale simulations, load balancing itself becomes a severe

bottleneck. The original centralized load balancing strategies, where load balancing

decision is made on one central processor, do not scale beyond a few hundred pro-

cessors, which makes them unfeasible for large scale simulations. To overcome this

challenge, we implemented a scalable load balancing strategy suitable for multi-

stepped execution based on the hierarchical load balancing framework [55, 56]

in the Charm++ runtime. This new load balancing strategy performs ORB to

distribute the tree pieces among processors. The processors are divided into in-

dependent groups organized in a hierarchical fashion. Each group consists of 512

processors. At each level of the hierarchy, the root performs the load balancing

Menon et al. Page 20 of 25

 1

 2

 4

 8

 16

 32

 64

 128

 8192 16384 32768 65536 131072
 0

 20

 40

 60

 80

 100

 120

T
im

e
pe

r
St

ep
 (

s)

Pa
ra

lle
l E

ffi
ci

en
cy

 (
%

)

Number of Cores

Time per Step
Parallel Efficiency

(a) Single Stepping

 1

 2

 4

 8

 16

 32

 64

 128

 8192 16384 32768 65536 131072
 0

 20

 40

 60

 80

 100

T
im

e
pe

r
St

ep
 (

s)

Pa
ra

lle
l E

ffi
ci

en
cy

 (
%

)

Number of Cores

Time per Step
Parallel Efficiency

(b) Multi Stepping

Figure 11: Time per step and parallel efficiency for the cosmo25 dataset on Blue

Waters.

strategy for the processors in its sub-tree. We found that two levels of the hierarchy

is enough to achieve good load balance with little overhead. At higher levels of the

hierarchy refinement based load balancing strategy, which minimizes the migration

by considering the current assignment of tasks, is used. At the lowest level of the

hierarchy we use ORB to partition the tree pieces among the processors in that

sub-group. The load balancer collects the centroid information of tree pieces along

with their load. Taking the centroids into account, the tree pieces are spatially

partitioned into two sets along the longest dimension. Similarly, at each stage of

partitioning, the processors are also partitioned. During partitioning, tree pieces

are divided into two partitions such that the loads of the partitions are almost

equal. This is done recursively until one processor remains which is assigned the

corresponding partition containing the tree pieces.

Another optimization to further reduce the overhead of load balancing is to com-

bine the node level global load balancing with the intra-node load balancing strate-

gies described in Section 0.12. We implemented such a two-level load balancing

strategy, where the load is first balanced across SMP nodes, and then balanced in-

side each SMP node. The ORB algorithm described above is done for nodes rather

than processors. Once the tree pieces are assigned to SMP nodes, they are further

distributed among the PEs in the SMP node using a greedy strategy. This ensures

that the load is equally distributed among the SMP nodes. We perform an addi-

tional step of refinement to further improve the load balance for the rare cases when

the load is not evenly balanced.

0.16 Performance Evaluation

We now present the scaling performance of the cosmo25 simulation. Figure 11a

shows the average time per iteration for this simulation with single-stepping and

figure 11b shows the average time per iteration with multi-stepping. In a multi-

stepping run, 16 substeps constitute a big step. To compare the time for single-

stepping and multi-stepping, a single big multi-step covers the same dynamical time

as 16 single steps. Table 3 gives a break down of the time taken for different phases

for single-stepping and multi-stepping. We can see that at 8K cores the single-

stepping simulation takes more than 3 times the time taken by multi-stepping and

at 128K it takes twice as long. Note that the gravity time for multi-stepping is

Menon et al. Page 21 of 25

#cores Gravity DD TB LB Step
time

16 Step
time

8192 33.433 0.441 0.292 1.423 35.589 569.424
16384 16.952 0.210 0.148 0.851 18.161 290.576
32768 8.643 0.132 0.091 0.496 9.362 149.792
65536 4.395 0.163 0.073 0.295 4.926 78.816

131072 2.353 0.134 0.066 0.216 2.769 44.304

8192 7.45 0.83 0.47 2.1 10.85 173.6
16384 3.73 0.79 0.32 1.07 5.91 94.56
32768 2.1 0.46 0.2 0.55 3.31 52.96
65536 1.1 0.35 0.12 0.37 1.94 31.04

131072 0.77 0.24 0.07 0.33 1.41 22.56

Table 3: Breakdown of time for 1 step in seconds for cosmo25 dataset with

single-stepping (top half) and multi-stepping (bottom half) on Blue Waters

4.5 times faster than single stepping. Due to sufficient sequential work to overlap

communication and relatively balanced tree pieces, we are able to achieve 80%

efficiency for single-stepping at 128K cores with an average step time of 2.7 seconds.

As described in section 0.12 the multi-stepping run has many challenges due to

irregular distribution of particles in faster rungs. Incorporating the improvements

mentioned above, we are able to scale to 128K cores with an efficiency of 48% with

respect to 8K cores with a time step of 1.4 seconds. Note that if we consider the

gravity force calculation time, we achieve an efficiency of 60% and the gravity time

is 3 times faster in multi-stepping in comparison to the single-stepping run.

0.17 Comparison with PKDGRAV

#cores Gravity DD TB Step time
8192 17.90 1.50 0.57 19.97

16384 10.10 1.40 0.84 12.34
32768 6.10 0.97 1.50 8.57
49152 6.60 0.99 13.30 20.89
65536 8.60 1.00 17.80 27.40
98304 16.10 1.30 25.80 43.20

Table 4: Breakdown of time for 1 step in seconds for cosmo25 dataset with

PKDGRAV2 on Blue Waters

To give a sense of the absolute performance of ChaNGa compared to other avail-

able N-body codes, we ran the cosmo25 dataset with PKDGRAV23. Table 4 gives

the step time for PKDGRAV2 for the cosmo25 dataset on Blue Waters. Comparing

table 4, the timings for PKDGRAV2, and table 3, the timings for ChaNGa, for the

single stepping benchmark, PKDGRAV2 is faster than ChaNGa on up to 32K cores

but ChaNGa continues to scale until 131K cores to a time per step of 2.7s. The

Multi-stepping run of ChaNGa performs consistently better than PKDGRAV2.

Conclusion
In this paper, we have described the design and features of our highly scalable

parallel gravity code ChaNGa and went into the details of scaling challenges for

clustered multiple time-stepping datasets. We have presented strong scaling results

for uniform datasets on up to 512K cores on Blue Waters evolving 12 and 24 billion

particles. We also present strong scaling results for cosmo25 and dwarf datasets,

which are more challenging due to their highly clustered nature. We obtain good

Menon et al. Page 22 of 25

performance on up to 128K cores of Blue Waters and also show up to a 3 fold

improvement in time with multi-stepping over single-stepping.

Many features of the Charm++ runtime system were used to achieve these re-

sults. Starting with the standard load balancing and overlap of communication and

computation enabled by the over-decomposition strategy, we employed a number

of Charm++’s features. Of particular importance were features that allowed us to

replace parts of our algorithm that scaled as the number of cores, such as quiescence

detection for particle movement and the hierarchical load balancer. Also of impor-

tance were features such as CkLoop, SMP Cache and node level load balancing,

that exploited SMP features of almost all modern supercomputers. With these fea-

tures, we can bring to bear the computational resources of many 100s of thousands

of processor cores on the highly clustered, large dynamic range simulations that

are necessary for understanding the formation of galaxies in the context of of large

scale structure.

While the focus of the work presented here was the performance of the gravity

calculation, these techniques are applicable to other parts of cosmological simula-

tions. Above, we summarized the SPH implementation in ChaNGa. To give an

indication of the performance of our implementation, we used the cosmo25 dataset

which actually has 23 percent of the particles labeled as “gas”. Benchmarking this

dataset with an adiabatic equation of state for the gas on 8K cores, we find that

the SPH component of the force calculation alone takes on average 37.9 seconds

compared to an average 39.6 seconds needed for the gravity calculation. However,

as mentioned above, the SPH calculation is dominated by the communication, and

when we overlap the SPH with the gravity calculation it adds only 15.2 seconds over

a gravity calculation alone. While this result nicely demonstrates the ability of the

Charm++ runtime system to overlap communication and computation, it also in-

dicates that there may be room for optimization of the neighbor finding algorithm.

Neighbor finding is also a useful algorithm for implementing other hydrodynamic

techniques. We expect that the recently developed Meshless Finite Mass and Mesh-

less Finite Volume methods [57] will scale better than SPH since they require fewer

neighbors and the inter-neighbor calculations require more computation. Moving

mesh methods [20] can require the construction of a Voronoi mesh which, in turn,

requires algorithms to quickly find all particles within a sphere of given radius.

Again, the neighbor finding algorithm used in ChaNGa can perform this task. The

implementation of some of these algorithms will be the subject of future work.

Future work is also planned to improve the scaling on hybrid architectures like

those of many current leadership class machines. We have had some success in

getting good performance and scaling on up to 896 cores and 256 GPUs with earlier

generation GPUs[24]. The Charm++ paradigm for overlapping computing and

computation also works for the overlap of data transfer from the host to the GPU,

GPU gravity kernel work, and tree walk work done on the host CPUs. However,

we have not addressed the balance of work, either between GPU and host CPU or

among GPUs. Also, the increased performance of individual nodes enabled by GPUs

or other accelerators will increase the need to optimize and hide communication

costs.

Menon et al. Page 23 of 25

Author’s contributions

T.Q. is the primary researcher and supervisor of the ChaNGa project. T.Q., P.J., along with various contributors

developed the code. T.Q. and F.G., and others verified the code for cosmological simulations. H.M., L.W., T.Q. and

L.K. came up with the techniques mentioned in the paper for scaling the application. H.M. developed the dynamic

load balancing techniques and optimizations for the various phases of the simulation. G.Z. and H.M. developed the

hierarchical load balancer. L.W. worked on the domain decomposition optimizations. P.J. developed the SMP cache

optimization. G.Z. optimized the performance for the Blue Waters hardware. H.M. performed the scaling

experiments with help from T.Q., G.Z. and L.W. All the authors discussed the results and contributed extensively to

the writing of the paper.

Acknowledgments

ChaNGa was initially developed under NSF ITR award 0205413. Contributors to the development of the code

include Graeme Lufkin, Sayantan Chakravorty, Amit Sharma, and Filippo Gioachin. This research is part of the Blue

Waters sustained-petascale computing project, which is supported by the National Science Foundation (award

number OCI 07-25070) and the state of Illinois. HM was supported by NSF award AST-1312913. TQ and FG where

supported by NSF award AST-1311956. Use of Bluewaters was supported by NSF PRAC Award 1144357. We made

use of pynbody (https://github.com/pynbody/pynbody) to create figure 1, and we thank Andrew Pontzen for

assistance in creating that figure. We also thank the referees for helpful comments that improved the manuscript.

Notes
1A public version of ChaNGa is publicly available at http://hpcc.astro.washington.edu/tools/changa.html
2Using a geometric density mean in the SPH force expression: (Pi+Pj)/(ρiρj) in place of Pi/ρ

2
i +

Pj/ρ
2
j where Pi and ρi are particle pressures and densities respectively.

3We downloaded version 2.2.15.3.1 in June 2014 from https://hpcforge.org/projects/pkdgrav2/

Author details
1Department of Computer Science, University of Illinois at Urbana-Champaign, USA. 2Department of Astronomy,

University of Washington, USA.

References
1. Planck Collaboration, Ade, P.A.R., Aghanim, N., Armitage-Caplan, C., Arnaud, M., Ashdown, M.,

Atrio-Barandela, F., Aumont, J., Baccigalupi, C., Banday, A.J., et al.: Planck 2013 results. XVI. Cosmological

parameters. ArXiv e-prints (2013). 1303.5076

2. Brooks, A.: Re-Examining Astrophysical Constraints on the Dark Matter Model. ArXiv e-prints (2014).

1407.7544

3. Pontzen, A., Governato, F.: Cold dark matter heats up. Nature 506, 171–178 (2014).

doi:10.1038/nature12953. 1402.1764

4. Davis, M., Efstathiou, G., Frenk, C.S., White, S.D.M.: The evolution of large-scale structure in a universe

dominated by cold dark matter. Astroph. J. 292, 371–394 (1985). doi:10.1086/163168

5. Springel, V., White, S.D.M., Jenkins, A., Frenk, C.S., Yoshida, N., Gao, L., Navarro, J., Thacker, R., Croton,

D., Helly, J., Peacock, J.A., Cole, S., Thomas, P., Couchman, H., Evrard, A., Colberg, J., Pearce, F.:

Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005).

doi:10.1038/nature03597. arXiv:astro-ph/0504097

6. Guedes, J., Callegari, S., Madau, P., Mayer, L.: Forming Realistic Late-type Spirals in a ΛCDM Universe: The

Eris Simulation. Astroph. J. 742, 76 (2011). doi:10.1088/0004-637X/742/2/76. 1103.6030

7. Hopkins, P.F., Keres, D., Onorbe, J., Faucher-Giguere, C.-A., Quataert, E., Murray, N., Bullock, J.S.: Galaxies

on FIRE (Feedback In Realistic Environments): Stellar Feedback Explains Cosmologically Inefficient Star

Formation. ArXiv e-prints (2013). 1311.2073

8. Frenk, C.S., White, S.D.M.: Dark matter and cosmic structure. Annalen der Physik 524, 507–534 (2012).

doi:10.1002/andp.201200212. 1210.0544

9. Vogelsberger, M., Sijacki, D., Kereš, D., Springel, V., Hernquist, L.: Moving mesh cosmology: numerical

techniques and global statistics. Mon. Not. Royal Ast. Soc. 425, 3024–3057 (2012).

doi:10.1111/j.1365-2966.2012.21590.x. 1109.1281

10. Kim, J.-h., Abel, T., Agertz, O., Bryan, G.L., Ceverino, D., Christensen, C., Conroy, C., Dekel, A., Gnedin,

N.Y., Goldbaum, N.J., Guedes, J., Hahn, O., Hobbs, A., Hopkins, P.F., Hummels, C.B., Iannuzzi, F., Keres, D.,

Klypin, A., Kravtsov, A.V., Krumholz, M.R., Kuhlen, M., Leitner, S.N., Madau, P., Mayer, L., Moody, C.E.,

Nagamine, K., Norman, M.L., Onorbe, J., O’Shea, B.W., Pillepich, A., Primack, J.R., Quinn, T., Read, J.I.,

Robertson, B.E., Rocha, M., Rudd, D.H., Shen, S., Smith, B.D., Szalay, A.S., Teyssier, R., Thompson, R.,

Todoroki, K., Turk, M.J., Wadsley, J.W., Wise, J.H., Zolotov, A., AGORA Collaboration29, f.t.: The AGORA

High-resolution Galaxy Simulations Comparison Project. Astroph. J. Supp. 210, 14 (2014).

doi:10.1088/0067-0049/210/1/14. 1308.2669

11. Wadsley, J.W., Stadel, J., Quinn, T.: Gasoline: a flexible, parallel implementation of TreeSPH. New Astronomy

9, 137–158 (2004)

12. Wadsley, J.W., Veeravalli, G., Couchman, H.M.P.: On the treatment of entropy mixing in numerical cosmology.

Mon. Not. Royal Ast. Soc. 387, 427–438 (2008). doi:10.1111/j.1365-2966.2008.13260.x

13. Governato, F., Weisz, D., Pontzen, A., Loebman, S., Reed, D., Brooks, A.M., Behroozi, P., Christensen, C.,

Madau, P., Mayer, L., Shen, S., Walker, M., Quinn, T., Wadsley, J.: Faint dwarfs as a test of DM models:

WDM vs. CDM. ArXiv e-prints (2014). 1407.0022

14. Kalé, L.V., Sinha, A.: Projections : A scalable performance tool. In: Parallel Systems Fair, International Parallel

Processing Sympos Ium, pp. 108–114 (1993)

15. Ishiyama, T., Nitadori, K., Makino, J.: 4.45 Pflops Astrophysical N-Body Simulation on K computer – The

Gravitational Trillion-Body Problem. ArXiv e-prints (2012). 1211.4406

http://arxiv.org/abs/1303.5076
http://arxiv.org/abs/1407.7544
http://dx.doi.org/10.1038/nature12953
http://arxiv.org/abs/1402.1764
http://dx.doi.org/10.1086/163168
http://dx.doi.org/10.1038/nature03597
http://arxiv.org/abs/arXiv:astro-ph/0504097
http://dx.doi.org/10.1088/0004-637X/742/2/76
http://arxiv.org/abs/1103.6030
http://arxiv.org/abs/1311.2073
http://dx.doi.org/10.1002/andp.201200212
http://arxiv.org/abs/1210.0544
http://dx.doi.org/10.1111/j.1365-2966.2012.21590.x
http://arxiv.org/abs/1109.1281
http://dx.doi.org/10.1088/0067-0049/210/1/14
http://arxiv.org/abs/1308.2669
http://dx.doi.org/10.1111/j.1365-2966.2008.13260.x
http://arxiv.org/abs/1407.0022
http://arxiv.org/abs/1211.4406

Menon et al. Page 24 of 25

16. Habib, S., Morozov, V., Frontiere, N., Finkel, H., Pope, A., Heitmann, K.: Hacc: Extreme scaling and

performance across diverse architectures. In: Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis. SC ’13, pp. 6–1610. ACM, New York, NY, USA (2013).

doi:10.1145/2503210.2504566. http://doi.acm.org/10.1145/2503210.2504566

17. Warren, M.S.: 2HOT: An Improved Parallel Hashed Oct-Tree N-Body Algorithm for Cosmological Simulation.

ArXiv e-prints (2013). 1310.4502

18. Springel, V.: The cosmological simulation code GADGET-2. Mon. Not. Royal Ast. Soc. 364, 1105–1134

(2005). doi:10.1111/j.1365-2966.2005.09655.x. arXiv:astro-ph/0505010

19. Angulo, R.E., Springel, V., White, S.D.M., Jenkins, A., Baugh, C.M., Frenk, C.S.: Scaling relations for galaxy

clusters in the Millennium-XXL simulation. Mon. Not. Royal Ast. Soc. 426, 2046–2062 (2012).

doi:10.1111/j.1365-2966.2012.21830.x. 1203.3216

20. Springel, V.: E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh.

Mon. Not. Royal Ast. Soc. 401, 791–851 (2010). doi:10.1111/j.1365-2966.2009.15715.x. 0901.4107

21. Schaye, J., Crain, R.A., Bower, R.G., Furlong, M., Schaller, M., Theuns, T., Dalla Vecchia, C., Frenk, C.S.,

McCarthy, I.G., Helly, J.C., Jenkins, A., Rosas-Guevara, Y.M., White, S.D.M., Baes, M., Booth, C.M., Camps,

P., Navarro, J.F., Qu, Y., Rahmati, A., Sawala, T., Thomas, P.A., Trayford, J.: The EAGLE project: Simulating

the evolution and assembly of galaxies and their environments. ArXiv e-prints (2014). 1407.7040

22. Vogelsberger, M., Genel, S., Springel, V., Torrey, P., Sijacki, D., Xu, D., Snyder, G.F., Nelson, D., Hernquist,

L.: Introducing the Illustris Project: Simulating the coevolution of dark and visible matter in the Universe.

ArXiv e-prints (2014). 1405.2921

23. Jetley, P., Gioachin, F., Mendes, C., Kale, L.V., Quinn, T.R.: Massively parallel cosmological simulations with

ChaNGa. In: Proceedings of IEEE International Parallel and Distributed Processing Symposium 2008 (2008)

24. Jetley, P., Wesolowski, L., Gioachin, F., Kalé, L.V., Quinn, T.R.: Scaling hierarchical n-body simulations on gpu

clusters. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis. SC ’10. IEEE Computer Society, Washington, DC, USA (2010)

25. Kim, J.-h., Abel, T., Agertz, O., Bryan, G.L., Ceverino, D., Christensen, C., Conroy, C., Dekel, A., Gnedin,

N.Y., Goldbaum, N.J., Guedes, J., Hahn, O., Hobbs, A., Hopkins, P.F., Hummels, C.B., Iannuzzi, F., Keres, D.,

Klypin, A., Kravtsov, A.V., Krumholz, M.R., Kuhlen, M., Leitner, S.N., Madau, P., Mayer, L., Moody, C.E.,

Nagamine, K., Norman, M.L., Onorbe, J., O’Shea, B.W., Pillepich, A., Primack, J.R., Quinn, T., Read, J.I.,

Robertson, B.E., Rocha, M., Rudd, D.H., Shen, S., Smith, B.D., Szalay, A.S., Teyssier, R., Thompson, R.,

Todoroki, K., Turk, M.J., Wadsley, J.W., Wise, J.H., Zolotov, A., AGORA Collaboration29, f.t.: The AGORA

High-resolution Galaxy Simulations Comparison Project. Astroph. J. Supp. 210, 14 (2014).

doi:10.1088/0067-0049/210/1/14. 1308.2669

26. Purcell, C.W., Bullock, J.S., Tollerud, E.J., Rocha, M., Chakrabarti, S.: The Sagittarius impact as an architect

of spirality and outer rings in the Milky Way. Nature 477, 301–303 (2011). doi:10.1038/nature10417.

1109.2918

27. Ruan, J.J., Quinn, T.R., Babul, A.: The observable thermal and kinetic Sunyaev-Zel’dovich effect in merging

galaxy clusters. Mon. Not. Royal Ast. Soc. 432, 3508–3519 (2013). doi:10.1093/mnras/stt701. 1304.6088

28. Barnes, J., Hut, P.: A Hierarchical O(NlogN) Force-Calculation Algorithm. Nature 324, 446–449 (1986)

29. Stadel, J.G.: Cosmological N-body Simulations and their Analysis. PhD thesis, Department of Astronomy,

University of Washington (March 2001)

30. Power, C., Navarro, J.F., Jenkins, A., Frenk, C.S., White, S.D.M., Springel, V., Stadel, J., Quinn, T.: The inner

structure of ΛCDM haloes - I. A numerical convergence study. Monthly Notices of the Royal Astronomical

Society 338, 14–34 (2003). doi:10.1046/j.1365-8711.2003.05925.x. arXiv:astro-ph/0201544

31. Reed, D., Gardner, J., Quinn, T., Stadel, J., Fardal, M., Lake, G., Governato, F.: Evolution of the mass function

of dark matter haloes. Mon. Not. Royal Ast. Soc. 346, 565–572 (2003). doi:10.1046/j.1365-2966.2003.07113.x

32. Quinn, T.R., Jetley, P., Kale, L.V., Gioachin, F.: N-body Simulations with ChaNGa. In: Kale, L.V., Bhatele, A.

(eds.) Parallel Science and Engineering Applications: The Charm++ Approach. Taylor & Francis Group, CRC

Press, ??? (2013)

33. Dehnen, W.: Towards optimal softening in three-dimensional N-body codes - I. Minimizing the force error. Mon.

Not. Royal Ast. Soc. 324, 273–291 (2001). doi:10.1046/j.1365-8711.2001.04237.x. arXiv:astro-ph/0011568

34. Ewald, P.P.: Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik 369, 253–287

(1921). doi:10.1002/andp.19213690304

35. Ding, H.-Q., Karasawa, N., Goddard, W.A. III: The reduced cell multipole method for Coulomb interactions in

periodic systems with million-atom unit cells. Chemical Physics Letters 196, 6–10 (1992).

doi:10.1016/0009-2614(92)85920-6

36. Quinn, T., Katz, N., Stadel, J., Lake, G.: Time stepping N-body simulations. ArXiv Astrophysics e-prints

(1997). astro-ph/9710043

37. Pontzen, A., Governato, F.: How supernova feedback turns dark matter cusps into cores. Mon. Not. Royal Ast.

Soc. 421, 3464–3471 (2012). doi:10.1111/j.1365-2966.2012.20571.x. 1106.0499

38. Shen, S., Wadsley, J., Stinson, G.: The enrichment of the intergalactic medium with adiabatic feedback - I.

Metal cooling and metal diffusion. Mon. Not. Royal Ast. Soc. 407, 1581–1596 (2010).

doi:10.1111/j.1365-2966.2010.17047.x. 0910.5956

39. Durier, F., Dalla Vecchia, C.: Implementation of feedback in smoothed particle hydrodynamics: towards

concordance of methods. Mon. Not. Royal Ast. Soc. 419, 465–478 (2012).

doi:10.1111/j.1365-2966.2011.19712.x. 1105.3729

40. Christensen, C., Quinn, T., Governato, F., Stilp, A., Shen, S., Wadsley, J.: Implementing molecular hydrogen in

hydrodynamic simulations of galaxy formation. Mon. Not. Royal Ast. Soc. 425, 3058–3076 (2012).

doi:10.1111/j.1365-2966.2012.21628.x. 1205.5567

41. Stinson, G., Seth, A., Katz, N., Wadsley, J., Governato, F., Quinn, T.: Star formation and feedback in

smoothed particle hydrodynamic simulations - I. Isolated galaxies. Mon. Not. Royal Ast. Soc. 373, 1074–1090

(2006). doi:10.1111/j.1365-2966.2006.11097.x. arXiv:astro-ph/0602350

http://dx.doi.org/10.1145/2503210.2504566
http://arxiv.org/abs/1310.4502
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://arxiv.org/abs/arXiv:astro-ph/0505010
http://dx.doi.org/10.1111/j.1365-2966.2012.21830.x
http://arxiv.org/abs/1203.3216
http://dx.doi.org/10.1111/j.1365-2966.2009.15715.x
http://arxiv.org/abs/0901.4107
http://arxiv.org/abs/1407.7040
http://arxiv.org/abs/1405.2921
http://dx.doi.org/10.1088/0067-0049/210/1/14
http://arxiv.org/abs/1308.2669
http://dx.doi.org/10.1038/nature10417
http://arxiv.org/abs/1109.2918
http://dx.doi.org/10.1093/mnras/stt701
http://arxiv.org/abs/1304.6088
http://dx.doi.org/10.1046/j.1365-8711.2003.05925.x
http://arxiv.org/abs/arXiv:astro-ph/0201544
http://dx.doi.org/10.1046/j.1365-2966.2003.07113.x
http://dx.doi.org/10.1046/j.1365-8711.2001.04237.x
http://arxiv.org/abs/arXiv:astro-ph/0011568
http://dx.doi.org/10.1002/andp.19213690304
http://dx.doi.org/10.1016/0009-2614(92)85920-6
http://arxiv.org/abs/astro-ph/9710043
http://dx.doi.org/10.1111/j.1365-2966.2012.20571.x
http://arxiv.org/abs/1106.0499
http://dx.doi.org/10.1111/j.1365-2966.2010.17047.x
http://arxiv.org/abs/0910.5956
http://dx.doi.org/10.1111/j.1365-2966.2011.19712.x
http://arxiv.org/abs/1105.3729
http://dx.doi.org/10.1111/j.1365-2966.2012.21628.x
http://arxiv.org/abs/1205.5567
http://dx.doi.org/10.1111/j.1365-2966.2006.11097.x
http://arxiv.org/abs/arXiv:astro-ph/0602350

Menon et al. Page 25 of 25

42. Keller, B.W., Wadsley, J., Benincasa, S.M., Couchman, H.M.P.: A superbubble feedback model for galaxy

simulations. Mon. Not. Royal Ast. Soc. 442, 3013–3025 (2014). doi:10.1093/mnras/stu1058. 1405.2625

43. Governato, F., Willman, B., Mayer, L., Brooks, A., Stinson, G., Valenzuela, O., Wadsley, J., Quinn, T.:

Forming disc galaxies in ΛCDM simulations. Mon. Not. Royal Ast. Soc. 374, 1479–1494 (2007).

doi:10.1111/j.1365-2966.2006.11266.x. arXiv:astro-ph/0602351

44. Brooks, A.M., Governato, F., Booth, C.M., Willman, B., Gardner, J.P., Wadsley, J., Stinson, G., Quinn, T.:

The Origin and Evolution of the Mass-Metallicity Relationship for Galaxies: Results from Cosmological N-Body

Simulations. Astroph. J. Let. 655, 17–20 (2007). doi:10.1086/511765

45. Munshi, F., Governato, F., Brooks, A.M., Christensen, C., Shen, S., Loebman, S., Moster, B., Quinn, T.,

Wadsley, J.: Reproducing the Stellar Mass/Halo Mass Relation in Simulated LCDM Galaxies: Theory vs

Observational Estimates. Astroph. J. 766, 56 (2013). doi:10.1088/0004-637X/766/1/56. 1209.1389

46. Governato, F., Zolotov, A., Pontzen, A., Christensen, C., Oh, S.H., Brooks, A.M., Quinn, T., Shen, S.,

Wadsley, J.: Cuspy no more: how outflows affect the central dark matter and baryon distribution in Λ cold dark

matter galaxies. Mon. Not. Royal Ast. Soc. 422, 1231–1240 (2012). doi:10.1111/j.1365-2966.2012.20696.x.

1202.0554

47. Collins, D.C., Xu, H., Norman, M.L., Li, H., Li, S.: Cosmological Adaptive Mesh Refinement

Magnetohydrodynamics with Enzo. Astroph. J. Supp. 186, 308–333 (2010).

doi:10.1088/0067-0049/186/2/308. 0902.2594

48. Pontzen, A., Roškar, R., Stinson, G.S., Wo ods, R., Reed, D.M., Coles, J., Quinn, T.R.: pynbody: Astrophysics

Simulation Analysis for Python. Astrophysics Source Code Library, ascl:1305.002 (2013)

49. Sharma, A.: Performance evaluation of tree structures and tree traversals for parallel n-body cosmological

simulations. Master’s thesis, Department of Computer Science, University of Illinois at Urbana-Champaign

(2006). http://charm.cs.uiuc.edu/papers/AmitMSThesis.html

50. Solomonik, E., Kale, L.V.: Highly Scalable Parallel Sorting. In: Proceedings of the 24th IEEE International

Parallel and Distributed Processing Symposium (IPDPS) (2010)

51. Sinha, A.B., Kale, L.V., Ramkumar, B.: A dynamic and adaptive quiescence detection algorithm. Technical

Report 93-11, Parallel Programming Laboratory, Department of Computer Scie nce , University of Illinois,

Urbana-Champaign (1993)

52. Menon, H., Jain, N., Zheng, G., Kalé, L.V.: Automated load balancing invocation based on application

characteristics. In: IEEE Cluster 12, Beijing, China (2012)

53. Mei, C., Zheng, G., Gioachin, F., Kalé, L.V.: Optimizing a Parallel Runtime System for Multicore Clusters: A

Case Study. In: TeraGrid’10, Pittsburgh, PA, USA (2010)

54. Gioachin, F., Sharma, A., Chakravorty, S., Mendes, C., Kale, L.V., Quinn, T.R.: Scalable cosmology simulations

on parallel machines. In: VECPAR 2006, LNCS 4395, Pp. 476-489 (2007)

55. Zheng, G.: Achieving high performance on extremely large parallel machines: performance prediction and load

balancing. PhD thesis, Department of Computer Science, University of Illinois at Urbana-Champaign (2005)

56. Mei, C., Sun, Y., Zheng, G., Bohm, E.J., Kalé, L.V., C.Phillips, J., Harrison, C.: Enabling and scaling

biomolecular simulations of 100 million atoms on petascale machines with a multicore-optimized message-driven

runtime. In: Proceedings of the 2011 ACM/IEEE Conference on Supercomputing, Seattle, WA (2011)

57. Hopkins, P.F.: GIZMO: A New Class of Accurate, Mesh-Free Hydrodynamic Simulation Methods. ArXiv

e-prints (2014). 1409.7395

http://dx.doi.org/10.1093/mnras/stu1058
http://arxiv.org/abs/1405.2625
http://dx.doi.org/10.1111/j.1365-2966.2006.11266.x
http://arxiv.org/abs/arXiv:astro-ph/0602351
http://dx.doi.org/10.1086/511765
http://dx.doi.org/10.1088/0004-637X/766/1/56
http://arxiv.org/abs/1209.1389
http://dx.doi.org/10.1111/j.1365-2966.2012.20696.x
http://arxiv.org/abs/1202.0554
http://dx.doi.org/10.1088/0067-0049/186/2/308
http://arxiv.org/abs/0902.2594
http://arxiv.org/abs/1409.7395

	Abstract
	Gravitational Force Calculation
	Force Softening
	Periodic boundary conditions
	Multi-stepping
	Smooth Particle Hydrodynamics
	Star Formation and Feedback
	Domain Decomposition
	Tree Build
	Tree Traversal and Gravity
	Single Stepping Improvements
	Performance
	Optimizations for the Gravity Phase
	SMP Request Cache
	Domain Decomposition
	Hierarchical Multistep Load Balancer
	Performance Evaluation
	Comparison with PKDGRAV

