
Towards Realizing the Potential of Malleable Jobs
Abhishek Gupta, Bilge Acun, Osman Sarood, Laxmikant V. Kalé

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
{gupta59, acun2, sarood1, kale}@illinois.edu

Abstract—Malleable jobs are those which can dynamically
shrink or expand the number of processors on which they
are executing at runtime in response to an external command.
Malleable jobs can significantly improve system utilization and
reduce average response time, compared to traditional jobs.
To realize these benefits, three components are critical – an
adaptive job scheduler, an adaptive resource manager, and an
adaptive parallel runtime system. In this paper, we present a
novel mechanism for enabling shrink/expand capability in the
parallel runtime system using task migration and dynamic load
balancing, checkpoint-restart, and Linux shared memory. Our
technique performs true shrink/expand eliminating the need of
any residual processes, requires little application programmer
effort, and is fast. Further, we establish a bidirectional commu-
nication channel between the resource manager and the parallel
runtime, and present an asynchronous split-phase mechanism
for executing adaptive scheduling decisions. Performance results
using Charm++ on Stampede supercomputer show the efficacy,
scalability, and benefits of our approach. Shrinking from 2k to
1k cores takes 16s while expand from 1k to 2k takes 40s. Also,
we demonstrate the utility of our runtime in traditional as well
as emerging scenarios, e.g., proactive fault tolerance and clouds.

I. INTRODUCTION

As we move towards exascale era in High Performance
Computing, supercomputers will need to operate under power
constraints and failing components [1]. In such environment,
adaptivity will be crucial to achieve better utilization of system
components. One direction to achieve such adaptivity is to
enable malleable jobs – which can change the number of
processors on which they are executing at runtime in response
to an external command. Such jobs can expand when the
cluster has low demand, and shrink when there is high demand.
Figure 1 illustrates this with an example. Each box represents
the current utilization of the compute capacity (say 100 nodes)
of a cluster by jobs A, B, and C. Here, a long running job A
can be made to shrink or expand to adapt to current demands.
In the absence of malleability, job A which is using 60 nodes,
can block job C which needs at least 50 nodes, resulting in
wastage of 40 nodes. This wastage can be avoided if there are
smaller jobs, but this may not always be the case. Malleable
jobs are an excellent alternative solution to this problem, and
have been shown to potentially improve system utilization by
up to 25%, and also reduce mean job response time [2]–[4].

To enable malleable jobs, three components are critical
(Figure 2) – (1) a smart adaptive job scheduler, which decides
when and which jobs to expand or shrink, based on the job
queue, current cluster state, and a job scheduling policy, (2)
an adaptive resource manager, which allocates nodes to jobs
(node scheduler) and executes the scheduling decisions by

A

B

A A

C

A
A

B completes,
C arrives
before next
scheduling

Cluster of 100 nodes, A needs 50 to 100, B needs 30, C needs 70

Shrink A,
launch C

C completes Expand A

Fig. 1: Example use case

Scheduling
Policy Engine

Job Queue

New Jobs

Adaptive
Job Scheduler

Adaptive
Resource Manager

Adaptive/Malleable
Parallel Runtime

System

Node
Scheduler

Launch
Monitor
Shrink
Expand

Cluster

Shrink Ack.
Expand Ack.

Decisions

Cluster
State

Changes

Execution
Engine

Nodes

Fig. 2: System overview (focus and contributions in bold)
coordinating between the job scheduler and the cluster and
running jobs (execution engine), and (3) an adaptive parallel
runtime system which provides the dynamic shrink/expand
capability. Although the job scheduling strategies for malleable
jobs have been extensively researched [2], [3], [5]–[8], there
are very few runtime systems which can actually perform
shrink or expand on general purpose parallel programs. Exist-
ing techniques either perform pseudo shrink/expand by leaving
residual process on nodes which are vacated as a result
of shrink [2], [4] or require too much application-specific
programmer effort for data re-decomposition after resize [5].
Further, the integration of above three components has been
little researched. The scheduler needs to communicate to the
application its shrink/expand decisions, and the application
needs to acknowledge when done.

In this paper, we address the research challenges involved in
designing an end-to-end system which can provide and exploit
job shrink/expand capability. To this end, our contributions are:

• Study of the research challenges in designing end-to-end
fast, scalable, and efficient shrink/expand capability in
parallel runtime system. A key innovation of our approach
is to combine task migration, checkpoint-restart, load
balancing, and use of Linux shared memory (SHM) (§III).

• Split-phase execution of malleable job scheduling actions,
incorporating scheduler-runtime communication (§IV).

• Implementation atop CHARM++ and analysis of mal-
leability and associated benefits using mini-applications
up to 2k cores on Stampede supercomputer (§ III-D, §VI).

• Exploration of novel use cases of shrink/expand capa-
bility, specifically proactive fault tolerance and price-
sensitive scaling in cloud spot markets (§VII).

II. RELATED WORK

Feitelson and Rudolph [9] classified parallel jobs into four
categories based on – who decides the number of processors
a job will be run on, and when it is decided (Table I). In
both moldable and malleable jobs, users specify a range of
processors a job can be run on, based on factors such as its
strong scaling performance and memory limitations. In this
paper, our focus is on malleable jobs where the scheduler can
dynamically change the resources allocated to a job.

A. Runtimes with Shrink/Expand Capability

Kale et al. [4] demonstrated CHARM++ jobs with the ability
to shrink or expand their node footprint by dynamic migration
of work/data units (objects) to processors [4]. However, in case
of shrink, individual processes (known as residual processes)
are still left on processors that are removed from the available
processor pool. These residual processes carry out low-level
processor-based tasks, such as forwarding messages for mi-
grated objects to their new homes and spanning tree-based
reductions. The residual processes (one per job per processor)
raise severe inter-job interference and security concerns, mak-
ing this approach impractical for large clusters. Moreover, in
this approach, for expand, the job size is limited to the number
of nodes where it was initially launched. Hence, for efficient
and true resize, one needs to eliminate these residual agents.

Cera et al. [2] demonstrated two techniques to provide
malleable MPI applications: (1) dynamic CPUSETs mapping
and (2) dynamic MPI, using OAR resource manager. Dynamic
CPUSETs technique is specific to multi-core machines. It
enables dynamic alteration in the number of cores per node
allocated to an application. Their second technique is more
general and allows shrinking or growing using MPI process
spawning primitives (such as MPI_Comm_spwan). However,
they do not vacate residual processes in case of shrinking.
Moreover, significant application programmer effort is neces-
sary to perform data re-decomposition after resize.

Perhaps the work most similar to ours is the research on
dynamic malleability of iterative MPI applications using PCM
(Process Checkpoint and Migration) library [5]. That work
conceives malleability as split and merge operations supported
using PCM calls added to application code. However, since
MPI applications are processor-centric, their scheme needs
significant application code modification for performing data
re-decomposition after resize. We address this problem by
leveraging the over-decomposition of data into migratable ob-
jects or medium-grained tasks. Our approach requires minimal
application-level code changes to support malleability.

An approach which combines over-decomposition and
checkpoint-restart uses Adaptive MPI (AMPI) [10]. The main
idea is to perform shared file-system based checkpoint-restart
and application re-launch. Its main drawback is slowness due
to I/O and re-launch costs. Our advancements and contribu-
tions over [10] are: a) checkpoint to Linux SHM, which is fast
and persistent, b) task/object evacuation, similar to [4], prior
to checkpoint enabling fast restart from local SHM instead of
shared file-system, and c) fast rebirth and modified re-launch
protocol using exec avoiding complete application re-launch.

TABLE I: Job Type Taxonomy

Who decides When it is decided
At submission During execution

User Rigid Evolving
System/scheduler Moldable Malleable

B. Adaptive Schedulers and Resource Managers
Several studies have demonstrated the benefits of scheduling

algorithms which consider malleable jobs, using theoretical
analysis [3], [6] and/or simulation using job traces [3], [7].
For instance, Hungershofer demonstrated that simple strategies
such as equipartitioning can result in significant improvement
in response time and utilization using malleable jobs [7].
Utrera et al. [8] demonstrated benefits of a malleable processor
allocation technique based on a combination of moldability
and folding techniques – Folding by JobType (FJT). Adap-
tive scheduling policies have also been studied in context
of grids, e.g., KOALA multicluster scheduler and DYNACO
framework [11], AppLeS project [12], and others [13], [14].

In this paper, we do not intend to research adaptive job
scheduling algorithms. Instead, we study the challenges in
actual execution of malleable jobs by a resource manager. To
this end, we present a runtime system which enables jobs to
shrink/expand and a mechanism for interaction between the
scheduler and running job. Also, we address the issues in
enforcing scheduling decisions in presence of malleable jobs.

III. SHRINK/EXPAND IN PARALLEL RUNTIME SYSTEM

To enable malleable jobs, the foremost requirement is a
parallel runtime system (RTS) which can render applications
malleable, preferably without much programmer effort. In this
section, we discuss our approach towards malleability in an
RTS. When we say runtime, we mean a parallel RTS. For
enhanced understanding, we first define shrink and expand
operations and present the challenges that we considered while
designing such RTS.

A. Definitions and Design Goals
Shrink: A parallel application running on nodes of set A is

resized to run on nodes of set B where B ⊂ A
Expand: A parallel application running on nodes of set A

is resized to run on nodes of set B, where B ⊃ A
Rescale: Shrink or expand
An alternative definition is possible, where the subset and

super-set relationships for shrink and expand respectively are
not necessary. For example, on shrink, a job may be allocated a
new set of nodes to replace a subset of old nodes. One of the
motivations for such re-allocations is to provide contiguous
allocation on resize. In our definitions, such cases can be
handled by performing expand followed by shrink.

While exploring mechanisms to provide rescale capability
in an RTS, we focused on certain design challenges. Our
approach towards a malleable runtime should be:

• Efficient: It should ensure that achieved performance after
rescale is proportional to the compute power.

• Fast: The rescale time (Trescale) should be small to
satisfy the needs of its usage scenarios. We expect the
granularity of rescale events to be few minutes or even
more, so Trescale around 1 minute should be permissible.

Application Processes

Object Evacuation
Load Balancing

Sync. Point, Check for
Shrink Request

Checkpoint to linux
shared memory

Rebirth (exec)
or die (exit)
Reconnect protocol

Restore Object
from Checkpoint

Execution Resumes
via stored callback

Launcher
(Charmrun)

CCS
Shrink
Request

ShrinkAck to
external client

Time

(a) Shrink

Application Processes

Sync. Point, Check
for Expand Request

Checkpoint to Linux
shared memory

Rebirth (exec) or
launch (ssh, fork)
Connect protocol

Restore Object
from Checkpoint

Execution Resumes
via stored callback

Launcher
(Charmrun)

CCS
Expand
Request

ExpandAck to
external client

Time

Load Balancing

Checkpoint
Tasks/Objects

(b) Expand
Fig. 3: Shrink expand runtime system design

• Scalable: The approach should scale well with increasing
number of nodes and with increasing problem sizes.

• Practical: It should be applicable to most supercomput-
ers, commodity clusters, and possibly even clouds. Also,
it should be generic from runtime perspective.

• Low-effort: The runtime should ensure that there is little
or no application-specific programmer effort required to
render a parallel application malleable.

B. Assumptions

Our approach makes two assumption regarding an HPC job:
1. Over-decomposition and task (or object) migration:

Over-decomposition refers to decomposing an application into
medium-grained work/data units typically larger in number
than the number of processors. These units can be mapped
(and re-mapped when they are migratable) by the runtime to
processors. These features are present in some established [15]
and emerging [16] parallel runtimes, and are becoming more
relevant for exascale [1]. MPI jobs can rescale without manual
repartitioning using our approach with an over-decomposed
MPI implementation (multiple ranks per-core) e.g., Adaptive
MPI [17] or possibly Fine-Grained MPI (FG-MPI) [18]. These
have negligible overhead, e.g., user-level threads [17].

2. Synchronization boundaries: Our approach requires
application-specified synchronization points such as iteration
boundaries. A large class of scientific applications are inher-
ently iterative, making this a reasonable assumption.

C. Approach

Figure 3 describes our technique. The parallel application
acts as a server which can listen to incoming rescale requests
from external sources, such as a job scheduler. These requests
can be received at any time and are recorded in the system.
However, they are handled at the next synchronization point.
We first discuss our approach for shrink (Figure 3a).

Shrink: If the request is of type shrink, the request needs
to specify which processors out of the original set, does the
application need to relinquish. One mechanism is to specify
a bit-vector (with 1=available, 0=unavailable) of size Pold,
where Pold is the number of processors before shrink.

Task Evacuation: At the synchronization point, a task
evacuation module or a special load balancer is invoked to
migrate the tasks away from the processors marked unavailable
while balancing load over the remaining set of processors.

Removal of Residual Processes: After, the tasks/objects
are evacuated, the next step is to eliminate the residual
processes while ensuring that the application continues to
seamlessly run after rescale is complete. This step is non-
trivial since the application processes are closely tied. To
ensure correctness, performance, and reliability after rescale,
all the runtime system data structures which depend on Pold

need to be modified. Examples of these include spanning trees,
task location managers such as hash-tables, and any processor-
level instrumentation and monitoring modules.

To avoid the need of such complex modification of runtime
structures, we follow a three-step process: 1) checkpoint local
application state before rescale on each available processor,
nothing is checkpointed on processors which will be un-
available after rescale, 2) enable application rebirth, and 3)
restore application state from checkpoint after rebirth. The
naive approach would be to use disk-based checkpoint-restart
and application re-launch, similar to [10]. However, interaction
with disk can severely degrade rescale performance and pre-
vent us from meeting the second design goal (Section III-A).
Ideally, for fast rescale, in-memory checkpoint could be
used. However, since we terminate and re-launch processes
to achieve clean restart of application on the continuing set of
processors, any state stored in process memory will be lost.

Checkpoint-restart using Linux Shared Memory: Our novel
solution to this challenge of performing fast, stateful, and
scalable process rebirth is to use OS shared memory (SHM).
SHM is a method of interprocess communication (IPC) where
multiple processes share a single chunk of memory to com-
municate. Since SHM is not tied to a single process, it has the
advantage of being persistent across process restart, and also
being fast (since it resides in memory).

Hence, our approach is to 1) checkpoint the state before
rescale to Linux SHM, 2) perform application process rebirth
or death depending on whether the processor is marked
available or not, 3) execute a reconnect protocol – a modified

version of the application start-up protocol, and 4) restore the
application state from the checkpoints. The essence of step 2
is to replace the current process image by a a clean applica-
tion image using Linux exec system call for the available
processors whereas death for the unavailable processors using
Linux exit system call. A reconnect protocol, which is a
modified version of application launch protocol, is necessary
to establish appropriate communication channels among the
reborn processes so that they can communicate after rescale
is complete. Also note that SHM is allocated by the runtime
only at rescale event, and freed after step 4. Scheduler-runtime
coordination (§ IV) ensures proper management of SHM.

Summary: Our overall solution is to combine task migra-
tion, load balancing, SHM, and checkpoint-restart to achieve
shrink. The task evacuation phase prior to checkpoint-restart
ensures that the dying processes are stateless since all appli-
cation state is already migrated to the continuing set of pro-
cessors. Checkpoint-restart enables a clean state after rescale
event, whereas the use of SHM allows the approach to be fast.

After the state restoration from checkpoints, RTS has com-
pleted shrink and an acknowledgment can be sent to the ex-
ternal source from which the request originated. Also, control
needs to be transferred from the RTS to the application at
a pre-registered application resumption point. An application
can perform such registration at initialization.

Expand: For expand, the basic idea is similar to the
handling of shrink request. However, there are some important
differences: 1) The expand request needs to specify the list of
newly available processors. 2) There is no need of object evac-
uation before checkpoint, instead load balancing is required af-
ter restoring from checkpoint. This post-restore load balancing
distributes tasks to newly available processors to effectively
utilize the total compute power. 3) No processes need to be
killed, instead new processes need to be launched. These and
the reborn processes then participate in the reconnect protocol
to enable inter-process communication after restart completes.

We discussed our approach to rescale in the context of
malleable jobs, where the decision to rescale is external e.g.,
job scheduler driven. However, our techniques will be equally
useful in other contexts, such as a) evolving jobs where the de-
cision is application-intrinsic, and b) other non-traditional use
cases (§VII). Also, our approach makes reasonable assumption
about the parallel job (§III-B), and needs only SHM from the
OS. According to the November 2013 top500 list, 96.4% of top
supercomputers use Linux family OS [19]. Thus, our approach
meets the design goal of being practical.

D. Implementation atop CHARM++

We implemented our techniques on the top of CHARM++
RTS [15]. In CHARM++, the objects (chares) form the basic
unit of computation and can be redistributed dynamically
among processors by the sophisticated load balancing frame-
work [20]. These capabilities fulfill the needs of our approach.
AMPI is a framework running atop CHARM++ and provides
dynamic load balancing capabilities to MPI applications using
migratable user-level threads [17]. Using AMPI, MPI applica-
tions can utilize our approach and implementation.

In CHARM++ programs, the application developer can spec-
ify synchronization points using AtSync() calls, which act
as hints to the runtime to perform adaptive control such as
dynamic load balancing. In our implementation, we service
rescale requests by invoking a custom load balancer, which is
aware of the bit-vector information about unavailable proces-
sors. We developed our load balancer on top of CHARM++
load balancing framework, which instruments the objects
execution times and process wall clock time from previous
AtSync() point. These instrumented times of previous it-
erations are used as estimates of loads of future iterations,
which is a proven estimation technique for iterative scientific
applications [20]. We incorporated two existing load balancing
strategies – RefineLB and GreedyLB in our implementation.
RefineLB performs periodic load refinement by moving ob-
jects from overloaded to under-loaded processors, whereas
GreedyLB uses a greedy strategy which iteratively assigns
heaviest compute object to most under-loaded processor.

For checkpoint-restart, we checkpoint the current state of
chares, collection of chares (chare arrays), and CHARM++
groups. In CHARM++, groups are processor-level agents which
can be used to perform system tasks such as load balanc-
ing. For checkpoint-restart, we use CHARM++’s pack-unpack
(pup) serialization mechanism and Linux SHM (shm) calls.
We perform the reconnect protocol using Charmrun – the
start-up manager for CHARM++ applications. Our launch and
reconnect protocol is a slightly modified version of the node-
aware start-up discussed by Gupta et al. [21]. In our modified
protocol, Charmrun perform ssh to launch the executable
only on the newly added nodes rather than all the nodes.
The processes on rest of the nodes use exec system call.
When the processes start, they connect back to Charmrun.
Charmrun also facilitates the exchange of communication
information, such as data-port for Ethernet, necessary to enable
inter-processes communication after restart is complete.

After rescale is complete, control is transferred to the
application using CHARM++’s callback mechanism.

IV. ADAPTIVITY IN RESOURCE MANAGER

In the previous section, we provided a novel approach
to enable an RTS to shrink or expand parallel programs.
However, to realize the benefits of malleable jobs in a shared
cluster environment, the job schedulers and resource managers
also need to be made adaptive (see Figure 2). Researchers have
shown significant benefits of adaptive job scheduling algo-
rithms while simulating malleable jobs [3], [6], [7]. However,
the research challenges which arise in the ‘management’ of
malleable jobs and ‘execution’ of job scheduling decisions
in presence of malleable jobs have mostly remained open.
Prior solutions include stalling while the job reconfigures, or
executing shrink, expand, and launch simultaneously, in the
presence of residual processes. The primary research issues
that we address here are how and when to (a) communicate
the scheduling decisions to running application and (b) detect
the success or failure of those actions. In next subsections,
we present a general framework and protocol for resource
management to address these questions.

While performing the integration of the job scheduler,
resource manager, and malleable parallel RTS, we made
some important design decisions: (1) the mechanism used by
resource manager for executing rescale decisions should be
orthogonal to job scheduling algorithm and (2) the interaction
between resource manager, application, and the scheduling
algorithm should be orthogonal to parallel runtime’s rescale
mechanism. There is one exception, where information com-
munication among the three components of our system can
help scheduler make better decisions. This information is the
expected time taken by an application to perform rescale
(Trescale). The scheduling algorithm can then decide the gap
between any two rescale events for same job (Tgap rescale),
such that Tgap rescale >> Trescale.

A. Resource Manager – Parallel RTS Communication Channel
To answer the how question of communicating between

running application and the resource manager, we establish a
control and feedback channel between those two components.
We leverage the Converse Client-Server interface (CCS), pro-
vided by CHARM++ RTS. CHARM++ application can act
as a CCS server to which a CCS client can connect and
send requests via a TCP/IP socket. Upon receiving a request,
the CCS server runtime invokes appropriate pre-registered
handler function, thus injecting a message into a running
parallel computation. The main effort necessary on the runtime
side was to implement handler functions to service incoming
requests for the desired functionality – shrink or expand.

To demonstrate a working system, we implemented a simple
job scheduler and resource manager in Python. To inform
an application of a rescale decision, the resource manager
starts a CCS client, connects to the CCS server using the
host name and server port corresponding to that job, and
send a message through that connection. Next, it listens for a
response back from the application. The communication from
application to resource manager happens through the same
channel. To acknowledge that it has resized itself in response
to the notification, the application sends back a completion
notification after performing rescale.

We used CCS since it is inbuilt in CHARM++, and shown
to be a secure and scalable method for interacting with the
parallel application [22]. The communication mechanism in
our resource manager is a pluggable module and it is easy to
use another protocol, such as RPC, for this communication.
However, the protocol needs to be secure and scalable.

B. Split-phase Execution of Scheduling Decisions
For traditional rigid jobs, the only scheduling decision that

needs to be implemented by the resource manager is to start a
new job. At a scheduling event, the job scheduler may decide
to launch k jobs (Algorithm 1, line 2). After the node scheduler
allocates them the corresponding number of nodes and updates
its database (line 3–4), the resource manager can launch those
k jobs simultaneously (ExecuteDecisions line 5).

In contrast, a resource manager for malleable jobs needs
to handle three actions - launch, shrink, and expand. Having
developed a mechanism for communicating between the run-
ning application and the resource manager, the next challenge

Algorithm 1 Shrink-Expand Split-phase Execution
1: while true do
2: jobDecisions = ScheduleJobs(jobQueue, clusterFreeNodes,

runningJobs, Trescale, optionalArgs)
3: nodeDecisions = ScheduleNodes(jobDecisions, clusterNodeState,

optionalArgs)
4: UpdateSchedNodeMap(nodeDecisions)
5: dependentActions = ExecuteDecisions(jobDecisions)
6: repeat
7: ProcessBufferedShrinkAcks()
8: ExecuteDependentDecisions(dependentActions)
9: until (jobQueue != empty or a job finished)

10: end while

11: procedure UpdateSchedNodeMap(decision)
Update scheduler’s view of node to job mapping

12: procedure ExecuteDecisions(jobDecision)
13: for decision in jobDecisions do
14: if decision.type == shrink then
15: NotifyJobToShrink(decision)
16: else if AreAllNodesFree(decision.jobid) then
17: LaunchExpandJob(decision)
18: UpdateActualNodeMap(decision)
19: else
20: dependentActions.Add(decision)
21: end if
22: end for
23: return dependentActions

24: procedure AreAllNodesFree(jobid) Check if all the nodes of a job are
marked free in actual node to job map

25: procedure UpdateActualNodeMap(decision)
Update actual node to job mapping

26: procedure ProcessBufferedShrinkAck()
Update actual node to job mapping on shrink completion

27: procedure LaunchExpandJob(decision)
28: if decision.type == launch then
29: LaunchJob(decision)
30: else if decision.type == expand then
31: NotifyJobToExpand(decision)
32: end if

33: procedure ExecuteDependentDecisions(dependentActions)
34: for decision in dependentActions do
35: if AreAllNodesFree(decision.jobid) then
36: LaunchExpandJob(decision)
37: UpdateActualNodeMap(decision)
38: dependentActions.Remove(decision)
39: end if
40: end for

is to decide when to execute the scheduling decisions. The
challenge is that the k decisions provided by the job scheduler
may have inter-dependencies. For example, considering the
example of Figure 1, when job B completes, the scheduler
decides to shrink job A from 60 to 50 nodes and launch job
C on remaining 50 nodes of say 100 node cluster. These
two decisions cannot be executed simultaneously since the
nodes of C include those which are currently used by A
and will be available only when A has finished shrinking.
Similarly expand decisions on one job may also depend
on shrink decisions of another. To tackle this problem, we
perform split-phase execution of the scheduling decisions. A
naive solution would be to first issue all shrink requests, wait
till completion acknowledgements arrive from all of them,
and then perform launch and expand actions. However, this
results in unnecessary blocking and prevents other jobs from
getting launched or scheduled. Hence, we optimize our split-
phase approach to asynchronously send all the shrink requests
(line 14–15 in procedure ExecuteDecisions). Next, we
launch or expand jobs with no dependencies (line 16–17), and

record jobs for which launch or expand needs to be delayed
(line 20). Later, while the process is waiting for the next
scheduling trigger, such as a new job arrival or completion
of a running job, it periodically checks and processes any
buffered shrink completion acknowledgements and updates
appropriate data structure to reflect the actual node to job
mapping (line 7 ProcessBufferedShrinkAck). After
ProcessBufferedShrinkAck the decisions for which
execution was postponed due to dependencies are checked to
see if they can be executed now based on the current state
(line 8, procedure ExecuteDependentDecisions).

In our implementation, to track the dependencies between
jobs, we kept two data structures – SchedNodeToApp which
reflect the scheduler’s view of nodes to jobs mapping, and
ActualNodeToApp, which tracks the actual state. The sched-
uler’s view gets updated at scheduling event (line 4) or when
a job completes (line 9) whereas the actual state is updated
on shrink completion acknowledgement(line 7, 26), new job
launch (line 18, 37), and issue of expand request (line 18, 37).

V. EVALUATION METHODOLOGY

To analyze the performance and scalability of our approach
to malleability, and to evaluate it against the design goals, we
used following benchmarks and applications.

• Stencil2D is a 5-point stencil kernel which iteratively av-
erages values in a 2-D grid using Jacobi relaxation. This
benchmark is a widely used kernel in HPC applications.

• Wave2D is a 2-D mesh based mini-application for simu-
lating wave propagation. It is computation intensive and
uses discretized finite differencing method.

• LeanMD is a Molecular Dynamics (MD) mini-
application which performs simplified version of the force
calculations of NAMD [23], a widely used MD code.
LeanMD uses two CHARM++ object arrays – cells, which
are collection of atoms in 3-D space, and computes, which
perform force calculation on atoms.

• Lulesh is the CHARM++ implementation of LULESH
hydrodynamics mini-application [24]. It simulates ex-
plicit shock hydrodynamics in 3-D space using La-
grangian formulation with leap frog time integration.

We conducted experiments on Stampede supercomputer.
Stampede has Dell PowerEdge server nodes, which have 2
Intel Xeon E5 processors each, accounting for 16 cores per
node. Each node has 32GB memory, and allows up to 16GB
memory to be used for Linux SHM. We used interactive
job allocation on Stampede, which allowed us to send CCS
requests to running applications from external client and
demonstrate an end-to-end malleable jobs system. However,
the allocation in interactive mode is limited to 256 processors
on Stampede. Hence, for larger scale runs (512–2k cores) we
modified the application to initiate a rescale request itself.

For most experiment, we used CHARM++
net-linux-x86_64-ibverbs build that uses low-
level Infiniband Verbs communication library, and one
CHARM++ process (multiple objects) per core. We used
gcc compiler, optimization level −O3, and show results with
RefineLB load balancer unless specified otherwise.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200 250 300

A
ve

ra
ge

 T
im

e
pe

r i
te

ra
tio

n
m

ea
su

re
d

 fr
om

 (r
e)

st
ar

t (
s)

Iteration Number

Shrink 256->128

Expand 128->256

Fig. 4: Adapting load distribution on rescale (LeanMD)
VI. RESULTS

We modified the applications presented in Section V to
make them resizeable. Next, we analyze the effectiveness,
performance, overhead, and benefits of our system.

A. Adapting Load Distribution on Rescale
Figure 4 illustrates LeanMD’s response to rescale requests

on 256 processors on Stampede. We plot the average time
per iteration, measured from a rescale event completion, with
respect to the iteration number. When the shrink request is
handled at iteration 80, the number of processors are reduced
to half, that is 128. The average iteration time doubles as
expected since the average load on each processors doubles.
The peaks in the graph reflect the time taken by load balancing,
which is performed every 20 iterations. On expand (iteration
200), the number of processors doubles. For expand, the load
redistribution happens at the next load balancing step after
restart, which results in drastic reduction in the iteration time
at step 220. Hence, our system is effective in adapting to the
changes in compute power caused by rescale events, meeting
the first design goal (efficient as stated in Section III-A).

B. Shrink Expand Overhead
To quantify the overhead of application reconfiguration on

a rescale event, we measured the breakup of time spent in
different phases. We shrank various applications from 256 to
128 processors and expanded back to 256 processors. Here,
we used the following configurations: Stencil2D: 12k × 12k
grid with block (or object) size of 2k×2k, LeanMD: 4×4×4
cell with 2432 computes, Lulesh: 512 × 256 × 320 grid, and
Wave2D: 64k × 48k data on a 32× 24 object grid.

Shrink vs. Expand: Table II shows the the time taken
in different stages of our scheme. The total time required
is 2.6–4s for shrink and 7.1–8.7s for expand for different
applications (except last row). The reason for the difference
in the time between shrink and expand is evident from the
breakup, which shows that reconnect time is the dominating
factor. Reconnect phase includes a) the time taken by the
launcher to ssh and launch new processes, which is done only
in case of expand, and b) the time taken by the connection
establishment phase. For expand, launcher needs to start 128
new processes. Also, the connection establishment happens
for 256 processes compared to 128 after shrink. Hence, the
reconnect time is more for expand compared to shrink.

TABLE II: Shrink expand time breakup (in seconds) for different applications
Application Shrink: 256→ 128 Expand: 128→ 256

LB Checkpoint Reconnect Restore Total LB (Post) Checkpoint Reconnect Restore Total
LeanMD 0.515 0.039 2.102 0.003 2.658 0.056 0.016 7.079 0.003 7.154
Lulesh 0.560 0.531 2.533 0.432 4.056 0.458 0.520 7.083 0.436 8.496

Wave2D 1.219 0.243 2.542 0.336 4.340 1.046 0.244 7.067 0.337 8.695
Stencil2D 0.299 0.050 2.501 0.054 2.904 0.133 0.036 7.076 0.038 7.283

Stencil2D Net 5.86 0.057 2.584 0.056 8.556 4.096 0.042 9.495 0.044 13.678

 0.001

 0.01

 0.1

 1

 10

3k 6k 12k 24k 48k 96k

Ti
m

e
(s

)

Grid dimension (Problem Size)

Total Time
Reconnect

Load Balancing
Checkpoint

Restore

(a) Effect of problem size, shrinking
from 256 to 128 cores

 0.001

 0.01

 0.1

 1

 10

 32 64 128 256 512 1024 2048

Ti
m

e
(s

)

Number of processors before shrink

Total Time
Reconnect

LB
Checkpoint

Restore

(b) Effect of strong scaling with 24k×
24k problem size, shrinking to half

Fig. 5: Analysis of rescale performance using Stencil2D.
The overhead breakup enabled us to optimize the rescale

time from around 9s to 2.5s for shrink and from 19s to 7s
for expand. Knowing that reconnect phase is the bottleneck,
we optimized it using startup techniques such as batching
and node-awareness [21]. It is possible to further improve
this using variations of advance startup mechanism such as
multi-level startup [21]. Rest of the phases – load balancing
(LB), checkpoint, and restore are very fast, for both shrink
and expand. Considering that rescale events are expected to
be infrequent – every tens or more minutes, our approach has
very low overhead and meets our second design goal (fast).

Effect of network: We also evaluate the performance using
Ethernet as the network option on Stampede. The motivation
is to showcase the applicability of our scheme on commodity
clusters and clouds since Ethernet is the network commonly
available there. The last row in Table II shows that even with
Ethernet, our scheme performs rescale in a reasonable time.
Comparing the results of Infiniband and Ethernet (last two
rows in Table II), it is clear that primarily LB, which involves
data migrations, and reconnect phases are the ones which
suffer due to worse network. Checkpointing and restore phases
operate on local data and communicate only for synchroniza-
tions, hence their performance is not much affected.

C. Scalability Analysis using Stencil2D
Having shown that our approach is efficient and fast, we

next analyze the scalability of our technique with respect to
problem size and increasing node counts.

1) Effect of Problem Size: Figure 5a shows the effect of
changing the problem size of Stencil2D, shrinking from 256
to 128 processors. As the problem size grows, load balancing,
checkpoint, and restore times increase. This can be attributed
to increased data per process. The checkpoint size is around
10MB per process for 12k size and 640MB per process for 96k
grid dimension. As the grid dimension doubles, checkpoint
size increases by 4X, resulting in slowdown of checkpoint and

TABLE III: Application-specific development effort
Application Original SLOC Modified SLOC
Stencil2D 207 31
LeanMD 703 37
Lulesh 4066 15

Wave2D 363 37

restore phases. It is evident from Figure 5a that our SHM based
approach works well since even for 640MB data, only 0.5s is
spent in checkpointing. The load balancing time also increases
with problem size since more data needs to be migrated. The
reconnect time remains constant since it is independent of
the problem size. For very large memory applications, where
the data cannot fit in SHM, our approach can be extended to
seamlessly switch to disk-based checkpointing.

2) Effect of Strong Scaling : Next, we analyze the scalabil-
ity with respect to increasing number of processors, but con-
stant problem size (24k for Stencil2D). Here, we show results
till 2k cores – external program initiated rescale (interactive
mode) till 256 cores and application initiated rescale for 512–
2k cores. The basic approach has no impediments to running
on even larger scale but we were restricted by allocation limits.

Figure 5b shows that with increasing scale, the time for
reconnect phase slowly increases and dominates the total
rescale time at large scale. The checkpoint, restore, and load
balancing phase scale very well till a particular point – 256
for checkpoint and 1k for load balancing. With increasing pro-
cessor count, the per-process memory footprint proportionally
decreases. This results in reduced checkpoint size and less
communication per processor. However, as we scale further,
the barrier synchronizations present in these phases become
notable, resulting in increase in time. Overall though, the time
is still small (16s for 2k → 1k shrink). The corresponding
time for expand (1k → 2k) is 40s. Figures 5 shows that our
approach scales reasonably well with respect to both, problem
size and core counts, hence meeting our third design goal.

D. Programmer Effort

To quantify the programmer effort needed to make ap-
plications malleable using our runtime, we measured the
original and the modified source lines of code (SLOC) for our
benchmarks and applications, using sloccount. Table III
shows that we needed to modify very few SLOC, meeting our
last design goal (low-effort). For Lulesh, which is the largest
of the mini-applications, we needed to modify only 15 SLOC,
which was very little effort (<0.4% of original SLOC). The
primary modifications required were to register the resume
callback with the runtime and make the mainChare (main
or entry point object in CHARM++) as a migratable entity by
providing its migration constructor and pack unpack routine.

E. Case Study with Adaptive Scheduler

To demonstrate that our approach towards integrating the
resource manager and parallel runtime works in practice, we

N
o
d
e

I
D
s

1 ☐ ☐ ☐ ☐
2 ☐ ☐ ☐ ☐
3 ☐ ☐ ☐ ☐
4 ☐ ☐ ☐ ☐
5 ! ! ! ! ! ! ! ! ! ! ! ! ☐ ☐
6 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ! ☐ ☐
7 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ! ☐ ☐
8 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ! ☐ ☐
9 " " " " " " " " " " " " " " ✕ ! ☐ ☐
10 " " " " " " " " " " " " " " ☐ ☐ ☐ ☐
11 " " " " " " " " " " " " " " ! ☐ ☐
12 " " " " " " " " " " " " " " ! ! ☐ ☐
13 " " " " ! ! ! ! ! ! ! ! ! ! ! ! ☐ ☐
14 " " ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ! ☐ ☐
15 " " ✕ ✕ ! ! ! ! ! ! ! ! ! ! ! ! ☐ ☐
16 " " ! ! ! ! ! ! ! ! ! ! ! ! ☐ ☐

 111 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

N
o
d
e

I
D
s

1 " " " ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
2 " " " ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
3 " " " ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
4 " " " ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
5 " " " ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
6 " " " ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
7 " " " ! ! ! ! ! ☐ ☐ ☐ ☐ ☐ ☐
8 " " " ! ! ! ! ! ☐ ☐ ☐ ☐ ☐ ☐
9 " " " ! ! ! ! ! ☐ ☐ ☐ ☐ ☐ ☐
10 " " " ! ! ! ! ! ☐ ☐ ☐ ☐ ☐ ☐
11 " " " ! ! ! ! ! ☐ ☐ ☐ ☐ ☐ ☐
12 " " " ! ! ! ! ! ☐ ☐ ☐ ☐ ☐ ☐
13 " " " ! ! ! ! ! ☐ ☐ ☐ ☐ ☐ ☐
14 " " " ! ! ! ! ! ☐ ☐ ☐ ☐ ☐ ☐
15 " " " ! ! ! ! ! ☐ ☐ ☐ ☐ ☐ ☐
16 " " " ! ! ! ! !

 111 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

 Job1 " Job 2 ✕ Job 3 ! Job 4 ☐ Job 5 Idle

a) Malleable	

Jobs	

	

b) Rigid	

	
 	
 	
 	
 	
 Jobs	

	

Time	
 (in	
 100	
 seconds)	

White means
idle nodes

�
�
�
�

��

Shrink (Job 2 arrives)
Reduced response time �

�
��

ExpandExpand
Increased utilization

Reduced makespan

Malleable

Rigid

Fig. 6: Nodes allocated over time
conducted a case study with an adaptive job scheduling algo-
rithm. We implemented a variant of dynamic equipartitioning
strategy which has previously been shown to have significant
performance gains [4], [25]. The strategy first assign each
job its minimum required nodes on a first come first serve
basis. After that, if each job received its minimum needs
and more nodes remain available, they are equally distributed
to the scheduled jobs. We modified this policy to consider
Tgap rescale, that is the gap between two scheduling actions
(launch, shrink, or expand) on same job. Only those jobs
are considered for scheduling for which at least Tgap rescale

seconds have elapsed since they were launched or since they
were last shrunk or expanded.

We used this job scheduler in conjunction with our resource
manager and the malleable runtime. For the purpose of this
case study, we consider the interactive mode allocation on
Stampede as our small cluster (16 nodes, 256 cores). Five
jobs were submitted to the scheduler with arrival times of 0,
1, 3, 7, and 7 minutes from the start time respectively. For
simplicity all the five jobs run same application (Stencil2D
with 10000 iterations each). The range for all the applications
to shrink and expand is from 4 to 16 nodes, with 16 cores
per node. Tgap rescale was set to 40s for this experiment.
Figure 6a (top) shows the nodes to job mapping over time,
hence depicting overall cluster utilization and showing how
these jobs are rescaled. For example, when job 2 arrives, job
1 is shrunk from 16 to 8 nodes to give the rest to job 2.
This is reflected by the change in the nodes to job mapping
at time=100s. Similarly, towards the end, when job 4 finishes,
job 5 is expanded from 4 to 16 nodes at time=1700s.

Figure 6b shows the allocation of nodes when the same jobs
are run but they are rigid. Here, we used a First Come First
Serve policy. Also, we used a random number generator over
the range [4-16] to choose the number of nodes needed by a
job. Figure 6 illustrates the improvement in system utilization
and total completion time using malleable vs. rigid jobs.

Table IV compares the achieved performance with differ-
ent job types and different values (40s, 100s, and 500s) of
Tgap rescale for malleable jobs. To emulate moldable jobs,

TABLE IV: Comparison of different scheduling policies
Scheduling Total Mean Mean Util-

Type Time (s) Response Completion -zation
Malleable40 2751 201 1767 97%
Malleable100 2672 142 1699 98%
Malleable500 2844 287 1454 97%

Moldable 3792 289 1685 62%
Rigid 3816 928 1817 70%

Total Time

Mean
Response

Mean
Completion

Utilization
(Inverted)

Moldable

Malleable-40

Malleable-100

Malleable-500

Rigid

Fig. 7: Scheduling comparison along different metrics
we set a very large value of Tgap rescale, which eliminates
any rescale events. The results for rigid case are the average
of three runs with different random assignments for number
of nodes to jobs. The data of Table IV is normalized and
visualized using a spider chart (Figure 7). Here, the four
dimensions represents our comparison metrics, with smaller
being better. For utilization, we plotted the inverted values to
get a consistent visualization. In Figure 7, the solid (green)
quadrilateral which corresponds to rigid jobs is the worst
since it perform poorly on all the dimensions. Figure 7 also
shows that for this case study, most benefits of malleability
are obtained in terms of mean response time, followed by
utilization, total completion time, and mean completion time.
Moreover, Tgap rescale can have significant impact on achieved
benefits. If Tgap rescale is very small, there can be very
frequent rescale events, leading to high performance overhead,
which can increase mean completion time. If Tgap rescale is
very high, the system will not benefit much as there will be
very few rescale events. For our case study, all the three values
Tgap rescale yielded benefits but the optimal value depends on
the metric of interest. This can also be seen in Figure 7 by
observing the malleable-40 and malleable-100 shapes along
mean response and mean completion time dimensions.

In practice, we expect a good value of Tgap rescale to be
few tens of minutes. In this work, we ran short-duration jobs
since our primary intention was to demonstrate the working
system on a real supercomputer rather than quantifying the
exact benefits of malleable job schedulers. Moreover, we were
constrained by the the time limit on an interactive mode
allocation on Stampede. The exact benefits of malleability
depend on various factors, such as job arrival rate, runtimes,
and the scheduling algorithm [2]–[5], [8].

VII. NON-TRADITIONAL USE CASES

In previous sections, we designed a malleable parallel run-
time and demonstrated its integration and utility in conjunction
with an adaptive resource manager and a job scheduler. The

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100 120 140

P
ro

gr
es

s:
 C

om
pl

et
ed

 It
er

at
io

ns

Time (s)

Fault notification

Node back notification

Fig. 8: Proactive fault tolerance using malleable RTS and
resource manager to application communication channel
ability of a parallel runtime to rescale can be applied to other
contexts. Here, we show two such emerging use cases.

A. Reliability: Proactive Fault Tolerance

High performance parallel systems with millions of cores
are currently being used and even bigger systems are being
planned as we move towards the exascale era. One of the
biggest challenges for operating under such massive scale is
to achieve fault-tolerant application execution since failures
become more and more frequent as the number of system
components increase [1]. The traditional solution to deal with
failures is to react to failures by using mechanisms, such
as checkpoint-restart. A less explored approach is to predict
failures, and proactively vacate the processor where fault is
imminent [26]. Failure prediction can be done using hard-
ware devices supporting early indication of failures, sensors,
monitoring core temperatures, and other techniques. Inspired
by the work of Chakravorty et al. [26], we demonstrate how
we can leverage the ability of our runtime system to shrink
and expand, and the bi-directional communication channel
between the resource manager and the parallel runtime to
enable proactive fault-tolerance.

Once the cluster resource manager predicts that a failure
is imminent on a node, it can inform the application by
sending a CCS request containing information regarding the
failing node. Figure 8 demonstrates how an application (here
LeanMD), initially running on 16 nodes (256 processors) on
Stampede, reacts to the information communicated by the
resource manager. In Figure 8, first few seconds are taken
by the job to start-up, hence no application progress is made
during that time. At the next synchronization point after
receiving the fault notification, the application re-configures
itself using shrink and continues running on remaining 15
nodes. Once, the node is up again, the application can be
informed. On this notification, the parallel runtime expands
the job to use 16 nodes again.

Our rescale mechanism provides us with rich proactive
fault tolerance capability. We can tolerate failures at the
level of a node, which could translate into k application
processes (e.g. k = 16 on Stampede) rather than a single
application process. Most current fault-tolerance mechanism
tolerate a single process failure. Furthermore, most current
fault-tolerance mechanisms make an inherent assumption that
either the failing node will be available instantaneously after

1/7/14 EC2 Management Console

https://console.aws.amazon.com/ec2/home?region=us-west-2#s=SpotInstances 1/10

Services

Abhishek Gupta

Oregon

Help

To customize one-click navigation shortcuts simply drag your services to and from the menu bar above.
 CloudFormation

 CloudFront

 CloudSearch

 CloudTrail

 CloudWatch

 Data Pipeline

 Direct Connect

 DynamoDB

 EC2

 ElastiCache

 Elastic Beanstalk

 Elastic MapReduce

 Elastic Transcoder

 Glacier

 IAM

 Kinesis

 OpsWorks

 RDS

 Redshift

 Route 53

 S3

 SES

 SNS

 SQS

 Storage Gateway

 SWF

 VPC

Settings

Toolbar Items Icons and Text

Animated Effects

ForumsSupportDocumentationOther Resources
Account Type: Root
My AccountBilling & Cost ManagementSecurity CredentialsSecurity Credentials

Sign Out
US East (N. Virginia)US West (Oregon)US West (N. California)EU (Ireland)Asia Pacific (Singapore)Asia Pacific (Tokyo)Asia Pacific (Sydney)South America (São Paulo)

Edit

Amazon

EC2

Request Spot Instances Cancel Pricing History

Viewing: All Requests Search

You have not requested any spot priced instances.
Click the Request Spot Instances button to set a price for instances you want.

Product: Linux/UNIX Instance Type: cc2.8xlarge Date Range: 1 day Zone: us-west-2c

Close

22:00 0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00

$0.5000

$1.0000

$1.5000

us-west-2c

Spot Instance Pricing History Cancel

Fig. 9: Amazon EC2 spot price variation for cc2.8xlarge
instance (zone us-west2c) on Jan 7, 2014
failure or not at all, or a spare node will be available to
replace the failing node. However, they do not allow the
possibility of reusing a node which comes back into operation
sometime after it failed, e.g., it may just need a restart. Our
scheme allows to reuse that node at a later time using expand.
Finally, proactive fault-tolerance gives an additional advantage
by eliminating any execution rollback, such as restart from
previous checkpoint in traditional fault tolerance schemes,
when the failure actually occurs.

B. Price-sensitive Rescale in Cloud Spot Markets

Another emerging direction for HPC, especially for small
and medium-scale users who have limited or no access to
supercomputers, is HPC in cloud [27]. For such users, rent-
ing rather than owning a cluster provides the advantages of
pay-as-you-go pricing and elasticity. Amazon EC2 [28] has
emerged as the leader in providing such Infrastructure-as-a-
Service (IaaS). For HPC, Amazon offers the Cluster Compute
instance (CC) [29], of three kinds – reserved, on-demand, and
spot. Reserved instances require long reservations at a lower
price and are only suitable when a user has long-term static
demands. On-demand instances allow the user more flexibility
but at a higher price. Spot instances offer the unused cloud
capacity at a dynamically varying price, typically very small
compared to on-demand instance price. Spot instances work
on a bidding based model. A users places her bid for compute
power. If and when her bid exceeds the current spot price,
instances are allocated to the user. When the spot price exceeds
the bid, the instances are terminated without notice. The user
is charged with the spot price at the start of each instance-
hour. The spot price changes periodically based on supply and
demand. Figure 9 shows the spot pricing variation within a day
(Jan 7, 2014) of Amazon cc2.8.xlarge instance (zone us-west-
2c). This data was obtained from the pricing history available
from Amazon EC2 management console.

The malleability support in an HPC runtime can be used
to exploit this dynamic spot pricing to achieve cost benefits.
Our main idea is to 1) keep a certain minimum number of
instances needed for running a job in the on-demand instance
pool (static set) and 2) perform price-sensitive rescale over the
spot instance pool to add more compute power (dynamic set).
By price-sensitive rescale we mean performing expand when
the spot price falls below a threshold and performing shrink
when it exceeds the threshold (not the bid price, one would still
place high bid to avoid abrupt termination). By specifying the
same availability zone and placement group when requesting
the static on-demand and the dynamic spot instances, it can be
possible to get them in the same physical cluster [29]. If that
does not happen, one can construct the static set also from the
spot instance by placing a high bid for that set.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
 0

 4

 8

 12

 16

 20

 24

E
ffe

ct
iv

e
pr

ic
e

in
 $

 p
er

 in
st

an
ce

-h
ou

r

U
sa

bl
e

ho
ur

s
in

 a
 d

ay

Price threshold ($)

Effective Price
Usable hours

Fig. 10: Potential benefits of price-sensitive rescaling over
Amazon EC2 spot instances, and the trade-off between
effective price (left y-axis) and usable hours (right y-axis)

Running without rescale capability necessitates setting the
bid at a very high price and paying whatever the spot price is at
the start of the instance-hour. Using the data of Figure 9, that
would entail setting the bid price greater than $1.25, which
results in a cost of $16.65 over a period of 24 hours for
a spot-instance. This results in an effective price of $0.69
per instance-hour. In contrast, the combination of malleable
parallel runtime and price-sensitive rescaling enables a user to
choose the pricing point below which she wants to operate.
As an example, setting a price threshold of $0.5 results in
operating costs of $4.9 for 12 compute hours, resulting in
average price of $0.41 per instance-hour. Overall, that results
in around 40% better effective price for the same instances
compared to the default usage. However, the instances will
be used only for the hours where the price at the start of the
hour is less than $0.5. Hence, there is a trade-off between the
effective price and the usable hours as reflected in Figure 10,
which shows that with a lower effective price attained using
rescale , the usable compute hours are reduced. In most cases,
this problem can be circumvented by either running more
instances at this lower price or operating for longer periods.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a novel technique to enable malleability
in a parallel runtime system using task migration, load-
balancing, checkpoint-restart, and Linux shared memory. We
implemented this approach using CHARM++ runtime and per-
formed resize on one benchmark and three mini-applications.
Through experimental evaluation and analysis on Stampede
up to 2048 cores, we demonstrated that our approach is fast,
scalable, practical, and effective. In addition, we integrated
our malleable runtime system with a resource manager and
demonstrated split-phase execution of job scheduling decisions
through a bi-directional communication channel between ap-
plication and the resource manager. Although our focus was on
scheduler-triggered shrink or expand, the techniques developed
here are also useful for evolving jobs and other emerging use
cases such as proactive fault tolerance and HPC in cloud.

Future research directions include finding solutions for
other practical issues in realizing malleable jobs, such as a
charging model for HPC system usage by malleable jobs, user
incentives for malleability, and scheduling issues including
node topology-awareness and fairness.

REFERENCES

[1] D. Brown et al., “Scientific Grand Challenges: Crosscutting Tech-
nologies for Computing at the Exascale.” U.S. DOE PNNL 20168,
Washington, DC, Tech. Rep., 2011.

[2] M. C. Cera, Y. Georgiou, O. Richard, N. Maillard, and P. O. A.
Navaux, “Supporting Malleability in Parallel Architectures with Dy-
namic CPUSETs Mapping and Dynamic MPI,” ser. ICDCN’10.

[3] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and
P. Wong, “Theory and Practice in Parallel Job Scheduling,” in Job Sched.
Strategies for Parallel Processing, London, UK, 1997, pp. 1–34.

[4] L. V. Kalé, S. Kumar, and J. DeSouza, “A Malleable-Job System for
Timeshared Parallel Machines,” in CCGrid 2002.

[5] K. El Maghraoui, T. Desell, B. Szymanski, and C. Varela, “Dynamic
Malleability in Iterative MPI Applications,” in IEEE CCGrid 2007.

[6] R. A. Dutton and W. Mao, “Online scheduling of malleable parallel
jobs,” in 19th IASTED Intl. Conference on Parallel and Distributed
Computing and Systems, ser. PDCS ’07.

[7] J. Hungershofer, “On the Combined Scheduling of Malleable and Rigid
Jobs,” in SBAC-PAD 2004. IEEE.

[8] G. Utrera, J. Corbalan, and J. Labarta, “Implementing Malleability on
MPI Jobs,” in 13th IEEE Intl Conf. on Parallel Arch. and Compilation
Techniques (PACT’04).

[9] D. G. Feitelson and L. Rudolph, “Toward Convergence in Job Schedulers
for Parallel Supercomputers,” in JSSPP, 1996.

[10] C. Huang, O. Lawlor, and L. V. Kalé, “Adaptive MPI,” in Proceedings
of the 16th International Workshop on Languages and Compilers for
Parallel Computing (LCPC 2003), LNCS 2958, College Station, Texas,
October 2003, pp. 306–322.

[11] J. Buisson, O. Sonmez, H. Mohamed, W. Lammers, and D. Epema,
“Scheduling Malleable Applications in Multicluster Systems,” in IEEE
Cluster, 2007.

[12] B. Francine et al, “Adaptive computing on the grid using apples,” IEEE
Trans. Parallel Distrib. Syst., vol. 14, no. 4, pp. 369–382, Apr. 2003.

[13] G. Wrzesinska, J. Maassen, and H. E. Bal, “Self-adaptive applications
on the grid,” in Proceedings of the 12th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP ’07. New
York, NY, USA: ACM, 2007, pp. 121–129.

[14] S. S. Vadhiyar and J. J. Dongarra, “”Self Adaptivity in Grid Comput-
ing”,” Concurrency and Computation: Practice and Experience, vol. 17,
no. 2-4, pp. 235–257, 2005.

[15] L. Kale and S. Krishnan, “Charm++: A Portable Concurrent Object
Oriented System Based on C++,” in OOPSLA, September 1993.

[16] G. R. Gao, T. L. Sterling, R. Stevens, M. Hereld, and W. Zhu, “Parallex:
A study of a new parallel computation model,” in IPDPS, 2007, pp. 1–6.

[17] M. Bhandarkar, L. V. Kale, E. de Sturler, and J. Hoeflinger, “Object-
Based Adaptive Load Balancing for MPI Programs,” in Proceedings of
the International Conference on Computational Science, 2001.

[18] H. Kamal and A. Wagner, “FG-MPI: Fine-Grain MPI for multicore and
clusters,” in The 11th IEEE Intl. Workshop on Parallel and Distributed
Scientific and Engineering Computing (PDESC). IEEE, Apr. 2010.

[19] “Top500 supercomputing sites,” http://top500.org.
[20] G. Zheng, “Achieving high performance on extremely large parallel ma-

chines: Performance prediction and load balancing,” Ph.D. dissertation,
University of Illinois (UIUC), 2005.

[21] A. Gupta, G. Zheng, and L. V. Kale, “A multi-level scalable startup
for parallel applications,” in Proc. of Intl. Workshop on Runtime and
Operating Systems for Supercomputers, Tucson, AZ, USA, 5 2011.

[22] F. Gioachin, C. W. Lee, and L. V. Kalé, “Scalable Interaction with
Parallel Applications,” in Proceedings of TeraGrid’09, Arlington, VA,
USA, June 2009.

[23] A. Bhatele et al., “Overcoming Scaling Challenges in Biomolecular
Simulations across Multiple Platforms,” in IPDPS 2008.

[24] “Hydrodynamics Challenge Problem, Lawrence Livermore National
Laboratory,” Tech. Rep. LLNL-TR-490254.

[25] S.-H. Chiang and M. K. Vernon, “Dynamic vs. Static Quantum-based
Parallel Processor Allocation,” in Job Scheduling Strategies for Parallel
Processing, 1996.

[26] S. Chakravorty, C. L. Mendes, and L. V. Kalé, “Proactive Fault Tolerance
in MPI Applications Via Task Migration,” in HiPC, 2006.

[27] A. Gupta et al, “The Who, What, Why, and How of HPC Applications
in the Cloud.” in 5th IEEE Intl. Conf. on Cloud Computing Technology
and Science (CloudCom) ’13.

[28] “Amazon Elastic Compute Cloud (EC2),” http://aws.amazon.com/ec2.
[29] “High Performance Computing (HPC) on AWS,” http://aws.amazon.

com/hpc-applications.

