
A

Power Management of Extreme-scale Networks with On/Off Links in
Runtime Systems

Ehsan Totoni, University of Illinois at Urbana-Champaign
Nikhil Jain, University of Illinois at Urbana-Champaign
Laxmikant V. Kale, University of Illinois at Urbana-Champaign

Networks are among major power consumers in large-scale parallel systems. During execution of common
parallel applications, a sizeable fraction of the links in the high-radix interconnects are either never used
or are underutilized. We propose a runtime system based adaptive approach to turn off unused links, which
has various advantages over the previously proposed hardware and compiler based approaches. We discuss
why the runtime system is the best system component to accomplish this task, and test the effectiveness
of our approach using real applications (including NAMD, MILC), and application benchmarks (including
NAS Parallel Benchmarks, Stencil). These codes are simulated on representative topologies such as 6-D
Torus and multilevel directly-connected network (similar to IBM PERCS in Power 775 and Dragonfly in
Cray Aries). For common applications with near-neighbor communication pattern, our approach can save
up to 20% of total machine’s power and energy, without any performance penalty.

Categories and Subject Descriptors: D.3.4 [PROGRAMMING LANGUAGES]: Processors—Run-time en-
vironments; C.1.4 [PROCESSOR ARCHITECTURES]: Parallel Architectures; B.4.3 [INPUT/OUTPUT
AND DATA COMMUNICATIONS]: Interconnections (Subsystems)

1. INTRODUCTION
Large-scale parallel computers are becoming much bigger in terms of the number of
processors, and larger interconnection networks are being designed and deployed for
those machines. The reason is that the demand for performance of supercomputers
is escalating, while single-thread performance improvement has been very limited in
the past several years. Moreover, the many-core era with on-chip networks is rapidly
approaching, which will add another level to the interconnection network of the sys-
tem [Totoni et al. 2012]. These immense networks are a key factor in the performance
and power consumption of the system.

Modern networks are over-provisioned in resources (e.g. links), in order to provide
good performance for a range of applications. Since networks with lower latency and
higher bandwidth, in comparison to existing popular networks (such as 3D Torus net-
works), are necessary for some applications executing on multi-petaflop/s systems,
higher radix network topologies such as multi-level directly connected ones [Arimilli
et al. 2010; Bhatele et al. 2011b; Faanes et al. 2012] and high-dimensional tori [Ajima
et al. 2011] are being proposed and used. Although these networks are designed to
provide enough bisection bandwidth for the worst case (e.g. all-to-all communication

The authors are members of the Parallel Programming Laboratory in the Department of Computer Science
at the University of Illinois at Urbana-Champaign, Urbana, IL, 61801. For contact information, please visit
http://charm.cs.illinois.edu/
Preliminary work for this paper was presented at Workshop on High-Performance, Power-Aware Computing
(HPPAC 2013) [Totoni et al. 2013].
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1539-9087/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

in FFT), not all applications make use of the abundant bandwidth. Furthermore, the
intention is to provide low latency for all applications, hence the network provides
small hop count and low diameter for any given pair of nodes. However, the set of com-
municating node pairs of different applications vary, which may leave some part of the
network unused in each application. As evidenced in this paper (Section 3), the net
result is that many applications do not use a large fraction of links, especially for high
radix networks.

Saving network power is crucial for keeping HPC systems within a reasonable power
budget. Power and energy consumption are major constraints for HPC systems and fa-
cilities [Kogge et al. 2008], especially at the high end. Interconnection networks are
often among the major power consumers for different systems, and many researchers
have reported on their power consumption. For example, routers and links are ex-
pected to consume about 40% of some server blades’ power, which is the same as their
processors’ power budget [Shang et al. 2003; Soteriou and Peh 2007]. For current HPC
systems, using an accurate measurement framework, Laros et.al. [Laros et al. 2012]
report more than 25% total energy savings by shutting off some of the network re-
sources of a Cray XT system. In future systems, especially because of the increasing
number of cores per chip, and aggressive network designs, the network is expected to
consume 30% of the system’s total power [Kogge 2008]. From this power consumption,
up to 65% is allocated to the links and the resources associated with them [Soteriou
and Peh 2007] (and the remaining 35% is mostly consumed by routers). In addition,
up to 40% of the many-core processor’s power budget is expected to go to its on-chip
network [Soteriou and Peh 2007].

In contrast to processors, the network’s power consumption does not currently de-
pend on its utilization [Soteriou and Peh 2007], and it is near the peak whenever the
system is “on”. For this reason, while about 15% of the power and energy is allocated
to the network in many current systems [Mahadevan et al. 2009], it can go as high
as 50% [Abts et al. 2010] when the processors are not highly utilized in data centers.
While, for HPC data centers the processors are not usually as underutilized, they are
not fully utilized all the time either and energy proportionality of the network is still
a problem. Therefore, it is essential to save the network’s power and make it energy
proportional [Abts et al. 2010], i.e. the power and energy consumed should be propor-
tionate to the usage of the network.

An effective approach to address this problem and improve energy proportionality
is to turn off unused links. Thus, we propose addition of hardware support for on/off
control of links (links that can be turned on and off), which can be used by the runtime
system to save the wasted power and energy consumption. We show how the runtime
can accomplish that by observing the applications’ behavior. Note that adaptive run-
times have also been shown to be effective for load balancing and power management
(using DVFS) [Sarood et al. 2012]; our approach makes use of the same infrastructure.
We also discuss why the hardware and compiler cannot perform this task effectively,
and why network power management should be done by the runtime system.

Our contributions can be summarized as follows:

— We have evaluated the communication patterns of different HPC applications’ and
benchmarks’ with respect to extreme-scale high-radix networks. The applications
and benchmarks we evaluated include NAMD [Kale et al. 2011], MILC [Bernard
et al. 2000], ISAM [Jain and Yang 2005], Stencil benchmarks (representing nearest
neighbor communication patterns) and some of NAS Parallel Benchmarks [Bailey
et al. 1992].

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

— We have proposed a runtime system based approach to adaptively turn off unused
links, which has various advantages over the previously proposed hardware and com-
piler based approaches.

— We have developed a theoretical model of link utilization of HPC applications, which
provides insights about the applications and networks.

— We present a case study demonstrating that system design alternatives (e.g. map-
pings) with similar performance can have very different power consumption profiles.

Using our basic approach, for commonly used nearest neighbor applications such
as MILC [Bernard et al. 2000], 81.5% of the links can be turned off for a multilevel
directly-connected network (around 16% of total machine power, assuming 30% net-
work power budget), and 20% for 6D Torus (Sections 3 and 4). Moreover, we demon-
strate that approximately 20% of the machine power can potentially be saved for most
applications on these networks (Section 6) using a smarter scheduling approach. All
these can be realized if the system allows the runtime system to turn off some of the
links.

Sections of this paper are organized as follows. Section 2 establish the background
by discussing the related work, extreme-scale networks and applications’ communi-
cation patterns. Section 3 demonstrates, via empirical evidence, that many links are
never used on different high-radix networks and proposes a basic approach to turn
them off in the runtime system. Subsection 3.2 of this section presents a case study,
which shows how much our basic approach can save for two different design alterna-
tives (which have the same performance). Section 4 discusses the implementation of
our approach in a runtime system, and methods to handle practical issues that arise.
Section 5 develops a theoretical model to estimate the power and energy that can be
saved for an application, running on a high-radix network. The insight from this model
helps us generalize the idea into a more practical scheduling approach in Section 6,
which also considers the on/off transition delay. We conclude the paper in Section 7.

2. BACKGROUND AND MOTIVATION
2.1. Related Work
Power consumption of interconnection networks in supercomputers, distributed sys-
tems and data centers has received special attention in recent times. Several tech-
niques have been proposed for reduction of network power in non-HPC data cen-
ters [Abts et al. 2010; Mahadevan et al. 2009; Heller et al. 2010]. Intelligent power-
aware job allocation and traffic management schemes form the basis of many of these
approaches. Laros et.al. [Laros et al. 2012] present results on potential power saving
using CPU and network scaling, by post processing the data collected from the moni-
toring system of Cray XT machines. Their work, using real systems (instead of simu-
lations and projections) and real applications, shows the importance and potential of
network power management for supercomputers.

Among hardware based approaches, power management of interconnection net-
works using on/off links has been studied [Soteriou and Peh 2007; Alonso et al. 2006;
Li et al. 2011]. On/off links, which refers to shutting down communication links that
are not being used, has shown to be a useful method to save power. However, depen-
dence on hardware for power management may cause considerable delay for some ap-
plications. Additionally, hardware does not have enough global information about the
application to manage network power effectively.

Soteriou et.al. [Soteriou et al. 2007] show severe possible performance penalty of
hardware approaches, and propose the use of parallelizing compilers for power man-
agement of the links. However, parallelizing compilers are not widely used because of
their limited effectiveness, and most parallel applications are created using explicit

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

parallel programming models [Becker 2012]. Furthermore, compilers do not have in-
formation about input dependent message flow of an application, and cannot manage
the power effectively for such applications.

New programming paradigms to perform power management inside the application
(by giving more information about the communication) has also been proposed [Hendry
2013]. Although the programmer has more information about the application, involve-
ment of the programmer compromises productivity. In addition, such approaches can-
not be applied to legacy code easily. Thus, automatic approaches seem more practical.

As an alternative to hardware, compiler and application driven power management,
we advocate network power management by the runtime system. Limited network
power management by the runtime system, such as for collective algorithms, has been
proposed in the past. Power management using on/off links in the runtime system
has also been studied [Conner et al. 2007]. However, that approach is limited to man-
agement of network links only during collective operations in MPI. In this paper, we
propose the use of an adaptive runtime system to manage the power of network links
using on/off control, taking into account all of the communications performed by an
application.

2.2. Network Power Management Support on Current Machines
Unfortunately, network power management support on current HPC machines is very
limited. For example, it is possible to reduce link and node injection bandwidth on
a Cray XT system (effectively turning off some portion of the links), but it requires a
reboot of the whole machine [Laros et al. 2012]. Thus, using this feature is impractical.
Other recent machines such as IBM Blue Gene/Q, Cray XE6, and Cray XC30 do not
seem to have any feature for dynamic network power management either. However,
techniques such as on/off links have been implemented before, and it seems feasible
to include them for HPC machines as well. For instance, some commercial systems 1

can disable some of the board-to-board and box-to-box links to save power. Currently it
takes 10,000 cycles to turn the links on/off, although even this can be improved much
further [Soteriou and Peh 2007].

2.3. Extreme-scale Networks
In this section, we briefly describe n-dimensional tori and multilevel directly-connected
networks, which have been used in recently developed supercomputers that are pre-
dominant in the Top-500 list [top500 2013].
n-dimensional tori have been used in many supercomputers such as IBM Blue

Gene series, Cray XT/XE, and the K computer. Given an n-dimensional mesh, a torus
is obtained by adding wrap around links in every dimension, i.e., by adding links that
connect nodes at one end of a dimension to the nodes at the other end. Tori are sym-
metric in the sense that the number of links out of every node is the same, with each
node being connected to two other nodes in every dimension. An n-dimensional torus
strikes a good balance in terms of bisection bandwidth, latency, and the link cost, and
have been shown to be scalable. In the past few years, most vendors have increased the
torus dimensionality from three (as it is in IBM BlueGene/P and Cray XT/XE) to five
(IBM BG/Q) and six (the K computer). This shift is necessary in order to keep latency
low, with possible increase in the bisection bandwidth. We present analysis and results
for link utilization of an n-dimensional torus, with n varying from 3 to 10.

Multilevel directly-connected networks have been proposed by IBM (PERCS
network [Arimilli et al. 2010]), the DARPA sponsored Exascale study report [Kogge
et al. 2008] (Dragonfly topology [Kim et al. 2008]), and Cray (Aries network [Faanes

1Motorola MC92610 WarpLink 2.5 Gb/s Quad SERDES Transceiver, Motorola Inc., www.motorola.com

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

Node

Node

Node

Node

Node. . .

Supernode

Supernode

Supernode

Supernode

Node. . .

Fig. 1. IBM PERCS - a two-level directly-connected network

et al. 2012]). In all of these proposals, similar multi-level directly connected networks
have been described. In these networks, nodes are logically grouped together at mul-
tiple (currently two or three) levels. In each level, nodes (or the grouped entities from
previous level) are connected in an all-to-all manner. Hence, in the first level a clique
of nodes is formed, and in the second level, a clique of cliques (from the first level) is
constructed and so on. The resultant network, with its large number of links, boasts
of a large bisection width. At the same time, the latency of the entire system is low
(few-hop connectivity between any pair of nodes). Currently, these networks are used
in some large-scale IBM Power 775 machines 2 and in the Cray XC30 machines. In this
study, we use the parameters of PERCS as an instance of multilevel directly-connected
networks, since they are readily available. However, the conclusions will apply to other
multilevel directly-connected networks as well.

In Figure 1, we present a prototype of the PERCS network (two-level directly con-
nected), in which the nodes are grouped, and connected in an all-to-all manner to form
supernodes. These supernodes are further connected in an all-to-all fashion to obtain
the entire system. We present link utilization results for these networks as well.

We observe that the two topologies we present results on, multilevel directly-
connected networks and tori with high dimensionality, have a large number of links.
The presence of these links provides an opportunity for high performance, as well as a
challenge for power and energy proportionality.

2www.top500.org

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

2.4. Application Communication Patterns
Interconnection networks are designed to serve a range of communication patterns,
in terms of bandwidth and latency. High radix networks, such as multilevel directly
connected ones, provide a large number of links to support demanding communication
patterns such as all-to-all and varying demands of different applications. In addition,
in order to maintain low latency and fewer hops between every node pair, a large
number of links are required. However, each application has its own communication
pattern, so many node pairs of a system may not communicate during execution of a
common application, leaving a large fraction of the network unused.

(a) NAMD PME 256K cores (b) MILC 4K cores

(c) CG 64K cores (d) MG 64K cores

Fig. 2. Communication pattern of different applications

Figure 2 shows the communication pattern of some of the applications we use in this
paper. NAMD [Kale et al. 2011], implemented in CHARM++ [Kale and Zheng 2009], is
a prevalent parallel molecular dynamics code designed for high-performance simula-
tion of large bio-molecular systems. Its localized communication pattern represents the
pattern of many common particle interaction HPC applications. MIMD Lattice Compu-
tation (MILC) [Bernard et al. 2000] is widely used to study quantum chromodynamics
(QCD). Similar to many HPC applications, it has a near-neighbor communication pat-
tern. We use CG from NAS Parallel Benchmarks (NPB) [Bailey et al. 1992] to represent
expensive many-to-many communication pattern found in some applications and MG
from NPB to represent the communication pattern of common numerical solvers.

Both the vertical and horizontal axes of Figure 2 represent the nodes in a system.
A point (x, y) is marked if the node y on the vertical axis sends a message to the node

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

x on the horizontal axis, during the execution of an application. Each marked point
has been enlarged for better illustration. It can be seen that many of the node pairs
never communicate during execution of various applications. Moreover, the number
of pairs that communicate varies significantly with the application. For instance, in
NAMD PME and CG, the number of node pairs that communicate is much larger than
in MILC and MG.

Most of the communicating pairs in NAMD PME are due to the FFT performed in
the PME phase, which is done once every four iterations. Without the PME option,
NAMD has a near neighbor communication pattern, which can be seen in the dense
region around the diagonal of Figure 2(a). CG, on the other hand, has a more uniform
and dense communication pattern. Applications like NAMD PME and CG, that have
large number of communicating pairs are more likely to use most of the network.

On the other hand, the number of communicating pairs in MILC (Figure 2(b)) and
MG (Figure 2(d)) are few, and concentrated near the diagonal. As such, these applica-
tions are expected to make use of a small fraction of the available network links. These
applications represent a large class of applications in science and engineering, such as
the ones following the nearest neighbor pattern [Bailey et al. 1992].

All illustrated cases have a dense region close to the diagonal of their communication
graph, suggesting that nearest neighbor communication constitutes a major part of
many applications’ communication. This can be used as a clue in understanding a
network link’s usage. We use Stencil, decomposed in two, three and four dimensions,
to study network’s link usage for near neighbor communication patterns. From this
discussion, there are reasons to expect that there is an extensive opportunity to save
the power of the network links in higher-radix topologies in many common cases, since
they are designed for the worst cases with many communicating pairs (such as random
access benchmark or FFTs).

In summary, there are applications that have intense communication patterns such
as all-to-all, but many applications have only nearest neighbor pattern. Additionally,
embarrassingly parallel applications that essentially do not rely on the network during
their computation (e.g. ISAM [Jain and Yang 2005]) represent an extreme set. Since
they do not use any of the links, the link power can be saved easily.

3. POTENTIALS OF BASIC NETWORK POWER MANAGEMENT
In the previous section, we observed that the number of communicating pairs for many
applications is not large, which indicates that a sizeable fraction of links may be un-
used. In this section, we discuss and evaluate a basic power-saving approach for links,
implemented in an adaptive runtime system. In this approach, the runtime monitors
a few iterations and turns off the links that are never used during execution.

Our methodology of evaluation is to emulate an application at scale using BigSim
(which has been validated for these networks before [Totoni et al. 2011; Zheng et al.
2004]) and capture the communication traces. These traces are then used to simulate
the target network and mark the links that are used.

We assume default mapping for placing processes (ranks) onto processors for all the
networks. For a 32 cores per node case, it means that the first 32 ranks are mapped
to the first node, next 32 ranks are mapped to the second node and so on. Only direct
routing is considered for multilevel directly-connected networks in this section (be-
fore Subsection 3.2), which means that the messages are sent directly to the receiver,
instead of going through an intermediate supernode (i.e. indirect routing). Effect of dif-
ferent mappings and indirect routing are discussed and evaluated in Subsection 3.2.
For tori, we assume minimal dimension order routing, which is used in many of the
current supercomputers. The results are easily extensible for adaptive routing as we
discuss later.

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

 0

 20

 40

 60

 80

 100

NAMD_PME NAMD MILC CG MG BT

Li
n
k

U
sa

g
e
 (

%
)

Full Network
PERCS

3D Torus
6D Torus

Fig. 3. Fraction of links used during execution of various applications.

 0

 20

 40

 60

 80

 100

2D-Stencil 3D-Stencil 4D-Stencil

Li
n
k

U
sa

g
e
 (

%
)

Full Network
PERCS

3D Torus
6D Torus

Fig. 4. Fraction of links used during execution of stencil codes.

3.1. Link Usage of Modern HPC Networks
Figure 3 and Figure 4 show link usage of different applications and benchmarks for
a fully connected network (a link between every pair of nodes), 3D Torus, 6D Torus
and PERCS (two-level fully-connected). In the context of this section, we consider a
link as “used” if it is used at any time during execution of an application. With this
assumption, the specifics (e.g. link bandwidth) of each network other than its topology
do not make any difference. These used links may be utilized for only a small fraction
of the application execution; we will exploit this property in Sections 5 and 6. Note that
the full network is an asymptotic case that is not usually reached by the large-scale
networks. However, for example, small jobs (less than 1k cores for PERCS) running on
a two-tier system will have a fully connected network. In this case, most of the links
can be shut down according to our results, which saves a significant fraction of the
system’s power.

As shown in Figure 3, link usage of each application is different, and depends on
the topology of the system. For example, MILC only uses 3.93% of the links of a fully
connected network, while it uses 80% of the 6D Torus links. For most applications,
a larger fraction of 6D Torus links will be used in comparison to links on PERCS

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

 0

 20

 40

 60

 80

 100

NAMD_PME NAMD MILC CG MG BT

Li
n
k

U
sa

g
e
 (

%
)

LL links
LR links

D links
all links

Fig. 5. Fraction of different links used during execution on PERCS

network; an exception is CG that uses a higher fraction of PERCS links. This shows
that analysis of the link utilization of different networks is not trivial and depends on
various aspects of the topology and the application.

For the applications of Figure 3, from 4.4% to 82.94% of the links are never used
during the program’s execution on PERCS. In the stencil benchmarks of Figure 4, 2D-
Stencil uses only 11.91% of the PERCS links, with similar numbers for other stencil
dimensions. This demonstrates a great opportunity for the runtime system to save link
power of two-level directly connected networks.

There is an opportunity on 6D Torus to save energy as well. Even though NAMD
uses all of the links, MG leaves 47.92% of the links unused. However, many applica-
tions can use most of the links of a 3D torus, which has been one of the dominant
topologies in the past and in the current supercomputers. There is potential for saving
power in some cases (e.g. 30.67% for 2D-Stencil), but the savings are neither high nor
common. This happens even with deterministic routing, which uses fewer links than
adaptive routing. This shows that implementing on/off links for those networks is not
significantly useful, and probably is the reason that they have not been implemented
so far. However, for high dimensional tori and multi-level directly connected networks,
the benefits justify the implementation cost of software controlled on/off links. If we
take MILC to represent a significant set of common HPC applications (which usually
have near neighbor communication), 81.51% of PERCS links and 20% of 6D Torus
links can be turned off to save power. Assuming that 65% of network power goes to
links and the network consumes 30% of the total machine’s power, around 16% of total
machines power can be saved for PERCS systems and around 4% can be saved for 6D
Torus systems.

In NAMD PME, the communication intensive PME calculation is usually performed
every four iterations (which takes around 16 ms assuming about 4 ms per iteration
for ApoA1 benchmark on 2K cores of BGQ [Sameer Kumar and Kale 2013]). In this
case, many links can be turned off after PME communication is complete, and turned
back on right before the next PME communication phase begins (scheduling on/offs is
further discussed in Sections 5 and 6).

We observe that even though 3D-Stencil has a 3D communication pattern, when it
is mapped to a system with 32 cores per node, the communication between nodes is
not an exact 3D pattern anymore. Thus, some fraction of the links (12%) are not used.

So far, for simplicity, we assumed that all the links of the network are the same and
have the same power cost. However, networks are usually made of different links for

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

 0

 20

 40

 60

 80

 100

2D-Stencil 3D-Stencil 4D-Stencil

Li
n
k

U
sa

g
e
 (

%
)

LL links
LR links

D links
all links

Fig. 6. Fraction of different links used during execution on PERCS

practical purposes. These links even have different technologies (optical vs. electrical).
For example, in PERCS network, global links are called D-links and connect clusters
of nodes at second level and they use optical technology [Arimilli et al. 2010]. These
long links are probably more power hungry than the local ones. On the other hand,
LLocal (LL) and LRemote (LR) links connect nodes placed close to each other (LL for
nodes in the same drawer, LR for other local links) and use electrical technology. These
local links probably consume much less power compared to the global ones.

To find out which type of links are used more often, Figure 5 and Figure 6 show the
usage of different types of PERCS links. Overall, D-links are usually less utilized than
the local ones. This happens because most of the communication of the applications
is either local or near neighbor exchange. Even NAMD PME, which exhibits limited
opportunity for power saving in previous results, does not use 23.09% of D-links; this
may improve absolute power saving. MILC shows high usage of D-links because the
results are for 4K processors only (4 supernodes), hence there are just 12 D-links. For
larger configurations, it should show link usage similar to 4D-Stencil and have a very
low D-link utilization. CG is again an exception and uses more of the D-links. This is
because its communication is not local but distributed as mentioned earlier. The stencil
benchmarks use only around 1% of D-links and most of those links can thus be turned
off safely. Thus, using a simple model of same power cost for all links is pessimistic,
and the actual savings can be much higher in many cases as the power hungry D-links
have less utilization. Note again that these results are with the default (rank-ordered)
mapping (we will discuss a case of other mappings in Section 3.2).

Figure 7 and Figure 8 show the link usage of the applications on tori with different
dimensions, from 3 to 10. As dimensionality of tori is increased, a smaller fraction of
the links are used, which is intuitively expected. For example, 4D-Stencil uses only
53% of the links of a 10D torus network, but more than 80% links are used on a 3D
torus. Even NAMD that does not have any savings on low dimensional torus, shows
potential for saving power on a torus with sufficiently high dimensionality, starting
from 7D. It uses only 65% of the links of a 10D torus, which shows that even such
applications have potential of link power savings on high dimensional tori.

Other than these applications, there are cases where the network is virtually un-
used. Data parallel applications do not have much communication (except during
startup, I/O in the beginning and at the end) and do not use the network during exe-
cution. For example, ISAM [Jain and Yang 2005], which is a climate modeling appli-
cation, only uses stored climate data to do the computation (in its standalone mode).

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

 0

 20

 40

 60

 80

 100

NAMD MILC CG MG BT

Li
n
k

U
sa

g
e
 (

%
)

3D Torus
4D Torus
5D Torus

6D Torus
7D Torus
8D Torus

9D Torus
10D Torus

Fig. 7. Fraction of links used during execution

 0

 20

 40

 60

 80

 100

2D-Stencil 3D-Stencil 4D-Stencil

Li
n
k

U
sa

g
e
 (

%
)

3D Torus
4D Torus
5D Torus

6D Torus
7D Torus
8D Torus

9D Torus
10D Torus

Fig. 8. Fraction of links used during execution

Thus, almost all of the network power can be saved for these applications during the
main computation phases (I/O uses the main network in some machines, but it hap-
pens usually infrequently).

To summarize, in the common near neighbor applications like MILC, up to 16% of
total machines power can be saved (assuming 30% network power budget and 65%
of network power associated with links) using a basic power management approach.
Since our assumptions are very conservative and only links that are never used (and
are not likely to be used) are turned off, the application will not experience a significant
performance penalty.

3.2. Different Mappings
In the results so far, we assumed default mapping with direct routing for PERCS net-
work, which implies sending each message directly to the destination supernode. How-
ever, it had been shown that this configuration might result in contention in few links
of the network for some applications [Bhatele et al. 2011b]. In this case, one might use
intelligent application specific mappings, or use other more general alternatives that
had been proposed before. A previous study on PERCS network [Bhatele et al. 2011b]
suggests using random mapping or indirect routing to avoid contention on few links

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

and improve performance. Indirect routing uses a random intermediary supernode for
each message transfer (dynamically), while random mapping places the processes (e.g.
MPI ranks) on random processors (statically). The purpose is to use more links to avoid
contention, at the cost of some possible overheads (e.g. due to more hop count).

Figure 9 shows the link usage of these schemes (proposed in [Bhatele et al. 2011b])
compared to the default mapping. Random mapping has higher link usage than default
mapping, which is intuitive. It can use 33.18% of the links, which is twice the 16.51%
link utilization of the default mapping. However, the overall usage is still low and the
possible savings are as high as 67%. Note that this scheme uses many more D-links,
which may increase the power consumption significantly. Thus, when choosing among
different mappings for future machines, power consumption should also be taken into
account, since in addition to performance, mapping can affect power consumption as
well.

Indirect routing uses all of the links of the network, since every packet is routed
through a random supernode. Therefore, it is very expensive in terms of network
power and no energy reduction is possible. On the other hand, random mapping is
shown to have similar performance as indirect routing on PERCS networks [Bhatele
et al. 2011b]. Thus, indirect routing should be avoided and random mapping should be
used to have much less power consumption but the same performance. The routes in
random mapping are statically determined during the mapping phase, while indirect
routing dynamically changes the routes for every packet. This suggests that different
aspects of hardware and software design can affect power consumption of the network
significantly, and power should be considered at every stage of the design.

 0

 20

 40

 60

 80

 100

Default Random Indirect

Li
n
k

U
sa

g
e
 (

%
)

Link Usage of 3D-Stencil 300K (%)

LL links
LR links

D links
all links

Fig. 9. Fraction of links used with different mappings

4. IMPLEMENTATION IN RUNTIME SYSTEM AND HARDWARE
The large amount of unused links, discussed in the previous section, presents oppor-
tunities for power optimization and savings. Although past studies suggest hardware
and compiler techniques, we believe that this should be done by the runtime system.
Hardware and compiler do not have enough information about the characteristics of
the application, hence they may make conservative assumptions or cause unnecessary
delays. For example, NAMD’s communication depends on the input and previous iter-
ations, and hence the compiler cannot assume any unused links. It is also difficult at
the application level since it would hurt portability and programmer productivity.

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

On the other hand, runtime systems, such as MPI and CHARM++, have enough in-
formation about both the application and the hardware to make wise decisions. The
runtime system obtains this information about the application by monitoring the com-
munication performed as the application executes (with negligible overhead [Zheng
et al. 2011]).

4.1. Runtime System Support
The runtime system mediates all the communications and computation, so it can in-
strument the application easily. Runtime systems, such as CHARM++, use this infor-
mation for many purposes such as load balancing [Zheng et al. 2011] and power man-
agement [Sarood et al. 2012]. They also obtain characteristics of the network, such
as its topology [Bhatele et al. 2011a]. Our approach requires only a small subset of
this data to save network power: the communication graph of the application and the
topology of the network. Using this information, our approach can turn off unneces-
sary links as follows. We assume that each node keeps track of the destinations of its
messages. At the network power management stage, each node calculates the route
for each of its destinations. It sends a notification message to each of the intermediate
nodes to have them mark their used links. At the end, when a node has received all
notification messages and marked its own links, it turns off all of its unused links.
Note that collectives are mostly implemented as point-to-point messages in runtime,
so they can be handled similarly. This algorithm, which is executed by every node, can
be summarized as follows:

(1) Obtain the destination list of local messages.
(2) For each destination, calculate its route.
(3) Mark the local links used by local messages.
(4) For each intermediate node, instruct it to mark the required links.
(5) Wait for all notifications to be received (possibly using a termination detection al-

gorithm).
(6) Turn off the local links that are never used either by local or non-local messages.

This algorithm needs to be invoked at appropriate times, which is feasible in most
cases since scientific and many other parallel applications are usually iterative in na-
ture. For the common case of static communication pattern, which encompasses all
of our benchmarks except NAMD, every iteration follows a constant communication
pattern. Thus, one invocation of the power management scheme (e.g. after the first
iteration) is sufficient. Note that even in this simple case, the hardware cannot make
wise decisions on its own, because it is not aware of the iteration time of the applica-
tion and its window might be too small. In addition, hardware does not see the global
picture of the application’s message flow, since it usually works at the packet and flit
levels.

For NAMD, the communication pattern between objects is static, but the objects may
migrate between processors periodically, under the control of a load balancer. There-
fore, the actual communication pattern varies. In this case, the new communication
pattern can be determined by the runtime system at (or just after) the load balancing
steps. Thus, the network power management algorithm needs to be called at every load
balancing step. Even in this case, the switching delay of links is of negligible concern,
since the runtime will not make any mistake in switching the links’ states. In addi-
tion, since load balancing is not performed very frequently (usually once in thousands
of iterations), our method will not add significant overhead. Many other dynamic (and
phase based) applications, such as Adaptive Mesh Refinement (AMR) [Langer et al.
2012], can be handled in the same way.

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

4.2. Hardware support
For our approach, we only require the network hardware to implement links that can
be turned off and on (or any other power saving means such as DVS), along with a
software interface to control them. Note that the “off” state should usually be imple-
mented as a very low power (but slow) state. Turning the links completely off may
increase the switching delay significantly because the links would need “re-training”.
Not turning the links fully off also ensures connectivity of the network.

In a simple but robust implementation, the runtime provides hints to the hardware
to turn a link off, but the hardware turns it back on if a message (packet) needs the
link. That message will pay the penalty of switching delay because of the incorrect
prediction by the runtime. In this way, we do not strictly require any change in routing
and switching tables. Note that the runtime can measure the iteration times and turn
off the power management algorithm, or adjust it, if the performance is degraded. This
feedback loop ensures “safety” of our approach for performance if anything about the
application or system changes. This safety cannot be provided easily by hardware or
compiler approaches.

On some current machines (e.g. from Cray), network interference from other running
jobs can decrease the predictability for the runtime and make the power management
task more difficult. However, the other jobs running on the machine are most probably
also iterative with predictive behavior, so the runtime can take them into account sim-
ilarly. Note that job interference also has performance penalty [Bhatelé and Kalé 2009;
Kerbyson et al. 2012], and many machines (e.g. Cray systems) are exploring new job
schedulers for isolated partitions. Some other machines, such as Blue Genes, already
allocate isolated partitions (prisms) for every job running on the supercomputer. I/O
interference can cause similar issues if I/O is performed on some I/O nodes that are
out of the job’s allocation, using the same network as the application. Thus, I/O needs
to be considered as well.

Impact of Adaptive Routing (for Tori). For many networks (especially tori), dynamic
adjustments, such as adaptive routing for performance and fault tolerance, have been
proposed before. The dynamic behavior may hinder our approach because it reduces
predictability, resulting in performance penalties. However, the support for adaptive
routing is still limited in current machines due to practical restrictions. For example,
the K computer has a fixed, minimal dimension order routing [Ajima et al. 2011]. Some
machines may support a limited form of adaptive routing, such as routing in “zones” on
Blue Gene/Q [Chen et al. 2011]. For this case, the runtime needs to know the details of
the routing protocol (what links are actually used for communication for messages of
an iteration). This information is usually already available to the runtime system for
communication performance optimization. Note that even for Blue Gene/Q, minimal
dimension ordered routing is used for most messages depending on the system’s con-
figuration [Megan Gilge 2013]. Adaptive routing is usually used for demanding cases
such as all-to-all, in which case, we do not turn links off. Fault tolerance can also be
considered easily, since most faults bring down a whole node, calling the runtime sys-
tem’s fault tolerance protocol. Thus, we call the network power management method
after every resiliency action of the runtime. It is notable that such dynamic behaviors
will not result in disastrous performance penalties, since the runtime can measure the
performance and correct itself.

5. POWER MODEL FOR NETWORK LINKS
Our power management in runtime system approach is very simple but offers substan-
tial link power savings. However, it is useful to know how much saving is possible for
each application on a network. Theoretical models that suggest upper bounds of link

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

power savings need to be developed for this purpose. Furthermore, a simple theoreti-
cal model can give insight about the application’s utilization of a network and compare
different networks. In this section, with these goals in mind, we develop a theoreti-
cal model for link utilization of a network while running an application. Our model
provides an upper bound on power requirement of an application using a particular
network. We make some assumptions that keep the model tractable at the expense of
some loss in accuracy. We also suggest some additions to the model to make it more
accurate and provide tighter bounds.

Suppose it is possible to switch a link on and off without any delay, and a link has
a bandwidth of B. Assume also that there is no zero-size message latency. In this
ideal case, each link can be turned on whenever there is some message traffic and can
be off otherwise. Thus, a link only consumes power when it has to transfer data. If
Bi = 100MB/s for link i, and a program transfers 100MB of data through this link
during its 10 seconds of execution, then link i is used only for 1 second. Thus, only 0.1
of its capacity was utilized according to this simple calculation:

100MB

(100MB/s) ∗ 10 s
= 0.1

Let us generalize this formula, assuming that each link i transfers zi bytes of data
during t seconds of program execution:

Ui =
zi

(Bit)

In this formula, Ui represents the utilization of link i. We can derive the whole net-
work’s utilization by a sum over all the n links:

U =
1

n

n∑
i=1

Ui =
1

n

n∑
i=1

zi
(Bit)

=
1

nt

n∑
i=1

zi
Bi

We also assume that Bi = B are the same for all the links and derive the upper
bound of power savings:

M = 1− 1

(nBt)

n∑
i=1

zi

M is the fraction of network link’s power that can be saved, given the hypothetical
assumptions, e.g. no on/off delays. In this formula, n, B and t can be determined easily,
but zi depends on the application, mapping, network topology and routing algorithm.
Note that we assumed on/off links without Dynamic Voltage Scaling (DVS) support.
Using DVS for the links carrying messages that are not on the critical path may result
in even greater power savings.

Let us calculate this formula for a simple case of 3D Stencil, running on a 3D torus.
Assume that the processes are mapped to processors perfectly, i.e. in a way that com-
municating processes are neighbors in the network. If each iteration takes 10ms, each
message is 2MB and the bandwidth of each link is 1GB/s, we have:

M = 1− 1

(n ∗ (1000MB/s) ∗ (10ms)

n∑
i=1

(2MB)

Resolving the summation we have:

M = 1− n ∗ (2MB)

n ∗ (1000MB/s) ∗ (10ms)
= 80%

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

NAMD MILC CG MG BT

N
e
tw

o
rk

 C
a
p
a
ci

ty
 U

ti
liz

a
ti

o
n
 (

U
 %

)

PERCS 6D Torus

Fig. 10. Network capacity utilization of different applications

Thus, 80% of the links’ power can be saved since only 20% of the time the links are
being used. By using a perfect schedule for toggling the links, this power can be saved.

Calculating this formula is not usually as simple as this case, since zi values are
not easy to determine in many cases. Therefore, execution or emulation is required for
finding the communication volume of each link, while running the application. How-
ever, this task is straightforward because the exact time that each link is used is not
important for these values. First, communication traces can be obtained, even on a
much smaller machine using an emulation approach, such as BigSim [Totoni et al.
2011; Zheng et al. 2004]. Then, a simple counting program can determine the path for
each message and keep track of each link’s communication volume. Using this method,
we have determined the maximum possible link power saving for each application.

Figure 10 shows the network utilization of different applications on 6D Torus and
PERCS networks. Except CG on 6D Torus network, the applications utilize less than
10% of the network. Thus, according to our model, more than 90% of the link power
can be saved. Our basic approach can realize a significant portion of these savings with
low effort for many applications. For example, more than 81.5% of the power can be
saved for MILC by the runtime system. Next, we incorporate transition delay in our
model and extend our basic approach accordingly for more savings.

6. EFFECT OF ON/OFF TRANSITION DELAY
Our basic model assumes zero on/off transition delay for simplicity. We also do not
consider the conservative delay of scheduling in the runtime system to account for
system noise and other overheads. We can incorporate this delay if we add one more
assumption: each iteration of an iterative application is divided into long distinct com-
putation and communication phases. Here, long means that a computation stage is
considerably longer than the link transition delay, so we can turn the link off in that
duration. This assumption is usually valid for common HPC applications, such as the
ones with nearest neighbor communication pattern and/or bulk-synchronous parallel
(BSP) model.

In addition to this assumption, we also assume that the links consume their full
power during their transition and extend our model. If each link i transfers zi bytes
for each iteration that takes t seconds and the transition delay is d, the link consumes
full power U fraction of the time:

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

Ui =
zi

(Bit)
+

2pid

t

Here, pi is a boolean variable that is one if the link is ever used, i.e. zi > 0, and zero
otherwise. This variable is needed because if the link is not used at all, it does not
need to make any transition. Furthermore, since the runtime system turns the link
off after each communication step and turns it back on before the next one, we pay
the delay cost twice per iteration. Note that transition delay d should be smaller than
half of the iteration time of the application, since utilization cannot be more than one.
We define p as the fraction of the network links used for the application and z as total
communication volume over links. Thus, we can derive the full network utilization:

U =
1

n

n∑
i=1

Ui =
1

nBt

n∑
i=1

zi +
2d

nt

n∑
i=1

pi =
z

nBt
+

2pd

t

This formula specifies the network utilization as a linear function of transition delay
over the iteration time, so we can quantify the effect of the transition delay for each
network. For practical cases, the transition delay is not a problem since the iteration
time is much longer and the last term of the equation becomes small. For example, a
typical short iteration time is around 10ms, while some current implementations have
a transition delay of around 10, 000 cycles (10µs at 1GHz). In this case, the transition
overhead is just 1%.

Our approach may lead to overheads due to the software and hardware. In software,
in order to capture the communication pattern and link utilization, the runtime system
has to monitor the application. However, this should not have significant overheads
since the monitoring is usually performed only once (because the applications are it-
erative) and its results are stored. Other overheads include the system call overheads
(context switching overheads, argument verification overheads, etc.) because currently
the runtime system is executed in the user space (which is likely to change in the fu-
ture). Our experiments suggest that these overheads are limited to 20µs per call. In the
hardware, as mentioned earlier, some current implementations have a transition delay
of around 10, 000 cycles (10µs at 1GHz) for turning links on/off, and it is projected that
it will improve much further (down to just 100 cycles) [Soteriou and Peh 2007]. Hence,
the overall overheads should be less than 30µs per call that turns a link on/off.

Figures 11 and 12 show the link power savings as a function of transition delay
(other overheads are also included) for PERCS and 6D Torus networks (using simula-
tion). For many of our applications, we have short iteration times of around 30ms and
we show the results with up to 15ms delay for illustration. Thus, as can be seen from
the figures, transition delays and other overheads are not significant problems for our
approach.

Note that this approach assumes accurate scheduling of links’ on/off transitions by
the runtime system, which is achievable since each iteration’s message send and re-
ceive times are usually very deterministic. To verify this, we ran some of the NPB
benchmarks on Blue Gene/P and inspected a sample of processors. We found that the
message sends and receives occur with regular intervals and are predictable. The pre-
diction error was usually less than 200µs, while the iteration time is in hundreds of
milliseconds. Thus, in our results, we consider 1ms conservative delay for the runtime
system to incorporate noise and variations in the system. Figure 13 summarizes ma-
chine power saving potentials of our approaches for different applications on PERCS
and 6D Torus networks. As before, this figure assumes that 30% of the machine power
is consumed in the network and 65% of network power is consumed by the links. As

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

 0

 10

 20

 30

 40

 50

 60

 70

 0.01 0.1 1 10N
e
tw

o
rk

 C
a
p
a
ci

ty
 U

ti
liz

a
ti

o
n
 (

U
 %

)

Link Transition Delay (ms)

NAMD
MILC

CG

MG
BT

Fig. 11. Potential link power saving on PERCS network

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10N
e
tw

o
rk

 C
a
p
a
ci

ty
 U

ti
liz

a
ti

o
n
 (

U
 %

)

Link Transition Delay (ms)

NAMD
MILC

CG

MG
BT

Fig. 12. Potential link power saving on 6D Torus network

can be seen, for most applications, our scheduling approach can save around 20% of the
machine power. Our basic approach can also save significant power, usually more than
15% for PERCS and around 10% for 6D Torus. Note that in the case of NAMD PME,
the basic approach cannot save much and the scheduling approach is required.

7. CONCLUSIONS AND FUTURE WORK
With ever increasing communication demands of large-scale parallel systems, multi-
level directly connected networks (Dragonfly, PERCS) and high dimensional tori are
becoming more appealing. Optimizing the power and performance of these innovative
networks presents a new challenge for parallel systems. We showed that many paral-
lel applications do not fully exploit a significant fraction of the network links, which
present opportunities for power optimization. Thus, a runtime system can optimize the
power consumption of the links by turning off the unused ones, with minimal hardware
support. This approach results in up to 20% saving of total system’s power for common
place applications with near neighbor communication.

For future work, less conservative approaches that turn off more links can be used,
which may have some performance penalties. Furthermore, dynamic voltage scaling

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

 0
 5

 10
 15
 20
 25
 30

NAMD_PME MILC CG MG BTM
a
ch

in
e
 P

o
w

e
r

S
a
v
in

g
 P

o
te

n
ti

a
l
(%

)

Basic PERCS
Basic 6D Torus

Schedule 1ms delay PERCS
Schedule 1ms delay 6D Torus

Fig. 13. Potential total machine power saving for different approaches

(or reducing the bandwidth) of the network links can be exploited for the links that
do not transfer messages on the critical path. Overall, we suggest that more adap-
tive power management techniques by the runtime system for the network should be
explored further.

REFERENCES
Dennis Abts, Michael R. Marty, Philip M. Wells, Peter Klausler, and Hong Liu. 2010. Energy proportional

datacenter networks. In Proceedings of the 37th annual international symposium on computer architec-
ture (ISCA ’10). ACM, New York, NY, USA, 338–347. DOI:http://dx.doi.org/10.1145/1815961.1816004

Y. Ajima, Y. Takagi, T. Inoue, S. Hiramoto, and T. Shimizu. 2011. The Tofu Interconnect.
In High Performance Interconnects (HOTI), 2011 IEEE 19th Annual Symposium on. 87–94.
DOI:http://dx.doi.org/10.1109/HOTI.2011.21

Marina Alonso, Salvador Coll, Juan-Miguel Martı́nez, Vicente Santonja, Pedro López, and José Duato. 2006.
Dynamic power saving in fat-tree interconnection networks using on/off links. In Proceedings of the 20th
international conference on Parallel and distributed processing (IPDPS’06). IEEE Computer Society,
Washington, DC, USA, 299–299. http://dl.acm.org/citation.cfm?id=1898699.1898826

B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Drerup, T. Hoefler, J. Joyner, J. Lewis, Jian Li, Nan
Ni, and R. Rajamony. 2010. The PERCS High-Performance Interconnect. In 2010 IEEE 18th Annual
Symposium on High Performance Interconnects (HOTI). 75–82.

D.H. Bailey, E. Barszcz, L. Dagum, and H.D. Simon. 1992. NAS Parallel Benchmark Results. In Proc. Su-
percomputing.

Aaron Becker. 2012. Compiler Support for Productive Message-Driven Parallel Programming. Ph.D. Disser-
tation. Dept. of Computer Science, University of Illinois. http://charm.cs.uiuc.edu/media/12-44/.

Claude Bernard, Tom Burch, Thomas A. DeGrand, Carleton DeTar, Steven Gottlieb, Urs M. Heller, James E.
Hetrick, Kostas Orginos, Bob Sugar, and Doug Toussaint. 2000. Scaling tests of the improved Kogut-
Susskind quark action. Physical Review D 61 (2000).

Abhinav Bhatele, Eric Bohm, and Laxmikant V. Kale. 2011a. Optimizing communication for Charm++ ap-
plications by reducing network contention. Concurrency and Computation: Practice and Experience 23,
2 (2011), 211–222.

Abhinav Bhatele, Nikhil Jain, William D. Gropp, and Laxmikant V. Kale. 2011b. Avoiding hot-spots on two-
level direct networks. In Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’11). ACM, New York, NY, USA, 76:1–76:11.

Abhinav Bhatelé and Laxmikant V. Kalé. 2009. Quantifying Network Contention on Large Parallel Ma-
chines. Parallel Processing Letters (Special Issue on Large-Scale Parallel Processing) 19, 4 (2009), 553–
572.

Dong Chen, N.A. Eisley, P. Heidelberger, R.M. Senger, Y. Sugawara, S. Kumar, V. Salapura, D.L. Satterfield,
B. Steinmacher-Burow, and J.J. Parker. 2011. The IBM Blue Gene/Q interconnection network and mes-

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

sage unit. In High Performance Computing, Networking, Storage and Analysis (SC), 2011 International
Conference for. 1–10.

S. Conner, S. Akioka, M.J. Irwin, and P. Raghavan. 2007. Link Shutdown Opportunities During Collective
Communications in 3-D Torus Nets. In Parallel and Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International. 1 –8. DOI:http://dx.doi.org/10.1109/IPDPS.2007.370534

Greg Faanes, Abdulla Bataineh, Duncan Roweth, Tom Court, Edwin Froese, Bob Alverson, Tim Johnson,
Joe Kopnick, Mike Higgins, and James Reinhard. 2012. Cray cascade: a scalable HPC system based on
a Dragonfly network. In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC ’12). IEEE Computer Society Press, Los Alamitos, CA, USA,
Article 103, 9 pages. http://dl.acm.org/citation.cfm?id=2388996.2389136

Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yiannis Yiakoumis, Puneet Sharma, Sujata Baner-
jee, and Nick McKeown. 2010. ElasticTree: saving energy in data center networks. In Proceedings of the
7th USENIX conference on Networked systems design and implementation.

Gilbert Hendry. 2013. Decreasing Network Power with On-Off Links Informed by Scientific Applications..
In HPPAC’13.

A.K. Jain and X. Yang. 2005. Modeling the effects of two different land cover change data sets on the carbon
stocks of plants and soils in concert with CO2 and climate change. Global Biogeochem. Cycles 19, 2
(2005), 1–20.

Laxmikant V. Kale, Abhinav Bhatele, Eric J. Bohm, and James C. Phillips. 2011. NAnoscale Molecular
Dynamics (NAMD). In Encyclopedia of Parallel Computing (to appear), D. Padua (Ed.). Springer Verlag.

Laxmikant V. Kale and Gengbin Zheng. 2009. Charm++ and AMPI: Adaptive Runtime Strategies via Mi-
gratable Objects. In Advanced Computational Infrastructures for Parallel and Distributed Applications,
M. Parashar (Ed.). Wiley-Interscience, 265–282.

D.J. Kerbyson, K.J. Barker, A. Vishnu, and A. Hoisie. 2012. Comparing the Performance of Blue Gene/Q
with Leading Cray XE6 and InfiniBand Systems. In Parallel and Distributed Systems (ICPADS), IEEE
18th International Conference on. 556–563.

John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts. 2008. Technology-Driven, Highly-Scalable Drag-
onfly Topology. SIGARCH Comput. Archit. News 36 (June 2008), 77–88. Issue 3.

PM Kogge. 2008. Architectural Challenges at the Exascale Frontier (invited talk). Simulating the Future:
Using One Million Cores and Beyond (2008).

Peter Kogge, Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally, Monty Den-
neau, Paul Franzon, William Harrod, Jon Hiller, Sherman Karp, Stephen Keckler, Dean Klein, Robert
Lucas, Mark Richards, Al Scarpelli, Steven Scott, Allan Snavely, Thomas Sterling, R. Stanley Williams,
and Katherine Yelick. 2008. ExaScale Computing Study: Technology Challenges in Achieving Exascale
Systems. (2008).

Akhil Langer, Jonathan Lifflander, Phil Miller, Kuo-Chuan Pan, Laxmikant V. Kale, and Paul Ricker. 2012.
A Scalable Mesh Restructuring Algorithm for Distributed-Memory Adaptive Mesh Refinement. In Pro-
ceedings of 24th International Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD).

James Laros, Kevin Pedretti, S. Kelly, Wei Shu, and C. Vaughan. 2012. Energy Based Performance Tun-
ing for Large Scale High Performance Computing Systems. In Proceedings of 20th High Performance
Computing Symposium (HPC).

Jian Li, Wei Huang, C. Lefurgy, Lixin Zhang, W.E. Denzel, R.R. Treumann, and Kun Wang. 2011. Power
shifting in Thrifty Interconnection Network. In High Performance Computer Architecture (HPCA), 2011
IEEE 17th International Symposium on. 156 –167. DOI:http://dx.doi.org/10.1109/HPCA.2011.5749725

P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan. 2009. Energy Aware Network Operations. In
INFOCOM Workshops 2009, IEEE. 1–6. DOI:http://dx.doi.org/10.1109/INFCOMW.2009.5072138

Megan Gilge. 2013. Blue Gene/Q Application Development. http://www.redbooks.ibm.com/abstracts/
sg247948.html. (2013).

Yanhua Sun Sameer Kumar and L. V. Kale. 2013. Acceleration of an Asynchronous Message Driven Pro-
gramming Paradigm on IBM Blue Gene/Q. In Proceedings of 26th IEEE International Parallel and
Distributed Processing Symposium (IPDPS). Boston, USA.

Osman Sarood, Phil Miller, Ehsan Totoni, and L. V. Kale. 2012. ‘Cool’ Load Balancing for High Performance
Computing Data Centers. In IEEE Transactions on Computer - SI (Energy Efficient Computing).

Li Shang, Li-Shiuan Peh, and N.K. Jha. 2003. Dynamic voltage scaling with links for
power optimization of interconnection networks. In High-Performance Computer Architec-
ture, 2003. HPCA-9 2003. Proceedings. The Ninth International Symposium on. 91–102.
DOI:http://dx.doi.org/10.1109/HPCA.2003.1183527

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

Vassos Soteriou, Noel Eisley, and Li-Shiuan Peh. 2007. Software-directed power-aware in-
terconnection networks. ACM Trans. Archit. Code Optim. 4, 1, Article 5 (March 2007).
DOI:http://dx.doi.org/10.1145/1216544.1216548

V. Soteriou and Li-Shiuan Peh. 2007. Exploring the Design Space of Self-Regulating Power-Aware On/Off
Interconnection Networks. Parallel and Distributed Systems, IEEE Transactions on 18, 3 (march 2007),
393–408. DOI:http://dx.doi.org/10.1109/TPDS.2007.43

top500 2013. Top500 Supercomputing Sites. http://top500.org. (2013).
E. Totoni, B. Behzad, S. Ghike, and J. Torrellas. 2012. Comparing the power and performance of Intel’s SCC

to state-of-the-art CPUs and GPUs. In Performance Analysis of Systems and Software (ISPASS), 2012
IEEE International Symposium on. 78–87.

Ehsan Totoni, Abhinav Bhatele, Eric Bohm, Nikhil Jain, Celso Mendes, Ryan Mokos, Gengbin Zheng, and
Laxmikant Kale. 2011. Simulation-based Performance Analysis and Tuning for a Two-level Directly
Connected System. In Proceedings of the 17th IEEE International Conference on Parallel and Dis-
tributed Systems.

Ehsan Totoni, Nikhil Jain, and Laxmikant V. Kale. 2013. Toward Runtime Power Management of Exascale
Networks by On/Off Control of Links. In Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), 2013 IEEE International Symposium on.

Gengbin Zheng, Abhinav Bhatele, Esteban Meneses, and Laxmikant V. Kale. 2011. Periodic Hierarchical
Load Balancing for Large Supercomputers. International Journal of High Performance Computing Ap-
plications (IJHPCA) (March 2011).

Gengbin Zheng, Gunavardhan Kakulapati, and Laxmikant V. Kalé. 2004. BigSim: A Parallel Simulator
for Performance Prediction of Extremely Large Parallel Machines. In 18th International Parallel and
Distributed Processing Symposium (IPDPS). Santa Fe, New Mexico, 78.

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

