
c© 2014 Pritish Jetley

INCOMPLETENESS + INTEROPERABILITY: A MULTI-PARADIGM
APPROACH TO PARALLEL PROGRAMMING FOR SCIENCE AND

ENGINEERING APPLICATIONS

BY

PRITISH JETLEY

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Doctoral Committee:

Professor Laxmikant V. Kalé, Chair
Professor Vikram S. Adve
Professor Samuel Kamin
Dr Vijay A. Saraswat, IBM Research.

ABSTRACT

We discuss an object-based, multi-paradigm approach to the development of

large-scale, high performance parallel applications. Our approach is charac-

terized by three essential ingredients: (i) Plurality, i.e. a programmer decom-

poses her application into a number of smaller, and relatively independent

modules. Each one of these modules is written in the language/framework

that allows for its most compact and elegant expression; (ii) Specialization of

languages, i.e. each language is specialized for the expression of a particular

and important subclass of parallel programs; and (iii) Interoperability be-

tween paradigms, which is to say that modules written in different languages

and frameworks can actively interoperate. We believe that language special-

ization engenders productivity, since it allows programmers to employ higher-

level abstractions that are closely attuned to the semantics of an intended

domain. Specialization also affords performance benefits, since the designers

of the runtime system can make assumptions about the dynamic behaviors

of programs, and optimize for these behaviors. Finally, interoperability is

a core requirement of the system, and allows it to achieve completeness of

expression simultaneously with high-level specification in abstract notations.

As a proof of concept, we develop three specialized programming lan-

guages. Each one addresses an important subclass of computational pat-

terns encountered in scientific and engineering applications. The first of

these, Charisma, captures parallel programs with fixed communication pat-

ii

terns that can be determined by static analysis. The second, DivCon, allows

the succinct expression of divide-and-conquer applications, especially those

that exhibit generative recursion on distributed collections of data elements.

The third, Distree, is a flexible framework for the expression of iterative,

tree-based algorithms.

We assume the presence of a common programming substrate on top of

which translated specifications of these languages execute. In our work, we

utilize the Charm++ [1] adaptive runtime system (ARTS) for this purpose.

The Charm++ ARTS is based on a coarse-grained, message-driven actor [2]

model. There are typically tens of such coarse-grained actors per processing

element. In the terminology of Charm++, these actors are simply called

objects. The co-location of multiple objects enables run-time optimizations

such as automated overlap of computation on one object, with the commu-

nication latency of another, and migration-based dynamic load balancing.

This leads to good performance of our translated codes.

The runtime system provides an object-based, message-driven substrate

through which our specialized languages can actively interoperate. We shall

see that the models of computation provided by Charisma and Distree are

well-aligned with this object-based substrate.

Even though the DivCon language provides a mixture of imperative and

functional semantics, it is ultimately translated into the interactions of coarse-

grained, message-driven objects. This means that our three mini-languages

can interoperate with each other, and also with Charm++. In addition, the

message-driven nature of Charm++ allows the implicit transfer of control

and data between modules. Multi-module programs are therefore automat-

ically interleaved based on the availability of data. In fact, idle time in one

module is automatically overlapped with useful work in another. Therefore,

interoperability across different views of data and control is not only possible,

but also efficient.

We believe that this combination of abstract specification, interoperation

between modules, and an object-based view of parallelism backed by an adap-

tive runtime system affords our approach significant productivity and per-

formance benefits. We substantiate our claims through discussions along

the following themes. (i) We present the syntactic and semantic constructs

of our specialized languages. We demonstrate their simplicity and the se-

mantic consonance between the constructs provided by each language, and

iii

the characteristics of programs that fall within its range of expression. (ii)

We consider the expression of several common and important examples of

HPC applications in these specialized languages. As we shall see, the speci-

fications of these applications in our specialized languages are succinct and

abstract away details such as the schedule of computation. (iii) We provide

performance comparisons between hand-tuned codes and their counterparts

written in the high-productivity programming systems. (iv) Finally, we iden-

tify and overcome the challenges in enabling interoperability between mod-

ules expressed in different paradigms. Support for interoperability allows

the composition of large parallel applications from productively-expressed

modules, without sacrificing performance. We will demonstrate this through

a Barnes-Hut application that is composed from pieces of code written in

Charisma, DivCon, Distree and Charm++.

iv

ACKNOWLEDGMENTS

The members of my thesis committee have been instrumental in shaping the

ideas of this work. I owe them many thanks for their patience, and their

thorough review of the thesis. My adviser, Prof. Kale, has been especially

supportive of me through my tenure as a graduate student. I thank him

deeply for all his help over the years, and for allowing me the time and space

to explore new ideas.

I would like to thank my colleagues at the Parallel Programming Labora-

tory. I have been inspired by their creativity and brilliance, and wish them

the best of luck in their endeavors. My friends, few and loved, I thank you too

for the pleasure of your company. You made life infinitely more interesting

in the otherwise quiet hamlet of Champaign.

My family has been a source of comfort and motivation for me, especially

in times of tumult. I thank my mother and father for all the sacrifices that

they have made over the years in order that their sons could make something

of themselves in this world. Had it not been for their tireless support, I would

not be here. My brother has been a constant support for me from afar. I

know that a sparkling future in anaesthesiology lies ahead of him.

One saves the best for last. I was fortunate to have met Mrinalini as a

graduate student, and for that I shall always thank the forces that colluded

to make it so. We have weathered many winters together, Mrinalini. From

our self-inflicted bouts of vegetarianism, to our frequent raids on the Golden

v

Harbor, punctuated by heated debates on the nature of consciousness, I shall

forever look upon our time in Champaign with warmth and fondness. It was

only through your belief in me that I found myself. Without you, none of

this would have been possible.

vi

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Productivity through abstractions 2
1.2 Performance and productivity through adaptive run-time

strategies . 2
1.3 This thesis . 3

CHAPTER 2 PRELIMINARIES . 7
2.1 The role of Charm++ in our work 7
2.2 Explicit decomposition of work and data over coarse-grained

chares . 8
2.3 The role of the runtime system 13
2.4 Modular composition . 14
2.5 SDAG: Structured control flow for message-driven objects . . . 15
2.6 System architecture . 15

CHAPTER 3 DATA-INDEPENDENT COMMUNICATION PAT-
TERNS . 18
3.1 Introduction . 18
3.2 An examination of HPC applications for data-independent

communication patterns . 19
3.3 Some patterns that are not data-independent 26
3.4 Charisma: Stance . 28
3.5 An example application written in Charisma 28
3.6 The syntactic structure of Charisma programs 38
3.7 Well-formedness conditions . 51
3.8 Operational semantics . 62
3.9 Examples of applications written in Charisma 71

vii

3.10 A look at prevalent programming languages for HPC 76
3.11 Compiling global Charisma flows into local, message-driven

specifications . 79
3.12 Inferring communication patterns from publications and

consumptions . 96
3.13 Support for modularity . 99
3.14 Comparing performance and productivity with hand-written

codes . 102

CHAPTER 4 DIVIDE-AND-CONQUER 111
4.1 Introduction . 111
4.2 Design principles . 114
4.3 Examples of DivCon code . 117
4.4 Language design . 124
4.5 More examples of DivCon code 140
4.6 The DivCon runtime system 144
4.7 Provisions for modularity . 159
4.8 Performance results . 163
4.9 Productivity . 172
4.10 Conclusion . 176

CHAPTER 5 DISTRIBUTED TREES 178
5.1 Introduction . 178
5.2 A tree data structure for parallel HPC applications 179
5.3 An example tree application: the Barnes-Hut algorithm 182
5.4 Design considerations for a tree code framework 185
5.5 The Distree framework . 187
5.6 Traversing the tree . 196
5.7 Run-time optimizations . 203
5.8 Composing the elements of the Distree framework 208
5.9 Performance results . 224
5.10 Productivity . 227
5.11 Related work . 229

CHAPTER 6 INTEROPERATION 231
6.1 Scope of interoperation . 232
6.2 Challenges to interoperation 236
6.3 Mechanisms for interoperation 242
6.4 An example of interoperation 251
6.5 Performance results . 261
6.6 Productivity . 263

CHAPTER 7 CONCLUSIONS . 266

REFERENCES . 270

viii

CHAPTER

1

INTRODUCTION

The modern parallel programming language must strike the right balance

between two opposing forces: performance and productivity. It is reason-

able to take the stance that the whole point of parallel programming is to

extract every last FLOP of performance from the machine on which one’s

code is executed. Indeed, currently dominant models of programming, such

as message-passing, provide a means to optimize every aspect of a paral-

lel programs execution. However, the process of performance optimization

is intensive both in terms of effort expended and expertise required. The

programmer must carefully consider a multitude of effects beyond algorith-

mic and data structure choices in optimizing her program. For instance, an

appropriate grain size must be chosen, so as to balance concurrency and par-

allel overhead; work must be balanced across the set of processors on which

the program is running; and, in multiphysics applications, parallel modules

must be scheduled over the multi-processor machine, either by partitioning

it among different modules, or by time-multiplexing the processors over the

various modules. We think that these considerations place an unreasonable

burden on the programmer.

1

1.1 Productivity through abstractions

We take the viewpoint that a programming language aimed at the expression

of parallelism must strike a good balance between productivity (through

the provision of an ample set of high-level constructs for parallelism and

synchronization) and performance (by incorporating runtime strategies for

dynamic optimization of programs).

As to the viability of an approach based on the abstract specification of

parallelism, we appeal to the work of others who have argued for it far more

eloquently: languages such as X10 [3] and Chapel [4] have reimagined the

design of constructs for parallel programming. For instance, X10 combines

primitives for the generation of task (async) and data parallel work (ateach)

with constructs for locality (places) synchronization (futures, clocks, when,

finish), and concurrency management (atomic). The language boasts a

comprehensive repertoire of object oriented constructs, and appears in a fa-

miliar, Java/Scala-like syntax. The Chapel language provides a similar family

of constructs for explicit task (begin, cobegin) parallelism, data parallelism

(forall, coforall), and synchronization (sync). Importantly, both of these

Asynchronous, Partitioned Global Address Space (APGAS) languages provide

a departure from the SPMD style of programming, by espousing a global view

of control flow, and data structures. The previous generation of Partitioned

Global Address Space (PGAS) languages, namely Coarray Fortran [5] and

UPC [6] formulated the notion of a partitioned global address space, thereby

combining the productivity benefits of implicit, shared-memory communi-

cation with the performance benefits of programmer-specified data locality.

UPC provides a host of efficient, one-sided bulk-communication operations

(together with synchronization primitives such as fences) for performance.

However, with the possible exception of UPC, few large-scale scientific and

engineering HPC codes have been developed in any of these languages.

1.2 Performance and productivity through adaptive

run-time strategies

The Charm++ [1] programming language addresses the forces of productiv-

ity and performance by combining a simple, asynchronous message-driven

2

exection model, with an adaptive, measurement-based runtime system. The

Charm++ adaptive runtime system forms the bedrock for a number of scal-

able parallel applications, including molecular dynamics (namd [7]), compu-

tational cosmology (ChaNGa [8]), quantum chemistry (OpenAtom [9]), and

stochastic optimization [10]. The runtime system continuously measures per-

formance metrics such as task load and communication patterns, to perform

dynamic optimizations such as load balancing, communication agglomeration

and adaptive overlap of computation with communication. The availability

of this infrastructure is a productivity benefit to the programmer as well,

since it needn’t be reinvented in every application.

The Charm++ message-driven model allows for the transparent composi-

tion of different modules, wherein tasks execute as the data on which they

depend become available: There is no need for time- or space-division of

the underlying parallel machine. However, a criticism of the message-driven

model of Charm++ is that it fosters a reactive style of programming, in which

it is difficult to discern the global flow of control from the local specifications

of tasks.

1.3 This thesis

The present work aims to combine the two broad themes above, namely

of improving programming productivity through abstract constructs, and of

improving application performance using an ARTS that incorporates a host

of dynamic strategies for optimization. We restrict our scope of applications

to high performance, scientific and engineering codes. This allows us to

exploit the regularity inherent in our domain of applications.

Asanovic et al. [11] have organized applications in computational science

and engineering into categories based on their patterns of computation and

communication. This categorization has an immediate consequence for de-

signers of programming models for the HPC community. In this thesis, we

aim to exploit this structural regularity to provide a modular, productive and

performance-oriented means of constructing parallel HPC applications. We

will identify three application classes that are of interest to the HPC commu-

nity, and explore the formulation of a specialized programming paradigm for

each one. We target the following classes of parallel program by developing

3

specialized languages, listed in parentheses:

1. Programs with data-independent communication patterns. (Charisma.)

2. Generatively recursive programs. (DivCon.)

3. Programs based on distributed trees. (Distree.)

Specifically, our aim is to design a set of higher-level programming lan-

guages that allow for the productive and performance-oriented expression of

HPC applications. We achieve abstraction of language constructs through

their specialization for particular domains of interest. Each language provides

high-level constructs that are well-suited for the expression of a sub-class of

all possible HPC applications. Given this specialization of languages, it is of-

ten cumbersome, and sometimes impossible, to express a certain kind of HPC

application (or a module thereof) in a given language. In such an event, we

expect that the programmer will either identify a different specialized lan-

guage in which that application or module is expressed more elegantly, or

that she will instead phrase that part of the application in a so-called re-

course language. In the case of this thesis, the recourse language would be

Charm++, which provides a general-purpose programming model. One can

see that interoperability between modules expressed in different languages is

then a key requirement of any (and in particular our own) multi-paradigm

programming system. Our work allows for the tight coupling of modules

through through compiler intervention. In summary, we explore the fol-

lowing idea: that given the inherent structural regularity of HPC

applications, the principle of language specialization fosters their

productive and performance-oriented expression.

We take an empirical approach to the design of languages. The key ingre-

dients of our approach are: (i) Synthesis of useful language constructs from

the requirements of common and important classes of HPC applications; (ii)

An explicitly parallel, object-based expression of algorithms; (iii) Plurality of

expression, by which a programmer decomposes her application into a num-

ber of smaller, and relatively independent modules. (iv) Specialization of

languages, namely each language is specialized for the expression of a par-

ticular and important subclass of parallel programs; and (v) Interoperability

between modules written in different languages and frameworks, which is to

4

say that modules written in different languages don’t just coexist, but ac-

tively interoperate. Therefore the functionality of the program emerges from

the interactions of parallel modules written in different languages.

We advocate specialization of notations for the same reason as the domain-

specific language community, namely that it allows the language designer to

provide programming constructs that bridge the semantic gap between the

application domain and the abstract syntax of the program that represents

the application [12]. Plurality of expression allows for different types of pro-

gram, or different parts of a single program, to be captured in different pro-

gramming languages. Each program (or module thereof) can then be written

in the language that best captures its structure. The price of language spe-

cialization, however, is that of completeness of expression. That is, not all

types of parallel computation can be expressed in any one of these languages.

Indeed, we expect the programmer to identify the language best suited for

the expression of each application (or module thereof). If none of the spe-

cialized paradigms suffices, the programmer must express the computation

in a recourse programming paradigm, that is general purpose in nature. In

this thesis, we employ Charm++ as the recourse language. Our work enables

interoperability between such differently expressed parallel modules.

Whereas we have outlined a rather general multi-paradigm approach, this

thesis focuses on the development of three specific specialized programming

languages. Our work provides for interoperability between modules written

in these languages, as well as modules written in Charm++. Each of the

specialized paradigms, as well as the recourse language (Charm++), is based

on the object-based, message-driven execution model. This allows module

execution to be automatically interleaved, based on availability of data for

each module.

We demonstrate the feasibility of this multi-paradigm and multilingual

approach by developing an HPC application that exhibits highly irregular

patterns of computation and communication. We develop a Barnes-Hut

code that comprises modules written in Charisma, DivCon, Distree, and

Charm++. As we argue later, such interoperability is made easier by the

presence of a message-driven execution substrate in the form of Charm++.

This is not the first work to attempt the development of a multi-paradigm

system for programming. Consider the Oz [13] multi-paradigm programming

language, which combines elements of functional programming, imperative

5

programming and message passing, and constitutes an arguably more elegant

approach to programming than the present work. However, Oz programs are

slow, and the underlying runtime system, named Mozart [14], seems bet-

ter suited for the development of loosely-coupled distributed systems, than

for the development of tightly-coupled, high performance codes for scientific

and engineering applications. This points to a fundamental difference be-

tween our approach and that taken by the developers of Oz/Mozart. We

view our work as an exercise in pragmatic design: we intend to develop

specialized constructs that are shaped by the tradeoffs between abstraction,

ease of translation into lower-level notations and, most importantly, high

performance.

Specialization of programming notations has been extensively investigated

prior to this thesis. The most recent example of such an effort is the Stanford

Delite project [15]. Indeed, that group has had notable successes in the

design of specialized notations for machine learning [16], convex optimization

and graph analysis. Unlike the present work, the Delite project provides an

elegant means of embedding domain specific languages within the syntactic

framework of the Scala language. And whereas the code generated by the

Delite compiler targets heterogeneous systems, it is currently restricted to

shared memory platforms augmented with accelerator hardware. Therefore

the present work is distinct from the Delite project in terms of application

domain and scope of execution. Further, we seek specialization on the basis

of interaction patterns, rather than application domain. Thus, we hope that

our abstractions are more broadly applicable.

6

CHAPTER

2

PRELIMINARIES

2.1 The role of Charm++ in our work

Although alternative implementations are no doubt possible, our decision to

base our specialized notations on the object-based programming model of

Charm++ was strategic. We believe that our design allows the program-

mer to leverage a number features built into the adaptive runtime system of

Charm++. These include: migratability (over the network, or even to disk

during checkpointing) of objects; a dynamic instrumentation infrastructure

that enables the balancing of computational load across PEs at run time; a

message-driven model of computation, which automatically engenders over-

lap of communication and computation; support for fault tolerance, etc. The

Charm++ runtime system has been ported to a wide range of architectures,

ranging from multicore processors [17], to clusters of SMPs [18], heteroge-

neous clusters [19–21], and some of the largest supercomputers operational

today [22–24].

Our strategy is to translate higher-level notations developed in this thesis,

into the message-driven, coarse-grained objects paradigm of Charm++. In

7

this chapter, we provide an overview of the Charm++ execution model. The

chief features of this model are:

1. Explicit, programmer-identified parallelism.

2. Expression of computation in terms of coarse-grained, communicating

objects whose behavior is best modeled by actors.

3. Cooperative concurrency, achieved through non-preemptible, message-

driven function invocations.

To illustrate the features of this model concretely, we conduct the fol-

lowing discussion in the context of a simple example application written

in Charm++. The application performs a Jacobi relaxation over a two-

dimensional domain.

2.2 Explicit decomposition of work and data over

coarse-grained chares

The programmer explicitly decomposes the data and parallel work over coarse-

grained objects called chares 1 [25]. Pre-declared entry methods can be re-

motely invoked on such objects, through appropriate handles. The granu-

larity of these invocations is an important consideration. Chares should be

such that each entry method invocation leads, on the average, to a reason-

able amount of sequential computation. In practical terms, this constrains

the HPC programmer to assign a chunk of work or data to each chare, and,

typically, on the order of tens of chares to each processing element (abbrevi-

ated PE: a processor core, a thread, etc.) A trade-off must be struck between

concurrency and overhead: To increase concurrency, chares must be made as

finely-grained as possible. However, they must encapsulate enough work to

amortize the parallel overheads of scheduling, communication, and dynamic

instrumentation.

If one were writing a parallel prefix sum computation over integers in

Charm++, one would assign to each chare a reasonably sized subrange of

the input array of integers, and not a single integer. If, on aggregate, too

1The word chare is Old English for chore, or task.

8

few integers are assigned to each chare, the overhead of parallel method

invocation can become significant.

Chares can be organized as indexible collections called chare arrays. The

chare array construct gives the ability to create a handle to an object from

anywhere in the system, as long as its index within the array is known. This

obviates the communication of handles for individual objects through some

external protocol.

In the Jacobi relaxation, computation is explicitly decomposed over a

chare array. Each chare encapsulates a tile of several points from the two-

dimensional structured grid over which we perform the relaxation. A chare

is mapped to a PE by the runtime system, although the programmer may

intervene in the placement decisions. We will often refer to chares as resid-

ing on PEs. However, a PE is rarely part of the Charm++ programmer’s

ontology, so we shall avoid the use of the term to the extent possible.

Figure 2.1(a) shows the schematic of a two-dimensional, tiled decompo-

sition of the relaxation domain over a two-dimensional chare array. Let us

use a subscript notation to refer to chares based on the geometric layout

of their corresponding tiles over the domain: given a collection of tiles J ,

expression J [i, j] refers to the tile in the i-th row and j-th column. For con-

venience, we identify the tile at position (i, j), as well as the coarse-grained

chare/object that encapsulates it, with the label J [i, j]. Figure 2.1(b) shows

the assignment of chares to PEs.

Expressing communication between chares

In Charm++, a message-send is realized by the remote invocation of a

method on a target chare. The receipt of a message by a chare triggers some

computation on it. Messages encapsulate data from possibly remote sources,

and are passed to chare code via entry method invocations. For the purpose

of this thesis, remote method invocation is assumed to be the only means of

communication between objects in the Charm++ model. In particular, the

model assumes that chares do not use shared memory for communication.

Therefore, the programmer is forced to incorporate the distributed memory

cost model into the design of algorithms.

For example, in the Jacobi relaxation algorithm, each chare J [i, j] sends

messages to its neighboring chares, J [i + 1, j], J [i − 1, j], J [i, j + 1] and

9

J[i,j]J[i,j-1]

J[i-1,j]

J[i,j+1]

J[i+1,j]

(a) Decomposition.

J[i,j]J[i,j-1]

J[i-1,j]

J[i,j+1]

J[i+1,j]

PE 0 PE 1

(b) Mapping.

Figure 2.1: Decomposition of work and data onto an indexible collection
of chares: In (a) the Jacobi relaxation problem is decomposed onto a two-
dimensional chare array. Chare J [i, j] and its neighbors are shown in bold
shading. Each chare contains a tile of points from the original relaxation
domain. A chare performs the relaxation computation over the tile of points
that it contains. Hence, chares are coarse in the amount of computation they
perform. In (b) is shown the mapping of these chares to two PEs. Note that
several, coarse-grained chares reside on each PE.

J [i, j − 1]. This is shown in Figure 2.2.

To clarify the vocabulary further, a chare (the message source) can invoke

an entry method on (i.e. send a message to) another chare (the target of

the message) through a handle. Specifically, the method is invoked on a

representative (a stub in Java’s RMI, and a proxy in CORBA) (non-chare)

C++ object called the proxy of the target chare. Typically, the proxy of each

chare is available (or can be constructed) on any PE. Therefore, in order to

invoke entry method leftBoundary on its right neighbor chare, chare J [i, j]

invokes the the corresponding method on its right neighbor’s proxy. Similarly

for the other three neighbors of a chare identified by the indices ‘i’ and ‘j’:

10

J[i,j]

J[i,j-1]

J[i-1,j]

J[i,j+1]

J[i+1,j]

Figure 2.2: Communication of tile boundaries via messages in Charm++.
Each chare sends four boundary messages, one to each of its four neighbors,
and in turn expects a message from each one of them. A boundary message
encapsulates several data elements copied from an appropriate location in
the tile of its source chare.

JProxy[i, j+1].leftBoundary(makeRightBoundaryMessage());

JProxy[i, j-1].rightBoundary(makeLeftBoundaryMessage());

JProxy[i+1, j].topBoundary(makeBottomBoundaryMessage());

JProxy[i-1, j].bottomBoundary(makeTopBoundaryMessage());

Upon invocation, an entry method performs certain computations on the

state encapsulated by the target chare. As shown in the code below, the re-

ceipt of each boundary message is followed by a check to see whether bound-

aries from all four neighbors have been received.

11

class Jacobi {

public:

void startComputation(){

int i = thisIndex.x;

int j = thisIndex.y;

JProxy[i, j+1].leftBoundary(makeRightBoundaryMessage());

JProxy[i, j-1].rightBoundary(makeLeftBoundaryMessage());

JProxy[i+1, j].topBoundary(makeBottomBoundaryMessage());

JProxy[i-1, j].bottomBoundary(makeTopBoundaryMessage());

}

void leftBoundary(BoundaryMsg *msg){

copyToLeftBoundary(msg->getData());

numBoundariesReceived_++;

checkAllBoundariesReceived();

}

void rightBoundary(BoundaryMsg *msg){

copyToRightBoundary(msg->getData());

numBoundariesReceived_++;

checkAllBoundariesReceived();

}

...

void checkAllBoundariesReceived(){

if(numBoundariesReceived == 4){

relax();

numBoundariesReceived = 0;

}

}

};

Message-driven execution naturally leads to a reactive style of programming,

wherein chares react to received messages by performing certain actions.

This causes control flow in Charm++ programs to become fragmented over

individual entry methods.

As shown in the checkAllBoundariesReceived() method above, and as

12

J[i,j]

J[i,j-1]

J[i-1,j]

J[i,j+1]

J[i+1,j]

Figure 2.3: A chare receives one boundary message from each one of its
neighbors, and performs the local relaxation computation using the elements
contained therein.

depicted in Figure 2.3, upon receiving messages from all of its neighbors,

a Jacobi chare performs a coarse-grained computation, namely the stencil-

based relaxation operation on all the grid points within its tile. Such an

invocation is non-preemptible, and executes to completion. When an entry

method invocation finishes, control is transferred to a scheduler, which picks

a message from a queue of remotely received messages. Therefore, chares are

cooperatively scheduled. Each message specifies its target chare, as well as

the entry method to be invoked upon its receipt. The message is passed as

a parameter to the corresponding entry method invocation.

2.3 The role of the runtime system

The Charm++ system combines the idea of message-driven objects, with an

adaptive runtime system that dynamically optimizes program performance.

In particular, Charm++ incorporates a dynamic instrumentation module,

which records the amount of computational load exerted by each chare in

the program, as well as the communication pattern of each chare. This in-

formation is then funneled to other dynamic strategies to alter the mapping

of chares to PEs at run-time. In this way, chares can be migrated to bal-

ance load. The Charm++ infrastructure also provides other amenities, such

as a dynamic communication optimization library [26, 27], run-time tuning

13

of program parameters [28] quiescence detection algorithms [29] and fault

tolerance [30, 31]. However, a substantive discussion of these aspects of the

Charm++ system is beyond the scope of this thesis.

2.4 Modular composition

Typically, multi-module MPI codes employ either the temporal division of the

parallel machine on which the job is executed, or its spatial division among

the modules. In the first approach, one module occupies the entire machine

for a certain duration (measured perhaps in time steps of execution), and

then transfers control to the other module, which then occupies the entire

machine for some time, and so on. The problem with this technique is that

the idle time suffered by one of the modules (for instance, due to communica-

tion latency) cannot be overlapped by useful work in the other module. An

alternative is to spatially partition the machine among the modules, whereby

modules execute in parallel, but on disjoint sets of processors. This technique

has two drawbacks, namely (i) The need to determine a priori the appropri-

ate ratio in which to divide the machine, and (ii) Unnecessary communication

between corresponding subdomains in different modules These subdomains

simulate different physics on the same region, but are forced to communiate

because of their artificial separation by a module boundary.

A third alternative involves the intrusive rewriting of communication code

in each of the modules, so as to insert wildcard MPI receives (instead of

module-specific ones), and thereafter funnel each intercepted message to the

appropriate module, based on its identifying tag. This allows the interleaved

execution of different modules in each MPI process.

By contrast, efficient composition of modules comes naturally in the message-

driven model of Charm++. Chares of several modules reside on each PE;

entry methods are invoked on these chares based on the local availability of

data-carrying messages addressed to each one. Therefore, we don’t have to

artificially separate modules, and idle time incurred by chares of one module

on a PE may be dynamically overlapped with useful computation performed

by local chares of other modules. Moreover, the Charm++ scheduler auto-

matically handles the addition of new modules without programmer inter-

vention.

14

2.5 SDAG: Structured control flow for message-driven

objects

Given the reactive nature of message-driven chares, Charm++ programs suf-

fer from a fragmentation of control flow local to an object. Therefore, control

flow local to a Charm++ object is unstructured, analogous to sequential pro-

grams that use gotos or equivalent control flow constructs. It is natural to

want to give some structure to the sequence of events that occur during each

chare’s lifetime. Work by Kale and Bhandarkar [32] has made it possible to

do just this.

Their notation, called SDAG (Structured DAGger), consists of three main

components: (i) when blocks, (ii) serial blocks, and (iii) conditional control

flow constructs (e.g. if, for and while). SDAG statements are executed

in program order. The when construct allows us to specify dependencies on

received messages. A when block executes when all corresponding message

receipt dependencies have been satisfied. A serial block encloses a number

of C++ statements, and no SDAG code. Finally, control flow constructs al-

low the modulation of the otherwise sequential flow of control. Using SDAG

constructs, one can express the message-driven behavior of Charm++ ob-

jects in an unfragmented manner. Details about the notation can be found

elsewhere [32].

2.6 System architecture

The work done in this thesis is part of the Charm++ ecosystem, and leverages

several of its components in order to achieve the twin goals of productivity

of expression, and efficiency of parallel performance. We note the role of

each one of these components below, not only to give the reader a complete

picture of the context of this work, but also as an acknowledgement of the

vast software infrastructure that enables the kind of research directions taken

by this thesis. Therefore, in the following, we give a quick overview of the

Charm++ software stack, and identify the specific location therein to which

we contribute.

Let us start at the bottom of Figure 2.4. The bottom-most layer of

Charm++ serves as the interface to the parallel machine on which the pro-

15

Figure 2.4: Pictorial depiction of the software architecture used in this the-
sis. The thesis describes work done to provide a multi-paradigm approach
based on the idea of incomplete and interoperable abstractions (the Kandin-
sky circles). The programmer creates a multi-module application, each mod-
ule of which is written in the higher-level, incomplete abstraction that suits
it best. These modules are interoperable, allowing the composition of large
applications from multiple modules, each of which is relatively self-contained.

gram is being executed. As such, it is called the machine layer. Charm++

has been ported to many different platforms, and the peformance of these

ports depends to a large degree on the machine-specific optimizations that

are incorporated by the corresponding machine layer. A basic machine layer

based on UDP sockets has existed since the inception of Charm++, and sup-

port for new architectures, e.g. the IBM Blue Gene series [24, 33], the Cray

Gemini network (uGNI) [23], Infiniband (verbs) [34], etc. has been developed

over time.

The machine layer is the only one that has a different implementation for

each parallel architecture to which Charm++ has been ported. As we tra-

verse up the stack from the machine layer, we encounter layers that provide

increasing levels of abstraction, and are (largely) hardware-agnostic. For ex-

ample, the low-level runtime system, i.e. LRTS provides common memory

management, user-level threads, and communication routines. The Con-

verse [35] layer provides an abstract parallel execution model in the form of

asynchronous function invocations on processors, and reactive message han-

16

dler code. The Charm++ layer, which provides migratable, message-driven

objects, is present above the Converse layer. It manages the mapping of

objects to PEs, as well as their migration across PEs for load balancing.

Finally, the Charm++ layer provides various other amenities, such as com-

pletion/quiescence detection [36], efficient message aggregation and routing,

fault tolerance [37], etc.

The work described in this thesis is based on top of the Charm++ layer.

The language that we describe in Chapter 3 has an associated compiler

that translates a global, data-independent, imperative specification of con-

trol and data flow into a Charm++ program (SDAG) with distributed,

message-driven control. Chapter 4 details the translation of divide-and-

conquer computations into Charm++ programs consisting of dynamically

spawned chares, whose grain size is adaptively managed. We emphasize

divide-and-conquer algorithms that operate on large, distributed arrays of

data. In this context, each array of data is coarsely distributed over a chare

array. In Chapter 5 we describe a framework that is meant to express parallel

algorithms based on distributed trees. In that chapter, each tree is coarsely

distributed over the elements of a chare array, several of which are present

on each PE. The message-driven nature of Charm++ is exploited to foster

overlap of computation and communcation.

17

CHAPTER

3

DATA-INDEPENDENT

COMMUNICATION PATTERNS

3.1 Introduction

In their “View from Berkeley” Asanovic et al. [11] note that most parallel

HPC applications fall into one of a handful of well-defined classes, which are

typified by so called computational dwarves. From their perspective, such a

characterization allows us to evaluate the efficacy of experimental hardware

and software platforms against well-defined and commonly used patterns of

computation and communication. From the point of view of programming

language design, their characterization supports the idea that HPC program-

mers write programs subscribing to one of a handful of computation/com-

munication patterns.

In this section, we examine the commonalities between an important subset

of HPC applications. We intend to identify a collection of data-independent

interaction patterns that can be supported by a new programming model. We

take an empirical approach to the design of this model, and analyze several

18

common applications in the realm of HPC. Since we address only a subset

of HPC applications, the model we develop is specialized and incomplete.

3.2 An examination of HPC applications for

data-independent communication patterns

In this section, we use a simple notation to concisely capture the communi-

cation patterns of the parallel algorithms being considered. We will explore

the class of communication patterns that can be expressed as a series of

statements in this notation.

As in the rest of this thesis, we consider execution on distributed memory

machines. We adhere to the explicit and coarse-grained decomposition of

work and data over objects (cf. § 2). The notation that we use is meant to

describe patterns of communication between sets of such objects. Objects

communicate with each other by sending (medium-sized) messages.

These messages are identified through labels, each of which consists of

a multidimensional subscript. The subscript comprises index expressions

whose identifiers are bound by universal quantifiers, as we shall explain

shortly. Identifiers within subscripts are locally bound. That is, if several

messages are generated by a (set of) sender object(s), then we only use the

message label to distinguish the set of target objects for each one. In particu-

lar, these labels are not available to the recipients themselves, and so cannot

be used to discriminate between received messages. We place this restriction

to simplify the notation and the accompanying discussion of communication

patterns. In a real application this restriction would hamper the expression

of computation. (For example, if a recipient of several messages operates

upon them in a certain order, it must be able to determine the position of

each received message in that order.) However, it does not affect our present

purpose, which is the expression of communication patterns.

To summarize, our notation is used to coordinate or orchestrate the ac-

tivities of sets of objects that send and receive messages. In this notation

a parallel algorithm can be specified as a series of statements. A statement

can be of one of three types, namely sends-to, reduces-to or computes:

1. sends-to: indicates that an individual coarse-grained object sends a

19

message to a set of similar receiver objects. The set of recipients may

be a singleton, in which case a point-to-point message is implied. If

the set of recipients has more than one member, the communication

action is either a multicast or a scatter. A multicast is denoted by the

sending of a single message to a set of recipients, whereas a scatter

is implied when a differently labeled message is sent to each of a set

of recipients. Finally, if a number of differently labeled messages is

sent, and each such message targets a number of recipients, the com-

munication operation is a scatter-multicast. In the case of scatters and

scatter-multicasts, message labels are used to identify the recipient(s)

of each message.

2. reduces-to: indicates that a set of objects collectively performs a reduc-

tion operation, the result of which is sent to a set of recipients. As in

the sends-to case, the reduction could have a single recipient, or a set of

recipients for the same result (reduce-multicast, similar to all-reduce).

On the other hand, multiple subsets of a set of sources could each per-

form a reduction, leading to the generation of a corresponding number

of reduced results. Each of these results could be a labeled message

sent to a different set of recipients. If each labeled result is sent to a

singleton object, the operation is a reduce-scatter. On the other hand,

if the set of recipients for each labeled result is itself a set of objects,

then we have a reduce-scatter-multicast operation.

3. computes: indicates that an object waits for the receipt of a certain

number of messages, following which it performs some computational

work using data extracted from those messages. As noted previously,

the identity of received messages does not matter; only the number of

messages awaited is important.

Below we use this notation to examine patterns of communication in sev-

eral staple scientific and engineering applications.

3.2.1 Jacobi relaxation

A number of applications exhibit the halo-exchange pattern inherent in the

stencil calculation of the Jacobi method. Examples include Cellular Gas Au-

20

tomata and the Lattice Boltzmann Method (for fluid mechanics), multiscale

methods, and Particle-In-Cell (plasma physics) and Particle-Mesh methods

(e.g. in computational cosmology).

Assume that a two-dimensional N ×N toroidal domain has been decom-

posed onto a one-dimensional collection of N/g objects, J . The parameter g

denotes granularity, and is typically chosen so that each of the N/g objects

is coarse in the number of elements assigned to it. Therefore each J [i], where

i ∈ SJ = {0..N/g−1}, contains a number (g) of rows of the domain. In order

to perform the relaxation operation on its subdomain, it needs the boundary

rows of its two adjacent neighbors. Similarly, each of its neighbors gets one

of its boundaries from the object in question. Therefore, each J [i] sends a

message containing its top and bottom boundaries to its adjacent objects,

J [i+ 1] and J [i− 1]. When it receives boundaries sent by its neighbors, J [i]

can perform a relaxation operation on its subdomain.

∀ i ∈ SJ : J [i] sends [0] to J [(i+ 1) mod N/g]

∀ i ∈ SJ : J [i] sends [0] to J [(i− 1 +N/g) mod N/g]

∀ i ∈ SJ : J [i] computes(2)

Such a halo-exchange is typical of stencil codes, which are used extensively

to solve partial differential equations. In our notation, each of the first two

sends-to operations identifies a single recipient for a single message, implying

a one-to-one communication pattern. The third statement says that each

J [i] waits for two messages before performing some computation.

3.2.2 Tiled matrix multiplication

The tiled algorithm for matrix multiplication relies on the existence of effi-

cient section multicasts. Such a pattern is found in more sophisticated ver-

sions as well, including the state-of-the art algorithm of Agarwal et al. [38].

In our object-based decomposition, the input matrices A and B are decom-

posed onto one-dimensional object collections also named A and B. Each

object A[i] contains the i-th chunk of rows of A; similarly, B[j] contains the

j-th chunk of columns of B. The result C is computed by a third, two-

dimensional, object collection, C, such that C[i, j] computes the result tile

21

Cij. In order to do this, it requires the entire i-th chunk of rows and j-th

chunk of columns. Let SA = SB = {0..N/g − 1}, where N is the number of

rows in the input (square) matrices, and g is the granularity, i.e. the number

of rows assigned to each A[i], or the number of columns assigned to each

B[j]. Also, SC = SA × SB. Then, the matrix multiplication algorithm is:

∀ i ∈ SA : A[i] sends [0] to {∀ k ∈ SB : C[i, k]}

∀ j ∈ SB : B[j] sends [0] to {∀ k ∈ SA : C[k, j]}

∀ i, j ∈ SC : C[i, j] computes(2)

Again, we see the use of the singleton subscript [0] to denote a one-to-one

communication pattern.

3.2.3 Transpose

The transpose operation involves a scatter followed by a gather. It is found

in HPC applications that perform multi-dimensional FFTs and matrix in-

version, and is otherwise ubiquitous in linear algebra.

Suppose that we have decomposed an N×N matrix over a one-dimensional

collection ofN/g objects, A. Therefore, eachA[i] contains a contiguous chunk

of rows of the input matrix. In order to perform the transpose, A[i] must send

the j-th chunk of columns of its rows, to A[j], where i, j ∈ SA = {0..N/g−1}:

∀ i, j ∈ SA × SA : A[i] sends [j] to A[j]

∀ i ∈ SA : A[i] computes(N/g)

The communication pattern here is a scatter: each A[i] sends a number of

messages, where each message is given the label [j] (j ∈ SA). Each message

[j] has a single recipient, A[j]. Following this, each A[i] awaits the receipt of

N/g messages and then performs some computation.

3.2.4 Decimation-in-time FFT

The FFT is an important part of many scientific and engineering codes: it

has applications ranging from signal processing to field-potential calculations

22

used in cosmology, plasma physics and the like. Below we discuss the butterfly

FFT algorithm [39], in which recursively-doubled message-exchange distances

are used. Let A be the one-dimensional collection of objects over which the

data are decomposed, and let SA = {0..N/g − 1}, where N is the number of

data elements (assumed to be a power of two for simplicity) and g is, once

again, the granularity of decomposition, namely the number of data elements

assigned to each object A[i], with i ∈ SA. In iteration k,

∀ i ∈ SA : A[i] sends 0 to A[(i+ 2k) mod N]

∀ i ∈ SA : A[i] computes(1)

3.2.5 Dense LU decomposition

The dense LU decomposition is exemplary of a large class of dense linear

algebra routines, each member of which can be expressed using section mul-

ticasts and reductions. For a two dimensional decomposition of the N × N
input matrix onto an object collection A, we have the following structure for

each iteration. In iteration k, Rk = {k + 1 : N − 1}, and

A[k, k] computes(0)

A[k, k] sends [0] to {∀ i ∈ Rk : A[k, i]}

A[k, k] sends [0] to {∀ i ∈ Rk : A[i, k]}

∀ i ∈ Rk : A[k, i] computes(1)

∀ i ∈ Rk : A[i, k] computes(1)

∀ i ∈ Rk : A[k, i] sends i to {∀ j ∈ Rk : A[j, i]}

∀ i ∈ Rk : A[i, k] sends i to {∀ j ∈ Rk : A[i, j]}

∀ i, j ∈ R2
k : A[i, j] computes(2)

Briefly, the object on the current element of the diagonal factorizes the

diagonal tile (first statement) and has no data dependencies on any previous

computation. It multicasts the triangular halves of the factorized tile to the

objects in the k-th row to its right (second statement), and the objects in

23

the k-th column below it (third statement). When a targeted recipient re-

ceives a triangular submatrix, it performs a panel update (fourth and fifth

statements) and in turn multicasts its result to the objects in the trailing row

(sixth statement) or column (seventh statement) of the matrix. These up-

dates are sent as sub-column and sub-row multicasts, such that each trailing

tile receives two messages, which it uses to update its portion of the trailing

matrix (eighth statement).

3.2.6 Geometric multigrid

Multigrid methods (and the associated family of more general multiscale

methods) are used to solve certain classes of partial differential equations,

and exhibit faster convergence rates than structured unigrid methods (e.g.

the Jacobi method). A detailed description is beyond the scope of this doc-

ument: we refer the interested reader to the book of Briggs et al. [40] for

the mechanics of the algorithm, and also some of the terminology used be-

low. Briefly, the geometric multigrid method consists of a localized gather

operation during the restriction phase, a localized scatter operation during

interpolation, and a halo-exchange during smoothing, which is similar to the

Jacobi method’s relaxation computation.

Assume that the input N × N domain has been decomposed over a two-

dimensional collection of objects A, whose dimensions are N/g×N/g, g being

the granularity of decomposition. Therefore, every A[i, j] holds a tile of the

input domain. The interpolation phase has the effect of iteratively reducing

the number of elements per A-object. To counter this reduction in grain size,

a localized coarsening operation is performed. Let τ be the coarsening factor,

and k − 1 be the number of coarsenings that have already occurred. Then

Sk = {0..N/gτ k − 1}2 is the set of indices of the active objects prior to the

k-th coarsening. The k-th round of coarsening entails the following gather

operation:

∀ i, j ∈ Sk : A[i, j] sends [0] to A[i/τ, j/τ]}

∀ i, j ∈ Sk+1 : A[i, j] computes((τ − 1)2)

Similar observations apply to the refinement operations applied during

interpolations.

24

3.2.7 Space- and Force-decomposed molecular dynamics

The work of Phillips, Zheng, Kumar and Kale [41] has resulted in a scalable

method for computing the Newtonian interactions of large ensembles of atoms

subject to molecular forces. Their algorithm is based on the fine-grained

decomposition of data onto so-called patches of space, and of work onto

computes. Each compute calculates the interactions between atoms in a

neighboring pair of patches.

Expressed in terms of object collections, the two-dimensional domain is

evenly distributed among members of the two-dimensional collection of patches,

P , and the work of calculating the interactions between neighboring patches

P [i1, j1] and P [i2, j2] is assigned to compute C[i1, j1, i2, j2]. The “neighbors”

relation is denoted N , i.e. N(i1, j1, i2, j2) if P [i2, j2] is a neighbor of P [i1, j1].

Moreover, let SP = {0..N − 1}2 be the set of all the indices of patches in P ,

and SC = S2
P .

∀ i1, j1 ∈ SP : P [i1, j1] sends [0] to {∀ i2, j2 ∈ SP |N(i1, j1, i2, j2) : C[i1, j1, i2, j2]}

∀ i1, j1 ∈ SP : P [i1, j1] sends [0] to {∀ i2, j2 ∈ SP |N(i2, j2, i1, j1) : C[i2, j2, i1, j1]}

∀ i1, j1, i2, j2 ∈ SC : C[i1, j1, i2, j2] computes(2)

∀ i1, j1 ∈ SP : {∀ i2, j2 ∈ SP |N(i1, j1, i2, j2) : C[i1, j1, i2, j2]} reduces [0] to P [i1, j1]

∀ i1, j1 ∈ SP : {∀ i2, j2 ∈ SP |N(i2, j2, i1, j1) : C[i1, j1, i2, j2]} reduces [0] to P [i2, j2]

∀ i, j ∈ SP : P [i, j] computes(2)

In the above, each patch P [i1, j1], where i1, j1 ∈ SP , multicasts its particles

to those computes that calculate the interaction of its particles with those of

its neighbors, namely P [i2, j2], such that i2, j2 ∈ SP and N(i1, j1, i2, j2) (first

statement) or N(i2, j2, i1, j1) (second statement). Conversely, each compute

waits to receive particles from the two patches whose pairwise interactions

it is to calculate (third statement). The results of the pairwise force inter-

actions are reduced over corresponding sets of computes (fourth and fifth

statements), and sent to patches for integration of particle trajectories (sixth

statement).

25

Discussion

The above algorithms are characterized by the following features:

1. Data and work are decomposed over fixed sets of coarse-grained objects.

2. Communication is sender-driven, i.e. the sender of a message deter-

mines the identity of the receiver(s).

3. The computation of the receiver’s identity does not depend on the con-

tents of any messages previously received by the sender. However, it

may depend on the identity of the sender itself, constants, and itera-

tion index variables (as in LU and FFT). Therefore, the communication

patterns between objects are independent of the state of the program.

This allows a compiler to statically determine all possible communica-

tion patterns used in the program.

4. Finally, the receiver of a message does not make any reference to the

identity of the sender.

For the purpose of our work, we take these to be the defining characteristics

of data-independent communication patterns. Using even such a restricted

notation, we are able to capture a variety of communication patterns that is

prevalent in important domains of HPC applications. It is this observation

that motivates the constructs of our higher-level, specialized programming

language, called Charisma. We develop this language in sections 3.4 and

beyond. In addition to constructs for specifying data-independent commu-

nication patterns, Charisma provides constructs for iterative computations

and data-dependent control flow.

3.3 Some patterns that are not data-independent

Although the above list of applications makes the case that several important

classes of algorithm can be expressed in a data-independent manner, there are

several other algorithms that cannot be captured in this style. We enumerate

some of these below:

26

3.3.1 Data-dependent data flows in Barnes-Hut traversals

The Barnes-Hut algorithm [42] provides an asymptotically efficient algorithm

for computing the pairwise interactions betwen large particle ensembles. At

the heart of this algorithm is the data-dependent opening criterion, which

is used to determine whether two sets of particles are sufficiently distant

from each other for the application of a hierarchical approximation. In this

algorithm, whether or not two processors communicate depends strongly on

the mass distributions on the two processors. Such data-dependent data

flows cannot be captured by our notation.

3.3.2 Data scattering in the Quicksort algorithm

Consider the recursive quicksort algorithm operating over a distributed array.

Suppose that the input array A to some invocation in the recursion tree, is

evenly distributed over a set of processors P . Then, subsequent to the (out-

of-place) partitioning of A about a pivot, we obtain three smaller arrays, A1,

A2 and A3. In the “team-parallel” scheme of Hardwick [43], each Ai must

be distributed over a partition of P . In order to do this, a parallel prefix

operation is performed over P to determine the number of elements of Ai

held by each p ∈ P . The result of this parallel prefix operation is used by

every p ∈ P to determine the processors in Pi to which to send data elements

of Ai held by p. Although this pattern of communication could be phrased

in a data-independent manner, it would be extremely inefficient to do so.

3.3.3 Discrete event simulations

For many discrete event simulations, the communication graph between sim-

ulated entities varies as a function of time. In such simulations, the com-

munication pattern depends on the state of the computation, and therefore

cannot be effiiciently captured in a data-independent manner. Even for those

simulations in which the communication graph remains static, whether or not

data are exchanged between connected objects may be dictated by the local

state of objects. A good example of such a computation is the simulation

of a large neuronal network, in which the spiking of each individual neu-

ron is determined by its internal state, which is in turn determined by the

27

data that it receives from neurons that are presynaptic to it. Of course, the

communication pattern in such a simulation could be characterized as an

all-to-all, but, especially for sparse graphs, such an implementation would be

inefficient.

3.4 Charisma: Stance

Our observations from § 3.2 bring us to the central focus of this chapter,

namely the design of a specialized language for the productive expression of

parallel programs with data-independent communication patterns. We have

already seen that a number of HPC applications can be expressed with a

data-independent communication pattern (cf. 3.2). We now synthesize from

this notation the constructs of a high-level programming language called

Charisma. Below, we briefly enumerate the features that we believe to be

important to its design:

1. An explicitly decomposed description of the parallel program in terms

of coarse-grained objects.

2. Separation of the program’s serial computation from the specification

of its parallel structure, thereby keeping the language for the latter

simple, and simultaneously allowing the former to be expressed in one

of many, well-established sequential programming languages.

3. An unfragmented representation of global control and data flows.

4. A simple and sequential semantics of parallel execution, that guarantees

determinism.

5. An intuitive way to specify communication between parallel objects.

6. Incorporation of the automated resource management techniques of

Charm++.

3.5 An example application written in Charisma

In order to give some concrete context to the constructs of Charisma, we

present again the example Jacobi application from § 2. Fragments of Charisma

28

code are presented below, together with brief discussions of the language

constructs that we encounter in this application. Having gained an intu-

itive understanding of Charisma from this example, we will return to a more

comprehensive and formal description of the language in § 3.6.

J[i,j]J[i,j-1]

J[i-1,j]

J[i,j+1]

J[i+1,j]

(a) Decomposition.

J[i,j]J[i,j-1]

J[i-1,j]

J[i,j+1]

J[i+1,j]

PE 0 PE 1

(b) Mapping.

Figure 3.1: Decomposition of the problem domain over a collection of coarse-
grained objects, and the ARTS-managed mapping of these objects to PEs,
as in § 2.2.

3.5.1 Coarse grained objects

Similarly to the Charm++ version of Jacobi relaxation, the two dimensional

domain is explicitly decomposed by the programmer over rectangular tiles,

each of which is encapsulated by a coarse-grained object.

3.5.2 Object collections

The tiled objects are arranged into a named, two-dimensional collection. The

objects are of a class specified by the programmer, and individuals in the

29

collection are identified through a two-dimensional index. Shown below is

the Charisma declaration of the Jacobi class and that of a two-dimensional

collection of objects of type Jacobi, namely J:

param NX, NY : int;

class Jacobi;

objects J : Jacobi[NX, NY];

Objects within collection J are depicted as encapsulating several points

from the relaxation domain in Figure 3.1 (reproduced from § 2.2 for quick

reference). As with Charm++, the mapping of objects onto processors is

managed by the runtime system.

3.5.3 Program parameters

The object collection J can be thought of as a dense, two-dimensional array

comprising NX elements along one dimension and NY along the other. Symbols

NX and NY are parameters to the program, and are obtained extraneously,

e.g. via the command line, or during module initialization. So, objects in

collection J may be addressed as ‘J[x,y]’, this expression being valid as long

as index x evaluates to an integer between 0 and NX-1, and y is between 0

and NY-1, both ends inclusive.

3.5.4 Method invocations encapsulate serial work

The fundamental action prescribed by Charisma statements is the invocation

of serial methods on objects. In describing them as serial, we mean that the

methods invoked on objects do not themselves contain Charisma code. In

fact, they are treated as blocks of serial, C++ code. As outlined below,

method invocations may lead to communication between objects.

3.5.5 Communication via values

In the Jacobi application, each object performs a relaxation computation

on the tile assigned to it. In order to do so, there must be a preceding

30

step in which communication is performed so as to exchange boundary ele-

ments between neighbors. In Charisma, communication occurs through the

publication and consumption of values. The values published by an object

may be thought of as named messages, intended for consumption by other

objects. This mode of publication and consumption (resulting in the gener-

ation of messages) is the only way in which objects can communicate with

each other. As an example, it is assumed that objects do not communicate

implicitly via shared memory. Values have types, and, like objects, may be

organized into named, indexed collections. A collection of values is called a

value space. A value may encapsulate an array of elements of a user-defined

type.

The following Charisma code declares value spaces n, e, w and s of double

values. Like object declarations, value space declarations specify the range

of valid indices along each dimension of the value subscript.

values n, e, w, s : double[NX, NY];

Below is the Charisma declaration of a singleton value ‘err’, of user-defined

type ‘ReducibleDouble’.

type ReducibleDouble;

value err : ReducibleDouble;

Publication

In our example, a object J[x,y] publishes four values (messages), each cor-

responding to one of its boundaries. These values are named after the four

cardinal directions, and each value bears a subscript that is the same as the

neighbor of J[x,y] to which it must be communicated. Therefore, the invoca-

tion of serial method boundaries on J[x,y] publishes the western boundary

of its eastern neighbor (value w[x+1,y]), the eastern boundary of its western

neighbor (e[x-1,y]), and similarly for values n[x,y-1] and s[x,y+1]:

(w[x+1,y], e[x-1,y],

n[x,y-1], s[x,y+1]) <- J[x,y].boundaries();

31

Publishing values in serial methods

Computations performed by serial methods may generate data that are to

be communicated via publication. For this purpose, Charisma provides a set

of conduit classes, which serve as the interface between user-provided serial

code, and compiler-generated code corresponding to the orchestration source.

An example of such a conduit class is Charisma::PublishedValue<>, in the

code below. Its purpose is to bind data in serial, C++ code to published val-

ues in the orchestration part of the program. The serial code for boundaries

is as follows:

void Jacobi::boundaries(Charisma::PublishedValue<double> &w,

Charisma::PublishedValue<double> &e,

Charisma::PublishedValue<double> &n,

Charisma::PublishedValue<double> &s){

int stride = nC;

w.produce(&tile(1,nC), &tile(nR,nC), nR, stride);

e.produce(&tile(1,1), &tile(nR,1), nR, stride);

n.produce(&tile(nR,1), &tile(nR,nC), nC);

s.produce(&tile(1,1), &tile(1,nC), nC);

}

The method is invoked with input arguments of type PublishedValue,

which correspond to values published by this method in the Charisma or-

chestration code. In the above, tile is a member variable of the Jacobi class,

and represents the subdomain assigned to the instance of the class on which

the boundaries method is invoked. Similarly, nC and nR are the number of

columns and rows in each tile. By invoking the produce method on the formal

parameters to the C++ method, the code associates the leftmost column of

tile with the published western boundary value, the rightmost column with

the eastern boundary value, etc. The code demonstrates the use of strided-

and non-strided variants of the produce method.

Consumption

An object is said to consume a published value when that value is named

as an input argument to a serial method invoked on that object. The data

32

associated with a consumed value (which must previously have been pub-

lished by another method invocation) are then passed into the invoked serial

method.

J[x,y].relax(n[x,y], s[x,y],

e[x,y], w[x,y]);

In the Jacobi example, each J[x,y] consumes the four values published by

its neighbors for it, since they are arguments to the relax method invoked on

it. This leads to the invocation of the relax method on J[x,y]. Arguments

to this method encapsulate the boundaries of its neighbors.

Consuming values in serial methods

The data encapsulated within a consumed Charisma value are passed into

serial C++ code by means of the Charisma::ConsumedValue<> class template.

This type of object serves as a conduit for data from orchestration code to

serial code. In our example the received boundary data, as encapsulated

by Charisma::ConsumedValue<>’s, are accessed via the C++ square bracket

operator defined for that class. If a consumed value encapsulates an array

of data elements, its size can be obtained by calling the size method of the

corresponding ConsumedValue, as shown below for values e and n:

33

void Jacobi::relax(Charisma::ConsumedValue<double> &n,

Charisma::ConsumedValue<double> &s,

Charisma::ConsumedValue<double> &e,

Charisma::ConsumedValue<double> &w){

for(int i = 0; i < e.size(); ++i){

tile(i,0) = w[i];

tile(i,nC+1) = e[i];

}

for(int i = 0; i < n.size(); ++i){

tile(0,j) = n[i];

tile(nR+1,j) = s[i];

}

for(int i = 1; i <= nR; ++i)

for(int j = 1; j <= nC; ++j)

newTile(i,j) = 0.2 * (tile(i,j) + tile(i-1,j) +

tile(i,j-1) + tile(i,j+1]);

swap(tile, newTile);

}

The code simply copies the boundaries into the appropriate positions

within the tile of the object on which relax is invoked, and performs the

stencil computation on it.

Reduction

In reality, when performing the relaxation operation, each object must de-

termine a local error residual. We must find the maximum of this local

error residual across all J-objects to check whether the computation has con-

verged. In Charisma, published values may be reduced across all instances of

a publish-consume statement in the following manner:

(+err) <- J[x,y].relax(n[x,y], s[x,y],

e[x,y], w[x,y]);

In the above, we denote err to be a value that is commutatively and asso-

ciatively udpated by each invocation of the relax method. We will quantify

the set of all such invocations in the discussion of the foreach statement be-

low. For now, we only note that the invocation of relax on J[x,y] consumes

values n[x,y], s[x,y], etc. and reduces the value err.

34

Contributing to reduced values in serial methods

Each invocation of the serial relax method above commutatively and asso-

ciatively contributes to the reduction over all invocations. For this purpose,

the relax method receives as input variable a C++ object representing the

reduced value err in the orchestration code. The type of this variable is

Charisma::ReducedValue<>, with the template parameter ReducibleDouble,

which is a user-defined type.

void Jacobi::relax(Charisma::ConsumedValue<double> &n,

Charisma::ConsumedValue<double> &s,

Charisma::ConsumedValue<double> &e,

Charisma::ConsumedValue<double> &w,

Charisma::ReducedValue<ReducibleDouble> &err){

for(int i = 0; i < e.size(); ++i){

tile(i,0) = w[i];

tile(i,nC+1) = e[i];

}

for(int i = 0; i < n.size(); ++i){

tile(0,j) = n[i];

tile(nR+1,j) = s[i];

}

double localMax = 0.0;

for(int i = 1; i <= nR; ++i)

for(int j = 1; j <= nC; ++j){

newTile(i,j) = 0.2 * (tile(i,j) + tile(i-1,j) +

tile(i,j-1) + tile(i,j+1]);

double error = newTile(i,j) - tile(i,j);

if(fabs(error > localMax))

localMax = error;

}

err.reduce(ReducibleDouble(localMax));

swap(tile, newTile);

}

So, the relax method accrues the local maximum error in the variable

localMax. This local error is contributed to the reduction of Charisma value

err by passing it into the reduce call on the conduit Charisma::ReducedValue

err. This causes a spanning-tree reduction over contributing invocations,

35

with the user-defined ReducibleDouble::operator+= being invoked at each

node of the tree.

3.5.6 Parallel invocations through the foreach statements

We now address the question of how indices x and y are quantified in object

references of the form J[x,y]. The Charisma foreach statement specifies

a list of bound variables that take values from a given set of tuples. These

tuples are used to create instances of the publish-consume statement enclosed

by the foreach statement. Consider the example code below:

foreach(x,y in {0:NX-1} * {0:NY-1})

(w[x+1,y], e[x-1,y],

n[x,y-1], s[x,y+1]) <- J[x,y].boundaries();

The above code simply means that for each pair [x,y] in the Cartesian

product {0:NX-1} * {0:NY-1}, one instance of the publish-consume state-

ment

(w[x+1,y],...,s[x,y+1]) <- J[x,y].boundaries();

is executed. The order in which these executions occur is undefined. There is,

however an implicit barrier at the end of each foreach statement. As a result,

we invoke the method boundaries on each object in the collection J. Each

invocation leads to the publication of four values, representing the bound-

aries of the corresponding object. A similar foreach-enclosed invocation can

be made for the relax method. For brevity, multiple publish-consume state-

ments can be enclosed within a single foreach statement; such a block is

interpreted as a sequence of foreach statements, each enclosing one of the

publish-consume statements, in order.

3.5.7 Iteration with the while construct

Finally, we require a mechanism to continually perform the boundary pub-

lication, followed by relaxation and error reduction, as long as the error

is greater than a certain constant threshold (which is a parameter to the

Charisma program). This is achieved through the while statement:

36

while(err > TOLERANCE)

foreach(x,y in {0:NX-1} * {0:NY-1}){

(w[x+1,y], e[x-1,y],

n[x,y-1], s[x,y+1]) <- J[x,y].boundaries();

(+err) <- J[x,y].relax(n[x,y], s[x,y],

e[x,y], w[x,y]);

}

For completeness, we present the entire orchestration code for our Charisma

Jacobi application below:

program jacobi;

parameter NX,NY : int;

parameter TOLERANCE : double;

class Jacobi;

objects J : Jacobi[NX,NY];

values n, e, w, s : double[NX,NY];

type ReducibleDouble;

value err : ReducibleDouble;

orchestrate {

(err) <- J[0,0].initialize();

while(err > TOLERANCE)

foreach(x,y in {0:NX-1} * {0:NY-1}){

(w[(x+1)%NX,y], e[(x-1+NX)%NX,y],

n[x,(y-1+NY)%NY], s[x,(y+1)%NY]) <- J[x,y].boundaries();

(+err) <- J[x,y].relax(n[x,y], s[x,y],

e[x,y], w[x,y]);

}

}

To summarize, at a high level, Charisma code is divided into two parts:

1. The parallel structure of the application, specifying units of work, and

the flow of control and data between them. This orchestration code is

written in a specialized notation.

37

2. Serial computations, which are invoked from the orchestration code,

and are specified in C++.

By invoking serial methods on objects in the orchestration code, one can

publish and consume values (i.e. messages). The compiler infers (data-

independent) communication patterns from the publications and consump-

tions, and generates the necessary sends and receives for messages. The flow

of data between orchestration code and serial methods is mediated by so-

called conduit C++ classes (PublishedValue, ConsumedValue, ReducedValue),

which represent values within orchestration code. The results of compu-

tations in the serial methods can be associated with published values by

invoking the produce/reduce methods on conduits.

3.6 The syntactic structure of Charisma programs

The following section is devoted to the consideration of Charisma syntax,

whereas § 3.7 discusses the constraints placed on legal Charisma programs.

In § 3.8 we present the operational semantics of the language. However, first

we consider fragments of the Extended BNF specification of Charisma.

3.6.1 Top-level structure

〈program〉 ::= (“program” | “module”)〈ident〉 “;”

〈includes〉〈decls〉

〈initialization〉

〈orchestration〉

The text of a Charisma program begins by identifying the following code

as either a stand-alone, named program, or a named module. Modules can be

incorporated into other Charisma programs, or external Charm++ code, as

explained in § 3.13. This is followed by a file inclusion section, a declarations

section and a sequence of orchestration statements:

38

3.6.2 Includes

〈includes〉 ::= (〈include〉 “;”) ∗

〈include〉 ::= “include” 〈string〉

The programmer may include C++ (header) files in order to use, for in-

stance, user-defined data types (see below) in the Charisma program.

3.6.3 Declarations

〈decls〉 ::= (〈decl〉 “;”) ∗

〈decl〉 ::= 〈parameter〉|〈class〉|〈objects〉|〈vspace〉

The declarations section consists of a number (possibly zero) of individual

declarations. The programmer may declare:

Parameters

〈parameter〉 ::= “parameter” 〈ident〉 “:” 〈cppType〉

A parameter is an immutable identifier whose value is obtained from outside

the Charisma code. For instance, the value of a parameter declared as

parameter myParam : int;

may be set to 198 in the command line for a stand-alone program, by includ-

ing the string

--myParam 198

in the list of arguments passed to the binary of the program.

39

Classes

〈class〉 ::= “class” 〈ident〉

As in traditional object-oriented programming languages, a Charisma class

serves to encapsulate logically related data structures and functions. Classes

used in a Charisma program are not defined therein. Instead, the compiler

only expects to encounter the declaration of every class that is used in the

program. The definition of the class must be made in an external C++

(header) file, and included in the Charisma program through the include

directive (above).

Objects and their collections

〈objects〉 ::= [“sparse”] “objects” 〈ident〉 “:” 〈objectsType〉

| “object” 〈ident〉 “:” 〈ident〉

〈objectsType〉 ::= 〈ident〉 “[” 〈idents〉 “]”

As in traditional object-oriented nomenclature, an object represents an in-

stance of a class. In Charisma objects encapsulate both work and data. Such

an object-based expression of a parallel algorithm allows generated Charisma

code to leverage performance features provided by the Charm++ runtime

system, e.g. automatic overlap of computation and communication; efficient,

interleaved composability of parallel modules; object migration-based load

balancing, etc. Method invocations on objects constitute the basic unit of

computational work in Charisma.

Objects are arranged into named and indexible collections. Every collec-

tion of objects has a type (i.e. a declared class). Object collections may be

multidimensional – the arity of the object can be one through six. A list

of identifiers given in the collection declaration specifies the cardinality of

the object collection along each of its dimensions. By default, object collec-

tions are dense. So, a dense two-dimensional collection, named myObjects,

40

of objects of (previously declared) type MyClass is declared as follows:

objects myObjects : MyClass[NX, NY];

where NX and NY are previously declared parameters. Since the collection is

dense, every object reference myObjects[x,y] is a valid one, as long as x and

y lie within their respective integer ranges of 0..NX-1 and 0..NY-1. We will

discuss the binding of identifiers x and y in the subsection dedicated to the

foreach statement (§ 3.6.4).

On occasion, and especially for higher-dimensional collections, it is useful

to have sparse collections of objects, in which the existence of object instances

is dictated by the programmer. Consider the following four-dimensional,

sparse collection of objects of type MySecondClass:

class MySecondClass;

sparse objects myOtherObjects : MySecondClass[N1,N2,N3,N4];

Given the declaration above, an object reference of the form

myOtherObjects[x1,x2,x3,x4]

(with x1, . . . , x4 appropriately bound), is a valid reference only if x1 lies in

the range 0..N1-1, x2 lies in the range 0..N2-1, etc. The programmer spec-

ifies which indices correspond to actual objects through a sparse collection

insertion statement (cf. § 3.6.6).

Finally, the programmer may also declare a singleton object, as follows:

object mySingletonObject : MySecondClass;

Values

〈values〉 ::= “values” 〈ident〉 “:” 〈cppType〉[〈idents〉]

| “value” 〈ident〉 “:” 〈cppType〉

In the paradigm of objects communicating via messages, values correspond

to messages, and provide a means of specifying communication patterns. An

object may publish a value, or consume a value. If an object o1 publishes a

value and another object, o2, consumes it, then the Charisma compiler infers

41

some form of communication between o1 and o2. We cover the syntactic

expression of publication and consumption in § 3.6.4.

Values are typed, and a named collection of values of a particular type is

called a value space. Values within a value space are identified by the name of

the value space and a multidimensional subscript. By restricting the form of

these subscripts, we are able to strike a balance between the expressive scope

of Charisma, and the sophistication of static analysis required to generate

communication code (cf. 3.12).

Consider the following Charisma declarations:

value error : double;

values forces : Force[NX, NY];

The first statement above declares a singleton value named error, of type

double. The second statement declares a collection of values (i.e. a value

space) named forces. This collection is two-dimensional, as indicated by

the square-bracketed identifier list following the user-defined type Force. A

reference to a particular value within the value space would have the form

forces[x,y], and would be valid as long as x and y evaluate to integers in

the ranges 0..NX-1 and 0..NY-1, respectively.

Unlike the notation that we developed in § 3.2, the use of value spaces

allows us to separate the actions taken by the publishers from those taken

by the consumers. This has the benefit that one can associate multiple con-

sumption sites within the program, with a single publication site. However,

it also means that communication is specified in an indirect manner, in that

a compiler must examine the pattern of publications and consumptions to

infer the message-sends occurring in the program.

3.6.4 Orchestration code

〈orchestration〉 ::= 〈stmt〉 “;”

〈stmt〉 ::= 〈blockStmt〉 | 〈straightlineStmt〉 | 〈cflowStmt〉

〈blockStmt〉 ::= “{” (〈stmt〉 “;”) ∗ “}”

〈straightlineStmt〉 ::= 〈pubconStmt〉|〈foreachStmt〉

42

The orchestration part of a Charisma program consists of a single state-

ment. This statement may be a curly-brace delimited block statement, which

in turn encloses other statements. Other than block statements, Charisma

has so-called straightline and control-flow statements. Whereas control flow

statements mark points in the program where control diverges or converges,

a straightline statement represents sequential flow of control.

A straightline statement may itself be of one of two subtypes. The first is

the publish-consume statement, which we discuss next.

Publish-consume statements

A publish-consume statement has the form LHS <- RHS, where the symbol

‘<-’ is called the publication operator. A publish-consume statement specifies

the invocation of a serial method on a given object, possibly dependent on

the prior receipt of a list of values by that invocation, and possibly resulting

in the publication of a list of values.

〈pubconStmt〉 ::= “(” 〈pubVals〉 “)” “←” 〈mthdInvocation〉

〈mthdInvocation〉 ::= 〈objRef 〉 “.” 〈ident〉 “(” 〈conVals〉 “)”

Published values are either produced (i.e. each value is generated by the

action of a single method invocation) or reduced (i.e. several method invo-

cations contribute to a reduction). Reduced value expressions are prefixed

with the ‘+’ operator.

〈pubVals〉 ::= 〈pubVal〉(“,” 〈pubVal〉) ∗

〈pubVal〉 ::= [“+”]〈ident〉[〈pubSubscript〉]

〈pubSubscript〉 ::= “[” 〈expr〉(“,” 〈expr〉) ∗ “]”

〈expr〉 ::= 〈ident〉 | 〈arithExpr〉 | 〈boolExpr〉

A published value expression may refer to a singleton value, or it may

43

contain a square-bracket-delimited list of expressions, identifying the partic-

ular value within a value space that is published by a given method invoca-

tion. These expressions may be identifiers or arithmetic expressions involving

identifiers, parameters and loop index variables. However, in order to keep

communication patterns independent of data, these index expressions may

not make references to Charisma values.

A consumed value subscript is more limited in its form: it can either be an

identifier or the wildcard expression, ‘*(k)’. The occurrence of ‘*(k)’ in the

l-th position in a consumed value’s subscript signifies that the consuming

method awaits the receipt of k values, with unspecified expressions in the

l-th position. These constraints on the form of published and consumed

value expressions allow the Charisma compiler to use very simple dependency

analysis to perform the required communication pattern inference. We define

precise constraints on these and other expressions in § 3.7.

〈conVals〉 ::= 〈conVal〉(“,” 〈conVal〉) ∗

〈conVal〉 ::= 〈ident〉[conSubscripts]

〈conSubscripts〉 ::= “[” 〈conSubscript〉(“,” 〈conSubscript〉) ∗ “]”

〈conSubscript〉 ::= 〈ident〉|〈wildcardExpr〉

〈wildcardExpr〉 ::= “∗” “(” 〈expr〉 “)”

Examples of publish-consume statements, preceded by the appropriate dec-

larations, are given below:

class Aclass, Bclass, Cclass;

object A : Aclass;

object B : Bclass;

object C : Cclass;

value p : MyValueType;

value q : MyOtherValueType;

p <- A.f1();

q <- B.f2();

C.f3(p,q);

In the first of the three publish-consume statements above, method f1 is

44

invoked on object A, leading to the publication of value p. Similarly the

second statement invokes f2 on B, leading to the publication of q. The in-

vocation of method f3 in the last publish-consume statement takes as input

the values p and q, and occurs after the first two publish-consume statements

in program order. That is, the invocation C.f3 consumes the values p and

q published by A.f1 and B.f2, respectively; therefore, we say that C.f3 is

dependent on A.f1 and B.f2.

Interfacing with serial code. The invocation of serial methods leads to the

publication and consumption of values. Therefore, we must provide an inter-

face between C++ code in serial method invocations and Charisma orches-

tration code. The purpose of this interface would be to bind values specified

in orchestration code, to data generated and used by serial computation.

This is achieved by the C++ class templates Charisma::PublishedValue

and Charisma::ConsumedValue. Specifically, by invoking the produce method

on an (serial/C++) object of type Charisma::PublishedValue in serial code,

the programmer’s serial, C++ code can bind data to Charisma values, and

thereby pass those data into compiler-generated, parallel code.

Likewise, the C++ class Charisma::ConsumedValue encapsulates con-

sumed values in the Charisma orchestration code. A “[]” operator is pro-

vided to access data elements associated with each consumed Charisma value.

These data can be used by serial C++ code to perform computational work.

For the contrived example code involving singleton objects A, B and C above,

the definition of f1 might look like this:

void Aclass::f1(Charisma::PublishedValue< MyType > &p)

{

int numPublishedElements = ...;

std::vector< MyType > data;

for(int i = 0; i < numPublishedElements; ++i)

{

data[i] = MyType(i);

}

// bind generated ’data’ to published value ’p’

p.produce(&data[0], &data[numPublishedElements-1]);

}

The method performs some (trivial) computational work, and generates

45

elements of the std::vector ‘data’ in the process. These data elements are

mapped onto the singleton value p in the Charisma orchestration code, by

the produce method. The definition of method Cclass::f3 below shows how

the data encapsulated by Charisma consumed values are passed into the

programmer’s serial C++ code:

void Cclass::f3(Charisma::ConsumedValue< MyType > &p,

Charisma::ConsumedValue< MyOtherType > &q)

{

int sum1 = 0;

int sum2 = 0;

for(int i = 0; i < p.size(); ++i) sum1[i] += p[i].getIntValue();

for(int i = 0; i < q.size(); ++i) sum2[i] += q[i].getIntValue();

}

The code above shows how individual data elements within a consumed

value may be accessed in serial, C++ computations via the square bracket

operator.

Explicit parallelism and the foreach statement

〈foreachStmt〉 ::= 〈foreachHead〉〈pubconStmt〉

〈foreachHead〉 ::= “foreach” “(” 〈idents〉 “in” 〈objIndexSpace〉

[“:” 〈expr〉] “)”

The foreach statement is used to create unordered instances of an enclosed

publish-consume statement. One instance of the enclosed publish-consume

statement is created for each element present in an associated object index

space.

〈objIndexSpace〉 ::= “{” 〈expr〉 “:” 〈expr〉[“:” 〈expr〉] “}”

|〈objIndexSpace〉 “∗” 〈objIndexSpace〉

| “ispace” (〈ident〉)

46

An object index space can be explicit, i.e. either (curly-brace-delimited,

strided) range of integer values, or a Cartesian product (signified by the

‘*’ symbol) of two object index spaces. We can also have expressions that

implicitly refer to the underlying object index space of a specified collection,

using the ispace keyword. The elements of an object index space serve as

valid indices in the subscripts of object references.

Notionally, the foreach construct commands (a subset of) objects of a

collection to execute a particular method. There is no order implied between

these method invocations. These invocations are constrained only by the

availability of messages representing the values that they consume. Below

is a simple example of a foreach statement, which causes the concurrent

invocation of method foo on all objects of a collection named A.

parameter NX, NY : int;

class Aclass;

objects A : Aclass[NX,NY];

foreach(x,y in {0:NX-1} * {0:NY-1})

A[x,y].foo();

Identifiers x and y, which serve as subscript indices in the object reference

A[x,y], are bound by the foreach statement to elements within the associ-

ated object index space (the Cartesian product {0:NX-1} * {0:NY-1}). One

instance of the enclosed publish-consume statement is executed for each ob-

ject A[x,y] in the collection A. However, we may choose to bind fewer object

subscript indices than the arity of the collection, as below:

foreach(y in {0:NY-1})

A[0,y].foo();

This would limit the set of objects on which foo is invoked, to the zeroth

row of the object collection A.

The programmer may also associate an optional filter expression to con-

strain the set of object indices over which the foreach is applied. For in-

stance, one could invoke the foo method on the set of all objects in collection

A on its K-th anti-diagonal, as follows:

foreach(x,y in {0:NX-1}*{0:NY-1} : x+y == K)

A[x,y].foo();

47

The foreach statement can be used to publish and consume values en

masse. For instance, the following foreach statements publish and consume

all the elements of value space ‘p’, respectively:

parameter N : int;

class Aclass, Bclass;

objects A : Aclass[N];

objects B : Bclass[N];

values p : double[N];

foreach (x in {0:N-1})

(p[x]) <- A[x].foo();

foreach (x in {0:N-1})

B[x].bar(p[x]);

The orchestration statements above are interpreted as follows: (1) Method

foo is invoked on each object A[x], where x lies in 0..N-1; each invocation

leads to the publication of an element p[x] of the value space p; (2) Then,

for each x in 0..N-1, the invocation of bar on B[x] consumes p[x]. The

Charisma compiler infers that each A[x] sends a single message to B[x],

implying a one-to-one communication pattern.

3.6.5 Control flow constructs

In a Charisma program control starts at the first orchestration statement,

and is thereafter transferred from one statement within a block of statements

to the one that follows it in program order. Control flow statements, in the

form of loops and conditionals, can modulate this sequential flow of control.

〈cflowStmt〉 ::= 〈forStmt〉|〈whileStmt〉|〈ifElseStmt〉

48

for: computation-independent number of iterations

〈forStmt〉 ::= “for”

“(” 〈ident〉 “=” 〈expr〉 “:” 〈expr〉[“:” 〈expr〉] “)”

〈blockStmt〉

Each for loop has an associated loop index variable, which is considered

in-scope only for the block of statements enclosed within the for loop. The

Charisma for loop resembles the Fortran do loop, in that it specifies an

initialization expression for the loop index variable, a termination expres-

sion, and an increment expression. Each one of these expressions can in-

volve numeric constants, parameters passed to the program, and in-scope

loop index variables. Therefore, a Charisma for loop executes for a stati-

cally determinable number of iterations. Moreover, these iterations execute

sequentially.

while: computation-dependent number of iterations

〈whileStmt〉 ::= “while” “(” 〈boolExpr〉 “)”

〈blockStmt〉

The number of repetitions of a while loop’s body may depend on constants,

parameters, in-scope loop index variables and values. The compiler generates

code to collect all such values referenced within the while loop predicate,

evaluates the predicate in a centralized manner, and begins the next iteration

of the loop, contingent upon successful evaluation of the predicate.

49

if-else: conditional branching of global control

〈ifElseStmt〉 ::= “if” “(” 〈boolExpr〉 “)”

〈blockStmt〉

“else”

〈blockStmt〉

The if-else statement has an associated predicate which is evaluated at

run-time to determine whether the then branch or the else branch will be

followed.

Whenever while and if-else expressions are determined by the compiler

to be dependent only on numeric constants, parameters and in-scope loop

index variables, it generates code for their distributed (as opposed to cen-

tralized) evaluation, thereby increasing concurrency.

3.6.6 Initialization

Generally speaking, the initialization section is needed only when writing ad-

vanced Charisma programs. It allows the programmer to insert valid objects

into sparse object collections.

〈ifElseStmt〉 ::= “initialize” 〈initStmts〉

〈initStmts〉 ::= “{” 〈initStmt〉+ “}” |〈initStmt〉

〈initStmt〉 〈foreachHead〉〈insertStmt〉

〈insertStmt〉 ::= “insert” “(” 〈objRefs〉 “)”

〈objRefs〉 ::= 〈objRef 〉(“,” 〈objRef 〉) ∗

The initialization statement is structured similarly to the foreach state-

ment, except that it can only enclose an insertion statement. In turn, an

insertion statement commands the insertion of a single object, given by an ob-

ject reference that possibly uses the square bracket notation seen in publish-

50

consume statements. Consider the following fragment from the molecular

dynamics code in § 3.9.2:

parameter N, NIterations : int;

class PatchClass, ComputeClass;

objects Patch: PatchClass[N,N];

sparse objects Computes : ComputeClass[N,N,N,N];

initialize {

foreach (x,y in {0:N-1}*{0:N-1})

insert(Computes[x, y, ((x-1) + N)%N, ((y-1) + N)%N],

Computes[x, y, ((x-1) + N)%N, y],

Computes[x, y, ((x-1) + N)%N, (y+1)%N],

Computes[x, y, x, y],

Computes[x, y, x, (y+1)%N]);

}

In the code above, we insert a number of elements into the initially empty

sparse, four dimensional object collection Computes. The idea is to insert ob-

jects in Computes for pairs of neighboring Patches[x1,y1] and Patches[x2,y2].

Two such Patches are considered neighbors if [x2,y2] = [((x1-1) + N)%N,

((y1-1) + N)%N], or [x2,y2] = [((x1-1) + N)%N, y1], etc. As was the case

with the foreach statement in the orchestration section, a number of in-

stances of the enclosed insert statement are executed, each with a differ-

ent [x,y] pair drawn from the object index space {0:N-1}*{0:N-1}. There-

fore, we insert one Computes object for the neighboring pair of indices [x,y]

and [((x-1)+N)%N, ((y-1) + N)%N]; one for the neighboring pair [x,y] and

[((x-1) + N)%N, y], etc.

3.7 Well-formedness conditions

Not all syntactically correct Charisma programs are considered semantically

acceptable. In the following, we present statically verifiable semantic con-

straints on the structure of Charisma programs. Dynamic errors are defined

in § 3.8.

51

We use the following nomenclature: the orchestration part of a Charisma

program is denoted π. The set of value spaces defined within π is symbolized

by V(π), and the set of parameter declarations in π is D(π). The set of

all object collections defined in π is denoted O(π). We write EB,I
x (e) to

indicate that e is a well-formed Expression of type x, given the set of in-scope,

foreach-bound identifiers B, and the set of in-scope, loop index variables,

I. Elements within B are pairs of the form (e, i), where e is an atomic

expression (defined shortly), and i is an integer. As discussed later, this

allows us to express constraints on the ordering of foreach-bound identifiers

in lists within certain kinds of expression. Similarly, WB,I(s) indicates the

well-formedness of statement s, with B and I defined as previously.

Constraints are expressed either in plain English, or, after Plotkin [44] and

Slonneger and Kurtz [45], as inference rules of the form:

premise1 . . . premisen
conclusion

conditions

3.7.1 Expressions

Expressions form the structural building blocks of statements, and to a large

extent, determine their meaning. As such, we use constrain the form of

Charisma expressions to limit its expression scope.

Literal expressions

For any B and I, EB,I
lit (e) if e is a Boolean literal (true or false) or a numeric

literal (e.g. 123, 0.008, 1.0e-9, etc.), for any sets B and I.

Free identifiers

Given any B and I, An expression e is a well-formed free identifier expression

under B and I, i.e. EB,I
free (e), if none of the following is true:

1. ∃i. (e, i) ∈ B, i.e. e is a foreach-bound identifier;

2. e ∈ I, i.e. e is a for-loop index variable;

3. e ∈ D(π), i.e. e is a parameter of the program/module

52

4. e ∈ V(π), i.e. e is the name of a value space

Bound identifiers

An expression e is a well-formed bound identifier expression for any B and

I, i.e. EB,I
bound(e), if exactly one of the following holds:

1. ∃i. (e, i) ∈ B, i.e. e is a foreach-bound identifier;

2. e ∈ I, i.e. e is a for-loop index variable;

3. e ∈ D(π), i.e. e is a parameter of the program/module

We do not include value names as bound identifier expressions.

Atomic expressions

These are expressions that cannot be broken down into operations over

operands. Numeric and Boolean literals, as well as bound identifiers (cf.

above) are all well-formed atomic expressions.

EB,I
lit (e)

EB,I
atom(e)

EB,I
bound(e)

EB,I
atom(e)

Non-value expressions

Well-formed expressions that do not contain any values are termed well-

formed non-value expressions. Therefore, all well-formed atomic expressions

(as defined above) are well-formed non-value expressions:

EB,I
atom(x)

EB,I
nv (x)

Expressions involving binary operators over well-formed non-value expres-

sions are also considered well-formed non-value expressions:

EB,I
nv (e1) EB,I

nv (e2)

EB,I
nv (e1 op e2)

53

where op ∈ {+,−, ∗,%, /}.
Similarly, the unary negation, or parenthesization of a well-formed non-

value expression is also a well-formed non-value expression.

EB,I
nv (e)

EB,I
nv (!e)

EB,I
nv (e)

EB,I
nv ((e))

Value expressions

Now we consider Charisma expressions that contain value references. As a

base case, all value space names are considered well-formed value expressions.

That is, ∀p ∈ V(π), given any B and I, it is the case that EB,I
v (p).

Given an m-dimensional value space p, and well-formed, non-value expres-

sions e1, . . . , em, we use the square-bracket notation to denote a well-formed

value expression that represents a particular element within p:

EB,I
v (p) ∀i. EB,I

nv (ei)

EB,I
v (p[e1, . . . , em])

where arity(p) = m. Subscript index expressions for values must be non-

value expressions. This means that the identity of a particular value pub-

lished or consumed by a method invocation cannot depend on the evaluation

of another value expression, so that the compiler analysis of published and

consumed value indices can be kept simple. Although we sacrifice expres-

siveness through this constraint, in the domain of applications that we have

considered, such data-dependent communication patterns do not arise. How-

ever, this constraint does limit the expressiveness of Charisma.

Returning to the definition of well-formed value expressions, when we com-

bine a well-formed value-expression with a well-formed non-value expression

using a binary operator, we get a well-formed value expressions:

EB,I
v (e1) EB,I

v (e2)

EB,I
v (e1 op e2)

EB,I
nv (e1) EB,I

v (e2)

EB,I
v (e1 op e2)

EB,I
v (e1) EB,I

nv (e2)

EB,I
v (e1 op e2)

where op ∈ {+,−, ∗,%, /}. Finally,

EB,I
v (e)

EB,I
v ((e))

EB,I
v (e)

EB,I
v (!e)

where ‘!’ signifies the Boolean negation operator.

54

Range expressions

Range expressions occur in foreach statements, and consist of colon-separated

start, end and (optional) stride expressions enclosed within curly braces:

EB,I
nv (e1) EB,I

nv (e2) EB,I
nv (e3)

EB,I
range({e1 : e2 : e3})

Wildcard expressions

Wildcard expressions are used to specify the consumption of values whose

subscript index along a particular dimension is unconstrained. Wildcard ex-

pressions are used only in the subscripts of consumed values, as stated shortly

hereafter. A well-formed wildcard expression is simply the concatenation of

the wildcard operator ‘*’ and a parenthesized, well-formed non-value expres-

sion:
EB,I

nv (e)

EB,I
wild(∗(e))

The parenthesized expression specifies the dynamically evaluated (but data-

independent) number of values to consume.

Consumed value subscripts

We are now in a position to consider the requirements of well-formedness

for expressions that occur as subscript indices in consumed and published

value expressions. We consider the former first. Given B and I, e is a

well-formed consumed-value subscript expression, or EB,I
cexp(e), if one of the

following holds:

1. ∃i. (e, i) ∈ B, i.e. e is an identifier corresponding to a foreach-bound

variable; or

2. EB,I
wild(e), i.e. e is a well-formed wildcard expression.

Published value subscripts

On the other hand, published value subscripts can be more complex. All well-

formed non-value and range expressions are considered well-formed published

value subscripts:

55

EB,I
nv (e)

EB,I
pexp(e)

EB,I
range(e)

EB,I
pexp(e)

Consumed values

A consumed value expression consists of the name of a declared value space,

and a square bracket-enclosed list of consumed value subscripts. The length

of this list must equal the arity of the value space. Additionally any foreach-

bound variable in the subscript must occur in the same position as it does

in the list of bound variables specified in the foreach statement. More rig-

orously,

EB,I
v (p) ∀i. EB,I

cexp(ei)

EB,I
cons(p[e1, . . . , em])

such that, if ∃j. (ei, j) ∈ B, then i = j.

For instance, the consumed values in the following publish-consume state-

ments are valid. This is because whenever either one of the foreach-bound

variables x and y occurs in a consumed value subscript, its position of occur-

rence is the same as its position in the list of bound variables for the enclosing

foreach statement, namely x,y:

foreach (x,y in A)

{

A[x,y].foo(p[x,y]);

A[x,y].foo(p[x,*(N)]);

A[x,y].foo(p[*(N),y]);

}

On the other hand, below are some instances of illegal consumed value

expressions. These expressions are unacceptable because they transpose the

positions of occurrence of x and y from their positions in the list of foreach-

bound variables.

foreach (x,y in A)

{

A[x,y].foo(p[y,x]);

A[x,y].foo(p[y,*(N)]);

A[x,y].foo(p[*(N),x]);

}

56

This ordering constraint helps to ensure that communication is sender-

directed, and that communicatino patterns can be easily inferred by the

accompanying compiler.

Published values

Unlike consumed value expressions, published value expressions are relatively

unconstrained. Indeed, as long as the individual index expressions within

the published value are well-formed published value subscripts, the square

bracket notation gives us a well-formed published value expression:

EB,I
v (p) ∀i. EB,I

pexp(ei)

EB,I
pub (p[e1, . . . , em])

Discussion. The reason behind the differential complexity of published- and

consumed value subscripts is this. We would like to strike the right bal-

ance between (i) the expressive scope of Charisma, (ii) the sophistication

of static analysis techniques required in order to infer communication pat-

terns therein, and (iii) the amount of parallel overhead required to implement

Charisma programs. Since we translate code to the message-driven mold of

Charm++, the sender of a message is the one that must initiate its com-

munication. Therefore, in the translated code corresponding to a Charisma

program, it is the publisher object of a value that must determine the ob-

ject(s) to which it must send a message containing the corresponding data.

If both published and consumed value subscripts were similarly complex, we

would have to apply sophisticated compiler analysis, for instance those pre-

scribed by the rich and extensive literature on polyhedral analysis [46], to

determine the intended recipients of each published value. However, even

with such techniques it is not possible to resolve (or indeed express) all types

of dependencies. Indeed, the most popular approach to polyhedral analysis

expresses dependencies as formulas in the decidable Presburger arithmetic;

although elegant, this approach cannot capture dependencies between ex-

pressions involving the multiplication, division or modulus operators. On

the other hand, we could adopt techniques that resolve such dependencies

dynamically, as done in Linda [47].

In constraining the forms of published and consumed value subscripts, we

57

sacrifice some generality, as in the approach based on polyhedral analysis.

However, we are able to handle a much greater complexity of published value

subscripts, without using sophisticated static analysis, simply because the

consumed value subscripts expressions are of such a simple and restricted

form. We detail the inference of communication pattern from published and

consumed value subscripts, in § 3.12. Here we only mention that by coupling

the asymmetric complexity of published and consumed value expressions,

with simple compiler analysis, we are able to ensure the following property.

That given a collection of objects that publish the elements within a value

space, and a collection of objects that consume these values, each publisher

can determine, via simple arithmetic calculations, the particular consumers

to which it should send its data. Moreover, this can be done without any

communication overhead, unlike in the tuple space matching scheme of Linda.

We now return to our discussion of well-formed Charisma expressions.

Object references

Object references occur in publish-consume statements, and are well-formed

if the collection to which the referred object belongs has been previously de-

clared, and each one of the subscript index expressions is a bound identifier

(i.e. a parameter, loop-index variable or foreach-bound variable). Addition-

ally, subscript index expressions must satisfy the same ordering constraint as

consumed value subscripts. Formally,

∀i. EB,I
bound(ei)

EB,I
obj (A[e1, . . . , em])

such that A ∈ O(π). Further, for all i ∈ {1, . . . ,m} if ∃j. (ei, j) ∈ B, then

i = j.

Inserted object references

Object references that appear within the sparse insertion statement (ini-

tialization section), are less restricted in form than the object references

58

embedded within publish-consume statements (above).

∀i. EB,I
nv (ei)

EB,I
insObj (A[e1, . . . , em])

such that A ∈ O(π). That is, for a well-formed inserted object reference,

the programmer may choose as subscript index expressions any well-formed,

non-value expressions, and not just identifiers, literals and parameters.

Object collection index spaces

We now consider the well-formedness of expressions that represent object

index spaces. Recall that these are used in the foreach statement to invoke

a given method on a particular subset of an object collection.

First, if A ∈ O(π), then ispace(A) is a well-formed object collection index

space expression. We can construct an index space by taking the Cartesian

product of several well-formed range expressions:

∀i. EB,I
range(ei)

EB,I
ispace(e1 ∗ . . . ∗ em)

3.7.2 Statements

We now have the building blocks to consider the well-formedness of Charisma

statements at large. We begin with high-level statements, and proceed to

refine the conditions for well-formedness: sequential blocks are covered first,

followed by control flow statements, and finally foreach and publish-consume

statements.

Statement blocks

Given two well-formed Charisma statements, their sequential composition is

also well-formed.
WB,I(s1) WB,I(s2)

WB,I(s1; s2)

59

The for statement

A for statement is well-formed if its components satisfy the following re-

quirements: its loop index variable are not bound; the strided range over

which iteration occurs must consist entirely of non-value expressions; and

the body of statements that it encloses must be well-formed. The enclosed

body of statements is allowed to refer to the loop index variable. That is,

EB,I
free (e) EB,I

nv (e1) EB,I
nv (e2) EB,I

nv (e3) WB,J(s)

WB,I(for(e = e1 : e2 : e3) s)

where J = I ∪ {e}.

The while statement

As mentioned previously, the loop continuation predicate of a while state-

ment may be a well-formed arithmetic expression involving values, making

it a value expression:
EB,I

v (e) WB,I(s)

WB,I(while(e) s)

The if-else statement

As with the while statement, the predicate evaluated in the if-else state-

ment in choosing between divergent control flow paths, may include value

references:
EB,I

v (e) WB,I(s1) WB,I(s2)

WB,I(if(e) s1 else s2)

The foreach statement

A foreach statement has several components, each of which must be well-

formed in order for the foreach statement to be well-formed: its list of bound

variables must be free in its scope; its associated object index space (Ψ)

must be a well-formed index space expression; its enclosed statement must

be a well-formed, publish-consume statement; and finally, its associated filter

60

predicate expression (Q) must be a well-formed, non-value expression.

∀i. EB,I
free (ei) EB,I

ispace(Ψ) EC,I
nv (Q) WC,I

PC (s)

WB,I(foreach (e1, . . . , em in Ψ : Q) s)

where C = (
m⋃
i=1

{(ei, i)}) ∪ B. The enclosed statement (s) and the filter

predicate (Q) may make references to the variables bound by the foreach

statement.

The publish-consume statement

A publish-consume statement is well-formed if each of its components is well-

formed: the object reference expression, the list of consumed values, and the

list of published values.

EB,I
obj (o) ∀i. EB,I

cons(ci) ∀j. EB,I
pub (pj)

WB,I
PC ((p1, . . . , pn)← o.f(c1, . . . , cm))

The sparse collection object insertion statement

Recall that the insertion statement occurs within the initialization section

of a Charisma program. Such a statement is well-formed if each one of the

object references that it makes is a well-formed inserted object reference:

∀i. EB,I
insObj (oi)

WB,I
ins (insert(o1, . . . , om))

The initialization foreach statement

When a foreach statement appears in the initialization section of a Charisma

program, it may only enclose a well-formed sparse object insertion statement:

∀i. EB,I
free (ei) EB,I

ispace(Ψ) EC,I
nv (Q) WC,I

ins (s)

WB,I(foreach (e1, . . . , em in Ψ : Q) s)

61

3.8 Operational semantics

We now present a simple structural operational semantics that models the

execution of Charisma programs. Given a sequence of Charisma statements,

our intent is to explain its meaning in terms of what commands are executed,

and their effect on the state of the program. We will also define precisely the

meaning of publication and consumption of values.

Since a Charisma program has a clear separation between (parallel) or-

chestration code and serial, C++ code, we distinguish the semantics of the

Charisma notation, from the semantics of the C++ code executed in serial

methods. We abstract away the serial semantics by treating serial method

invocations as (mathematical) functions that transform object state, with

side-effects that are visible to the orchestration code.

Consider the state of an object to be the union of all the data structures

that it maintains. We treat the state of one object as being disjoint from all

others. The union of states of all objects in a Charisma program is referred

to as the serial state of the program. Informally, the parallel state of the

program comprises the evaluations of values and loop index variables, as well

as immutable parameters. (We will shortly define the notion of parallel state

more precisely.)

Serial method invocations on objects can then be modeled as having two

types of side-effect:

1. The state of the object is modified as dictated by the semantics of the

serial language in which the method is written (i.e. C++), thereby

modifying the serial state of the Charisma program.

2. Moreover, the produce and reduce methods called on PublishedValue’s

and ReducedValue’s modify the parallel state of the program (but not

the serial state), by updating locations that correspond to their pub-

lished values. Charisma::ConsumedValues are immutable, so that no

operation performed on a C++ object of this type can change serial or

parallel program state.

This separation saves us the trouble of describing precisely the transfor-

mations in object state that occur when a serial method is invoked on it. We

can then focus on the semantics of the orchestration part itself.

62

3.8.1 Notation

Before we present a small-step semantics of Charisma it is instructive to

consider some conventions and notation.

Arity and cardinality of value spaces

The expression arity(p) is the number of dimensions of value space p. This

value is fixed when p is declared. We write card(p, i) to mean the number

of values in p along its i-th dimension, where 0 ≤ i ≤ arity(p) − 1. By

~y ∈ ispace(p), we mean that arity(~y) = arity(p), and 0 ≤ yj < card(p, j) for

all 0 ≤ j < arity(p).

Semantic store

The store of a program, σ, is a semantic construct consisting of a number

of named locations. Given a Charisma orchestration program π, we have

σ = 〈σp1 , . . . , σpn〉, where V(π) = {p1, . . . , pn}. Each σp is a function that

maps a vector ~e, with arity(~e) = arity(p), to a value of type Type(p).

Named values within the store are initially undefined. We write this as

∀ p ∈ V(π). ∀~i ∈ ispace(p). σp(~i) = ⊥

The serial state of objects

Each declared object in the Charisma program is assumed to encapsulate

some state. The set X(π) comprises the state of every declared object in the

Charisma program. Usually, since the program under consideration is fixed,

we refer to this set simply as X. Since objects are arranged into collections,

we consider X to be composed of subsets XC , such that X = 〈XC〉C∈O(π).
The state of the object at index ~e in collection C is given by XC(~e).

Transition system

We present the semantics of Charisma in the form of transition relations over

configurations of the program. Configurations represent the global state of a

Charisma program, and have the form 〈S, σ,X〉.

63

1. σ and X represent the mappings for named entities in the Charisma

program.

2. S represents the statement in the program that is to be executed next.

The semantic variable S ranges over individual statements, as well as

program-ordered lists thereof. S may also have the special value of

‘skip’, whose meaning is discussed later.

3. The transition relation is defined over pairs of configurations. Intu-

itively, it describes the flow of control in the orchestration code, and

the resulting evolution of program state.

Term substitution

Statements and expressions may contain identifier expressions that corre-

spond to foreach-bound index variables and for-loop index variables. The

binding of such variables to semantically evaluated values is decided by the

particular type of statement (either a foreach or a for statement). However

in both cases, the binding results in the substitution of occurrences of bound

variables with certain evaluated values. To signifiy this, it is useful to have

a notation for term substitution.

Let E be a Charisma expression. Then, E{i/y} denotes a partially eval-

uated expression, which is the same as E, except with all occurrences of

term y substituted by i. Multiple simultaneous substitutions are written as

E{i1/y1, . . . , im/ym}, the shorthand for which is E{~i/y}.
Substitutions of bound variables can be applied when evaluating state-

ments as well.

Updates to store locations

For some p ∈ V(π), and ~i ∈ ispace(p) we write

σ′p = σp{v/~i }

to mean that σ′p(~i) = v, and σ′p(~j) = σp(~j), for all ~j ∈ ispace(p) such that

~j 6=~i.

64

3.8.2 Expression evaluation

In order to describe the meaning of statements, we must first define the

meaning of the expressions that are embedded within them. This theme is

discussed next.

Boolean and arithmetic expressions

It is fairly straightforward to evaluate compound expressions involving unary

or binary operators, in terms of their operands. As such, we take as given

the operators →A and →B, which mean the evaluation (in the standard

sense) of arithmetic and Boolean expressions, respectively. For example,

〈e, σ,X〉 →A n means that arithmetic expression e evaluates to n with the

value store σ and the object states X. Note that expression evaluation does

not change σ or X.

Consumed value expressions

Now let us define the meaning of →A for the evaluation of Charisma values.

Here we consider consumed values. We will discuss the case of published

values later, together with the semantics of the publish-consume statement.

Given value space p and an expression vector (y1, . . . , ym), where each yj

is an identifier expression, the consumed value expression

p[y1, . . . , ym]{i1/y1, . . . , im/ym}

is evaluated thus:

〈p[y1, . . . , ym]{i1/y1, . . . , im/ym}, σ,X〉 →A v

where v = ∅ if σp(~i) = ⊥, and v = σp(~i) otherwise.

The equivalent vectorized shorthand is given below:

〈p[y]{~i/y}, σ,X〉 →A v

A value expression with wildcards in its subscript is evaluated one wildcard

operator at a time, from left to right. Let i1, . . . , im be evaluated integers,

65

and f1, . . . , fn be unevaluated, non-value expressions. According to the well-

formedness conditions, each fi is either an identifier, or a wildcard-expression.

〈e, σ,X〉 →A k

〈p[i1, . . . , im, l1, f1, . . . , fn], σ,X〉 →A v1 6= ∅
. . .

〈p[i1, . . . , im, lk, f1, . . . , fn], σ,X〉 →A vk 6= ∅

〈p[i1, . . . , im, ∗(e), f1, . . . , fn], σ,X〉 →A

k⋃
j=1

{vj}

where 0 ≤ lj < card(p,m+ 1) and lj1 = lj2 ⇒ j1 = j2.

That is, if the i-th index of a consumed value subscript is a wildcard-

expression with k possible matches, then the consuming method receives k

values, with no restriction on the i-th index of each received value.

Object expressions

An object reference expression evaluates to the state of the specified member

of a collection of objects:

〈A[y]{~i/y}, σ,X〉 →O XA(~i)

This is done by substituting an evaluated integer for every term in the

subscript of the reference. In the above, A ∈ O(π) .

Object collection index space expressions

In the base case, an object collection index space expression evaluates to a

strided, integer range:

〈e1, σ,X〉 →A i1 〈e2, σ,X〉 →A i2 〈e3, σ,X〉 →A i3
〈{e1 : e2 : e3}, σ,X〉 →I {i ∈ N0. i1 ≤ i ≤ i2 with (i mod i3) = 0}

The ‘∗’ operator can be used to obtain the Cartesian product of index

spaces for object collections:

66

〈Ψ1, σ,X〉 →I ψ1

· · ·
〈Ψm, σ,X〉 →I ψm

〈Ψ1 ∗ . . . ∗Ψm, σ,X〉 →I ψ1 × . . .× ψm
Finally, an expression that is an implicit reference to the index space un-

derlying an object collection, namely ispace(A) for some A ∈ O(π), contains

the index of every object in A. If A is dense, then the set of all objects

in it is specified in the declaration of the collection. If A is sparse, the

initialization section of the Charisma program is used to populate A. In

this case, ispace(A) refers to the set of indices of all objects inserted into A.

The evaluation of any type of expression is free of side effects, including

the update of the value store, or of the serial (object) state of the program.

3.8.3 Execution of statements

Charisma follows program order semantics: control is transferred from one

statement in program to the one that succeeds it in program order, The

meaning of each type of Charisma statement is given below, in terms of the

semantic operator ‘→’ over pairs of program configurations.

Sequential composition

Here the operator ‘;’ is part of the abstract, not concrete, syntax of a Charisma

program. As such, it is a semantic object, and not a syntactic one. In the

discussion that follows, the semicolon operator will be used to signify the

sequence of operations:

1. Sequential execution:

〈S1, σ,X〉 → 〈S ′1, σ′, X ′〉
〈S1;S2, σ〉 → 〈S ′1;S2, σ′, X ′〉

2. Null execution:

〈skip;S, σ,X〉 → 〈S, σ,X〉

That is, statements compose together: the combined effect of executing two

consecutive statements is the same as the effect of executing the first, and

67

then the second. A special type of statement, namely skip, has no effect on

the state of the program.

Conditional execution

A conditional branching of control is executed by first evaluating the asso-

ciated predicate expression; Depending on this result, either the then or the

else branch is followed:

1. Following the then branch:

〈e, σ,X〉 →B T

〈if(e) S1 else S2, σ,X〉 → 〈S1, σ,X〉

2. Following the else branch:

〈e, σ,X〉 →B F

〈if(e) S1 else S2, σ〉 → 〈S2, σ,X〉

Iteration using the for construct

There are two cases that we must consider:

1. If the value of the ‘begin’ expression is less than or equal to the value

of the for loop’s ‘end’ expression, then one instance of the body S is

executed. Every occurrence of the loop index variable in S is substitued

by i, namely the value of the ‘begin’ expression. This statement is

composed with a modified for-loop, using the ‘;’ operator, as shown

below:

〈e1, σ,X〉 →A i1 〈e2, σ,X〉 →A i2 〈S{i1/I}, σ,X〉 → 〈S ′, σ′, X ′〉
〈for(I = e1 : e2 : e3) S, σ,X〉 → 〈S ′; for(I = e1 + e3 : e2 : e3) S, σ′, X ′〉

if i1 ≤ i2.

2. On the other hand, if the value of the ‘begin’ expression exceeds that

of the ‘end’ expression, then we move to the next statement after the

68

for loop in program order.

〈e1, σ,X〉 →A i1 〈e2, σ,X〉 →A i2
〈for(I = e1 : e2 : e3) S, σ,X〉 → 〈skip, σ,X〉

if i1 > i2.

Iteration using the while construct

The while statement involves the evaluation of an associated continuation

predicate. The statements inside the loop’s body are executed as long as this

predicate evaluates to true

1. Continue execution of body:

〈e, σ,X〉 →B T 〈S, σ,X〉 → 〈S ′, σ′, X ′〉
〈while(e) S, σ,X〉 → 〈S ′; while(e) S, σ′, X ′〉

2. Exit loop:
〈e, σ,X〉 →B F

〈while(e) S, σ,X〉 → 〈skip, σ,X〉

The foreach construct

A foreach statement has an associated object collection index space Ψ, a list

of foreach-bound variables, y, which serve to identify members of Ψ, and a

filter predicate, Q. The foreach encloses a single publish-consume statement,

SP , P being the set of value spaces published by it.

The foreach-statement specifies the sequential composition of all instances

of S for which Q is satisfied:

〈Q{~i1/y}, σ,X〉 →B T

· · ·
〈Q{~in/y}, σ,X〉 →B T

〈Ψ, σ,X〉 →I ψ

∀~j ∈ ψ \ {~i1, . . . , ~in}. 〈Q{~j/y}, σ,X〉 →B F

〈foreach (y in Ψ : Q(y)) SP , σ,X〉 → 〈χ(P);SP{~i1/y}; . . . ;SP{~in/y}, σ,X〉

Let the object index space expression Ψ evaluate to the set of integer

vectors ψ. Then, the foreach statement sequentially composes distinct, term-

substituted statement instances SP{~i1/y}, . . . , SP{~in/y}, where {~i1, . . . , ~in}

69

is a subset of ψ, and for each ~ik, the filter predicate Q evaluates to true.

The set of such ~ik’s is maximal, in the sense that for no other ~j ∈ ψ does Q

evaluate to true.

The symbol ‘χ’ denotes the clearing of value spaces, as defined below:

1. The statement χ(p), defined for p ∈ V(π), denotes the clearing of all

locations in p, i.e.

〈χ(p), σ,X〉 → 〈skip, σ′, X〉

where ∀q ∈ V(π) : q 6= p. σ′q = σq, and ∀~i ∈ ispace(p). σ′p(~i) = ⊥.

2. We define the effect of χ(P) for sets P = {p1, . . . , pk} ⊆ V(π) as follows:

〈χ(P), σ,X〉 → 〈χ(p1); . . . ;χ(pk), σ,X〉

Therefore, before executing any instances of the publish-consume state-

ment SP , enclosed within a foreach-statement, we clear all value spaces that

are published by it. This nullifies the effect of any previous publish-consume

statements on the stores σp, for p ∈ P .

Publish-consume statements

Consider a publish-consume statement SP of the form

(p1[E1(y)], . . . , pn[En(y)])← A[y].g(e1, . . . , em)

where P = {p1, . . . , pn}, and the E symbols represent vectors of well-formed

expressions of the foreach-bound variables y.

Then the evaluation of SP proceeds as follows. Consumed value subscript

expressions e1, . . . , em are evaluated, as in 3.8.2. Then, the object expression

A[y]{~i/y} is evaluated, as in 3.8.2, yielding α. If any of the consumed values

evaluates to ∅, i.e. the location corresponding to the value in the semantic

store has not yet been published, an error results, and the computation

terminates. If all consumed values are well-defined, the function g is invoked

with arguments α, and the evaluated consumed value expressions, namely

70

v1, . . . , vm. Formally,

〈e1{~i/y}, σ,X〉 →A v1

· · ·
〈em{~i/y}, σ,X〉 →A vm

〈E1{~i/y}, σ,X〉 →A
~j1

· · ·
〈En{~i/y}, σ,X〉 →A

~jn

〈A[y]{~i/y}, σ,X〉 →O α

〈SP{~i/y}, σ,X〉 → 〈skip, σ′, X ′〉

In the above, we have used the following notation:

1. gseq(α, v1, . . . , vm) = α′, i.e. the user-defined serial method g modi-

fies the state of the object on which it is invoked, according to C++

semantics.

2. X ′A = XA[α′/~i], i.e. the above change in state is recorded in the set of

all object states, for the appropriate member of the collection A.

3. ∀k ∈ {1, . . . , n}. gpub, k(α, v1, . . . , vm) = βk, i.e. the invocation of

serial method g yields n published values (due to invocations of the

produce/reduce methods on PublishedValue’s and ReducedValue’s). The

k-th value published by this invocation is denoted βk.

4. If ∃k. σpk(~jk) 6= ∅, then an error results, halting the computation. The

rationale behind this rule is that we want to prevent simultaneous up-

dates to a particular value. Recall that we had cleared all value spaces

published by the enclosing foreach statement prior to executing any

instances of the enclosed publish-consume statement. Therefore, any

non-∅ values within pk must have resulted from a publication performed

by a preceding instance of the current publish-consume statement.

5. ∀k ∈ {1, . . . , n}. σ′pk = σpk [βk/~jk], i.e. the published values are used to

modify the appropriate locations in the value store, σ, thus yielding σ′.

3.9 Examples of applications written in Charisma

Now that we have an understanding of the programming constructs pro-

vided by Charisma, we examine the expression of two HPC applications

71

with data-independent data flow. We aim to demonstrate that code writ-

ten in Charisma is compact and abstract, and most importantly, is able to

capture the overall parallel structure of the expressed algorithm.

3.9.1 Dense LU decomposition

First we consider an example of section multicasts. The Charisma code below

captures the global flow of data and control for the dense LU decomposition

algorithm [48]. It uses a different object index space argument in each iter-

ation of the algorithm to address the upper and lower active panels, as well

as the objects corresponding to the trailing matrix.

parameter N, g : int;

class LUclass;

objects A : LUclass[N/g,N/g];

value du, dl : Matrix;

values u, l : Matrix[N/g];

for(K = 0:N/g-1){

(du, dl) <- A[K,K].factorize();

foreach(j in {K+1:N/g-1}){

(u[j]) <- A[K,j].utri(du);

(l[j]) <- A[j,K].ltri(dl);

}

foreach(i,j in {K+1:N/g-1}*{K+1:N/g-1})

A[i,j].update(l[i],u[j]);

}

We first declare an object collection A, whose members encapsulate por-

tions of the matrix to be factorized, as well as the functionality for doing

so. The granularity of these objects can be controlled using the parameter

g. The decomposition is phrased as a series of iterations. In iteration K, the

current diagonal object A[K,K] performs a factorization of the diagonal tile,

and produces two triangular tiles, du and dl . These values are consumed

72

by the upper and lower active panel objects, respectively. The result is an

implied multicast of du from A[K,K] to A[K, j], and of dl from A[K,K]

to A[j,K], where j goes from K + 1 to N/g − 1 in either case. The active

panel objects then produce values that are consumed by the trailing matrix

objects. Each A[i, j] in the trailing matrix, where (i, j) ∈ {K+1 : N/g−1}2,
consumes the tile in its column of the upper active panel, which is generated

by A[K, j]. This means that the value published by a single upper active

panel object A[K, j], is consumed by several trailing matrix objects A[i, j],

where i ∈ {K+ 1 : N/g− 1}. Therefore, A[K, j] multicasts its tile to objects

A[K + 1 : N/g− 1, j], for each j ∈ {K + 1 : N/g− 1}. Similarly, lower active

panel tiles are multicast by A[j,K] to objects A[j,K + 1 : N/g − 1], again

for each j ∈ {K + 1 : N/g − 1}.
The Charisma code for the LU algorithm is compact and clearly captures

its overall flow of control and data. However, we one cannot express the

data-dependent pivoting operation which is essential to numerical stability.

For this, one would have to apply the interoperation techniques developed in

§ 6 and write the pivoting code externally to Charisma.

3.9.2 Cutoff-based Molecular Dynamics

Next, we present a molecular dynamics code that serves as a good exam-

ple of the applicability of the language to “real-world” HPC. The code is

written after the algorithm of Phillips et al. [7]. It performs a fine-grained

decomposition of both the input data (i.e. ensemble of simulated atoms) and

the parallel work (of computing the Newtonian interactions between atoms).

The code highlights an important advantage of the object-based paradigm of

Charisma, namely that it allows the separation of the entity encapsulating

work (i.e. objects) from the processing element (e.g. thread, processor, etc.)

on which it is executed.

As input, the code accepts a large ensemble of atoms (in two-dimensional

space) subject to pairwise interactions amongst themselves. These atoms

are decomposed over a two-dimensional collection of objects called Patches.

Each patch contains the atoms that lie within its spatial extent.

Force computations are performed by a four-dimensional collection of ob-

jects, called Computes. Only those Computes exist that are necessary to cal-

73

culate all the pairwise interactions in the system. In the cutoff-based scheme

used for short-range forces, only the interactions between atoms of geometri-

cally neighboring patches are computed. Therefore, the collection Computes

is sparse, containing object Computes[x1,y1,x2,y2] iff Patch[x1,y1] and

Patch[x2,y2] are proximal.

The algorithm proceeds as follows: In every iteration, each Patch[x1,y1]

multicasts its atoms to all the computes that calculate forces on its atoms.

Therefore, the set of computes to which Patch[x1,y1] multicasts its atoms,

comprises all and only those Computes[x1,y1,*,*] and Computes[*,*,x1,y1]

that are present in the object collection. When a compute receives the atoms

from its two patches, it calculates their pairwise interactions, yielding a vector

of forces on each atom in the two sets. These forces are reduced over all

computes associated with a patch, so as to obtain the net force on each atom

in the path. The patch then uses this net force to integrate the trajectory of

each of its particles over a short span of time.

parameter N, NIterations : int;

class PatchClass, ComputeClass;

type Atom, Vector;

objects Patch: PatchClass[N,N];

sparse objects Computes : ComputeClass[N,N,N,N];

values atoms : Atom[N,N];

values f1, f2 : Vector[N,N];

initialize {

foreach (x,y in {0:N-1}*{0:N-1}){

insert(Computes[x, y, ((x-1) + N)%N, ((y-1) + N)%N],

Computes[x, y, ((x-1) + N)%N, y],

Computes[x, y, ((x-1) + N)%N, (y+1)%N],

Computes[x, y, x, y],

Computes[x, y, x, (y+1)%N]);

}

}

In the Charisma code for the algorithm, we begin with the declaration of

74

a dense two dimensional Patches collection, and a sparse, four-dimensional

collection Computes. Recall that initially, a sparse collection has no mem-

ber objects. We use the Charisma initialization section to insert one

Computes object for each pair of interacting Patches. The code shows that

Patches[x,y] only inserts Computes[x,y,*,*]. However, the neighbors of

Patches[x,y], i.e. Patches[x-1,y], Patches[x+1,y], etc. insert Computes

with indices of the form [*,*,x,y]. The implementation of this insertion is

distributed, so that insertion does not become a bottleneck for large simula-

tions.

orchestrate {

for (I = 0 : NIterations-1){

foreach (x,y in {0:N-1}*{0:N-1})

(atoms[x,y]) <- Patches[x,y].sendAtoms();

foreach (x1,y1,x2,y2 in ispace(Computes))

(+f1[x1,y1],

+f2[x2,y2]) <- Computes[x1,y1,x2,y2].forces(atoms[x1,y1],

atoms[x2,y2]);

foreach (x,y in {0:N-1}*{0:N-1})

Patches[x,y].integrate(f1[x,y], f2[x,y]);

}

}

Every iteration of the main simulation code begins with the publication

of atoms position information by the Patches. Each Patches[x,y] publishes

value atoms[x,y]. This value is read by Computes[x,y,*,*], and also by

Computes[*,*,x,y], so that the Charisma compiler infers two multicasts em-

anating from each Patches[x,y].

The next foreach statement invokes the forces method on all Computes,

signified by the object index space ispace(Computes). A Computes object

with index [x1,y1,x2,y2] waits for the receipt of two atoms values, and

thereafter computes the pairwise interactions of the two sets of atoms. In

this manner, each Computes object obtains a Vector of forces on each atom

in atoms[x1,y1] and atoms[x2,y2]. The Computes object contributes these

forces to two reductions. Respectively, the forces on the first set of atoms

are reduced over all Computes[x,y,*,*], i.e. the set of computes that were

inserted by Patches[x,y], and the second reduction occurs over the set of all

75

Computes[*,*,x,y], namely the computes that were inserted by neighbors of

Patches[x,y]. These forces are received by the patches, and used to update

atom trajectories.

3.10 A look at prevalent programming languages for

HPC

Having specified the Charisma language, we briefly compare it to prevalent

programming languages in the HPC arena.

3.10.1 MPI

The message-passing model, as embodied by MPI [49], has been a mainstay of

large-scale parallel programming. MPI features a simple, process-centric exe-

cution model (although the semantics of some of its communication routines

can be subtle), portability, and access to low-level features. However, it has

poor support for modularity: (Tightly-coupled) multi-module computations

require temporal- or spatial-decomposition of the underlying hardware re-

sources. By contrast, message-driven execution of translated Charisma code

enables efficient, and transparent composition of parallel modules. More-

over, Charisma leverages Charm++’s object-migration-based dynamic load

balancing infrastructure; a similar dynamic scheme would have to be written

from scratch for MPI.

Exploiting intra-node parallelism is an issue for both MPI and Charisma,

although with MPI-2 and beyond, the standard has seen greater support for

multithreading. Nevertheless, a common idiom when programming with MPI

is to exploit intra-node parallelism using OpenMP or pthreads, and perform

inter-node communication using MPI calls.

3.10.2 PGAS languages

UPC and CAF are languages for the Partitioned Global Address Space

(PGAS) paradigm. As such, they provide productivity improvements over

MPI by simplifying communication and by incorporating data distributions

76

as first class entities. Given their SPMD structure, programs written in

PGAS languages maintain an unfragmented view of the global flow of con-

trol, although one often finds differentiation of behavior for threads based on

their identities. Something similar can be achieved with Charisma’s foreach-

associated filter expressions.

UPC [6] is basically an augmentation of C with an explicitly parallel ex-

ecution model, operations for efficient RMA [50] between partitioned global

address spaces, shared and global data pointers, and synchronization opera-

tions.

CAF [51] is a basic enhancement of Fortran, including an SPMD model,

so-called co-arrays, and barriers. A version of CAF from Rice University,

named CAF 2.0 [5], is a more thorough redesign of Fortran. It includes

support for process subsets (or teams), global pointers, asynchronous copy-

ing and collectives, synchronization at various levels: cofence (local barrier

for asynchronous operations) and finish (team-wide asynchronous operation

barrier).

In comparison, Charisma provides asynchrony transparently; it has a sim-

pler semantics for synchronization between tasks through publication and

consumption. Therefore, it does not require constructs such as fences and

barriers, which can have complex semantics, depending on the relaxation

assumptions.

3.10.3 Chapel

Alongwith X10, Chapel [4] is one of the two major asynchronous PGAS lan-

guages. Chapel has a fork-join execution model, unlike Charisma’s coarse-

object-based, data-driven model. It provides data parallelism through the

forall construct, whereby granularity of iterations assigned to each thread

is controlled by the runtime system, and a coforall construct, which should

be used when the granularity of individual iterations of the loop is known

to be coarse. Chapel enables dynamic task parallelism through begin and

cobegin constructs. This is unlike in Charisma, where tasks or threads can-

not be created dynamically. Similarly to Charisma, Chapel also provides

sync variables for publish-consume dependencies. From the point of view

of semantics, Chapel’s sync variables resemble the M-structures of Id [52],

77

whereas Charisma’s publication and consumption is more akin to the scheme

provided by Id’s I-structures [53]. Like Charisma, Chapel provides language-

level support for reductions. A rich set of idioms based on the intrinsic scan

(inspired by ZPL [54]) construct is also available.

3.10.4 X10

X10 [3] adopts a task-based approach to the expression of parallelism. These

tasks may be fine-grained, are spawned asynchronously (possibly remotely),

and are typically synchronized by means of a distributed, completion detec-

tion algorithm. These task-centric constructs apply especially well to tree

structured computations, as evidenced by recent results showing impressive

scaling with the UTS benchmark. Locality of tasks can be specified using

the at clause; provisions are made for atomic tasks as well. X10 also provides

a host of lower-level, performance-oriented features, atomic remote-memory

operations, and teams for processes. The X10 foreach is used to launch

parallel instances of an enclosed statement, in much the same way as the

Charisma foreach causes invocations of multiple, concurrent instances of an

enclosed publish-consume statement. However, X10 has more flexibility and

expressive power, since it allows the free nesting of these constructs. The

Charisma language is restrictive in this regard, with the intent to provide a

concise language with very few constructs and simple semantics.

3.10.5 CnC

Intel’s CnC [55] framework provides a model of execution that has some

marked similarities to that of Charisma. In CnC, serial methods called steps

encapsulate stateless computation. Steps can publish and consume collec-

tions of immutable values (just as in Charisma), and can prescribe other

steps by publishing tokens called tags. Data dependencies are resolved dy-

namically, making CnC more like Linda than Charisma in this regard. Unlike

the object-based model of Charisma, which encourages locality-aware pro-

gramming from the ground up, CnC incorporates add-on features for locality

of data access. The CnC programmer may avail of the underlying TBB [56]

runtime system’s ability to do work stealing, or manually place tasks on

78

processors. Although a distributed memory implementation is available for

CnC, performance results on such machines have been less impressive than

those obtained on multicore systems [57].

3.11 Compiling global Charisma flows into local,

message-driven specifications

Charisma code is translated into message-driven Charm++ by a compiler

infrastructure based on ANTLR4 [58] and Java. The ANTLR system allows

for a sufficiently flexible specification of the grammar of the language, and

encourages a principled approach to compiler construction. The result is a

modular source-to-source translator that comprises several phases, each of

which is independent of every other. The first three phases are written in

ANTLR4, and correspond closely to the sequence of activities performed dur-

ing translation, namely (1) lexing, parsing and AST construction, (2) symbol

table generation, (3) construction of the control flow graph (CFG). The next

two phases, namely (4) dependency analysis and CFG annotation, and (5)

Code generation, are expressed in Java. Since this is not meant to be an

ANTLR tutorial, we will skip phases (1) and (2) of the compilation proce-

dure. Below we discuss the remainder of our translation strategy, namely

phases (3)–(5), considering, as necessary, the data structures and algorithms

used therein.

For the remainder of this section, we will conduct our discussion of the

Charisma translation strategy in the context of the example code shown

in Figure 3.2. Although the code is simplistic, it serves to illustrate some

interesting issues that arise when translating global data and control flow

specifications into local ones. In the code, we have two object collections, A

and B, whose members are instances of the class MyClass. In the outermost

scope, namely that of the program itself, there are three statements: two

foreach publish-consume statements invoked on members of object collection

A, separated by a while statement, within which is nested a foreach publish-

consume statement invoked on objects in collection B.

Intuitively, the translation procedure should emit code that causes the

publication of values by members of A through the invocation of the sequential

method MyClass::f1(). This statement produces values in value space p,

79

parameter N : int;

parameter ERR_TOL : double;

class MyClass;

objects A,B : MyClass[N];

values p : double[N];

value e : double;

foreach (i in {0:N-1})

(+e, p[i]) <- A[i].f1();

while(e > ERR_TOL)

foreach (i in {0:N-1})

(+e, p[i]) <- B[i].f2(p[i]);

foreach (i in {0:N-1})

A[i].f3(p[i]);

Figure 3.2: Example code. We discuss the compilation of this code fragment
in this section.

and reduces a single value in value space e. The reduced value e determines

whether, and for how many iterations, the while loop executes. If the while

loop fails to execute even one iteration, the p-values published by members of

A in the first foreach statement should be consumed by the foreach statement

invoked on members of A after the while statement. On the other hand, if

the while loop’s continuation predicate evaluates to true even once, members

of B should consume, and thereafter produce, p-values iteratively, until the

predicate e > ERR TOL doesn’t hold anymore. Finally, the p-values published

by the last invocation of MyClass::f2() on objects of B should be consumed

by the invocation of MyClass::f3() on A. In the following, we present a

series of procedures that that achieve such functionality in a general-purpose

manner.

3.11.1 Syntax-directed CFG construction

We use standard, syntax-directed techniques to construct a control flow graph

(CFG) from the Charisma orchestration source. Our CFG construction al-

gorithms are straightforward adaptations of elementary compiler techniques,

80

and as such we do not describe them here.

1 2 3

4

6 X

N

5

Figure 3.3: Control flow graph obtained from our example code in Figure 3.2.
Notice the addition of the pink value fetching nodes: these are used to collect
all the values required for the computation of the predicate associated with a
control flow construct, which in our case is a (blue) while loop. Green nodes
are foreach statements, and yellow ones are the entry (labeled N) and exit
(X).

We do note, however, the introduction of so called value-fetch nodes for

control flow statements whose predicates are dependent on the centralized

evaluation of values (if-else and while statements). An example of such a

node is shown in Figure 3.3.

3.11.2 Preparing the CFG for dependency analysis

The control flow graph is annotated with information to help match published

values (defs) to consumed values (uses). Several publish-consume statements

may publish to the same value space at different points in the program.

Therefore, we must determine which version of the value space is used at

each point of consumption in the program. For instance, in Figure 3.3 the

two green nodes labeled 1 and 4 represent the publish-consume statements

A.f1 and B.f2, respectively. Both statements publish values to value space

‘p’. Node 6 (A.f3) consumes value space ‘p’, but which version of ‘p’ it

consumes depends on the particular control flow path taken. That is, if the

while loop’s continuation criterion evaluates to true even once, A.f3 (6) will

consume the value published by B.f2 (4). Otherwise, it will consume the

value published by A.f1 (1). So how can we automate this procedure of

81

inferring which version of a value to use at each consumption point in the

program?

In general the problem we are trying to solve is the following: we are given

a node n that lies on several control flow paths in the CFG. If n consumes

a value v, and v is published along multiple paths that intersect at n, then

which version of v should we use to feed the consumption at n? Another

way to think of this is that given a path from the start node of the CFG

to a node n, several nodes, both on and off this path might publish to a

value space that is consumed by n. The compiler must determine, given the

global state of the program, which version of the published value should be

consumed by the publish-consume statement represented by n. There is no

such problem if there exists only one node that publishes v between the start

and n. Based on this insight, we use a straightforward adaption of the static

single assignment (SSA) notation [59] to ensure that for each consumer of a

value, there is only a single node in the CFG that publishes the value. This

allows a single publishing statement to be determined (at run time) for each

consumed value, and greatly simplifies the code generation procedure. We

perform the following steps:

1. Dominator analysis.

2. Immediate dominator relation.

3. Computing dominance frontiers.

to obtain program metadata that enable us to match versions of published

values either to consuming publish-consume nodes, or to so-called φ-nodes [59].

The Charisma compiler uses the strategy of Cooper, Harvey and Kennedy [60]

(the CHK algorithm) for computing dominance frontiers. Briefly, dominator

analysis is performed using standard data flow techniques [61], leading to the

construction of the immediate-dominator tree. This tree is used by the CHK

algorithm to iteratively grow the dominance frontiers of nodes in the CFG.

The chief difference in our approach is that instead of adding new φ-nodes

to the graph, we simply replace existing while or if-else nodes with their

φ-variants.

Applying these techniques to the CFG in Figure 3.3, we obtain the φ-

node-augmented CFG shown in Figure 3.4. The next step is to identify the

82

1 2 3 (Ф)

4

6 X

N

5

p
1
 ...←

… ← p
?

… ← p
?

p
2
 ...←

p
3
 ← Ф(p

?
, p

?
)

e
1
 ...← e

3
 ← Ф(e

?
, e

?
)

e
2
 ...←

… ← e
?

… ← e
?

Figure 3.4: CFG after augmentation with φ-nodes. After applying the φ-
node-placement algorithm to the annotated CFG in Figure 3.3, we see that
a single node, 3, needs a preceding φ-node. In our formulation, we simply
relabel node 3 as a “φ-while” node. Subscripts for consumed values are
determined by the dependency analysis phase (cf. 3.11.3).

identities of the published values that may be used at every consumption site

in the CFG.

3.11.3 Dependency Analysis

We use the concept of reaching definitions [61] to determine the (possible)

data dependencies in a Charisma program. We say that a published value

reaches a node n in the CFG if: (i) there exists a node p that publishes the

value, and (ii) there is a control flow path from p to n that does not involve

any intervening nodes that also publish a value with the same name. If these

conditions hold, the value published by p might be the one consumed by

node n. Notice that following the placement of φ-nodes, each non-φ node n

will have only one value (which may have been published by a φ-node) that

reaches it. Only for a φ-node is it the case that several values bearing the

same name reach it. These values are the ones that must be merged, and the

true published value that leaves the φ-node can only be determined at run

time.

These ideas lead to Algorithm 1 for computing the dependencies in a

Charisma program. We first compute the reaching definitions for each node

in the CFG. The set of reaching definitions for node n is denoted In(n). The

algorithm is structured as a data flow algorithm, with a fixpoint solution

83

Algorithm 1: Charisma dependency analysis.
ComputeDataDependencies(G,T)
Input: idom tree T for CFG G; def-use information for G.
Output: D, the set of data dependencies in the program corresponding to G.
begin

D ← ∅;
for n ∈ N do

In(n)← ∅;
Out(n)← {(d, n) : d ∈ defs(n)};

end
repeat

for n ∈ N do
In(n)←

⋃
p∈pred(n) Out(p);

for (d, k) ∈ In(n) : d 6∈ defs(n) do
Out(n)← Out(n) ∪ {(d, k)}

end

end

until convergence;
for n ∈ N do

for (d, k) ∈ In(n) do
if ∃ u ∈ uses(n) : Name(d) = Name(u) then

if IsPhi(n) then
D ← D ∪ {new PhiDependency((d, k), (u, n))};

else if InterveningFlowDivergence(n, p, T,G) ∨ IsPhi(k) then
D ← D ∪ {new DynamicDependency((d, k), (u, n))};

else
D ← D ∪ {new StaticDependency((d, k), (u, n))};

end

end

end

end

end

InterveningFlowDivergence(n, k, T,G)
Input: nodes n, k ∈ G; idom tree T for CFG G; def-use information for G.
Output: whether there is an unmatched control flow node on idom path k n.
begin

p← FindNodeInIdomTree(T, n);
q ← FindNodeInIdomTree(T, k);
foundMatchingMerge ← false;
while p 6= nil and p 6= q do

if IsMergeNode(p) then foundMatchingMerge ← true ;
else if IsControlFlowNode(p) then

if foundMatchingMerge then foundMatchingMerge ← false ;
else return true ;

end
p← idom(p);

end
return false;

end

84

obtained by iterating until convergence. The In set of a node is simply the

union of all the Out sets of its predecessors. Moreover, In(n) is initially

empty for all n, whereas Out(n) is initialized to a set of augmented defintions

of n, i.e. the set of tuples (d, n) that mark the definition and also the node

n that published the corresponding value. In each round of the iteration, a

node is made to filter out the values that it receives in its In set from its

predecessors: a value published by some control-flow ancestor with the same

name as a definition made by the node itself, is not included in the Out set

of the node. The rationale behind this exclusion is that the definition made

by node n interferes with that made by its control flow ancestor, so we favor

the more recently made definition over the old one.

Upon convergence of this computation, we obtain a stable set of definitions

that reach each CFG node. The next phase of the algorithm matches these

reaching definitions with the uses made by each node. Three kinds of data

dependency are generated as a result of this process of matching:

Φ dependency. If the target of a data dependency is a φ-node, we term a

data dependency a φ dependency. As we will see in § 3.11.7, such dependen-

cies are not true data dependencies, and as such do not result in the com-

munication of data between the source and target at run time. Instead, they

are used to perform some book-keeping actions by an entity that manages

the global state of the program. Such a dependency is used to determine, at

run time, which among the consumed values of the target φ-node is to be fed

to nodes that are downstream of the φ-node and dependent on the merged

value published by it.

Dynamic dependency. A dynamic data dependency is one for which the

target of the data dependency is control dependent on a node that is strictly

dominated by the source of the data dependency. In our analysis we do not

compute control dependencies, but are able to identify such dynamic depen-

dencies all the same, using the idom tree. The InterveningFlowDivergence()

routine traverses the idom tree in a bottom-up fashion in Algorithm 1, test-

ing for the occurrence of a control flow node but no merge node, between the

target of a dependency (where the traversal begins) and its source (where the

traversal ends.) If (call this condition (a)) we do find an intervening control

flow node on the idom tree path from the the source p to the target n, it means

85

that we are not guaranteed to visit n having visited p.1 For the structured

CFGs that we generate, invoking the InterveningFlowDivergence() routine

is equivalent to looking for the most deeply nested control flow constructs

that enclose a consuming node, and the node that has been identified as the

publisher that feeds it, and testing for the equality of the two.

The other condition (call it condition (b)) under which we designate a

dependency as dynamic is when the source of the dependency is a φ-node.

In this situation the true identity of the statement that publishes the value

appropriate for consumption at a given point in the CFG is determined at

run time, so that we must wait until both the target of the dependency has

been reached, and its source has been determined. The occurrence of either

one of conditions (a) and (b) implies that upon publishing the corresponding

value, the source must buffer it until it has been ascertained that the control

flow path involving the target of the dependency will be executed. We will

return to this issue in § 3.11.7.

Static dependency. If there are no intervening control flow nodes between

the source and target of a dependency along the path that connects them in

the idom tree, and the source of the dependency is not a φ-node, then we

generate a static dependency. As the name suggests, these dependencies can

be resolved at compile-time. This situation exhibits two characteristics: (i)

if the target is visited, then the source must also have been visited (ii) the

source is not a φ-node. Together these conditions imply that as soon as the

source node has published its value, it can be communicated to the site of

its consumption in the CFG. Although program correctness doesn’t require

that we distinguish this case from the dynamic one above, the distinction

certainly improves efficiency of execution: Static dependencies do not require

mediation by an entity that tracks global program state.

By applying Algorithm 1 to our example program, we obtain the CFG in

Figure 3.5. Here the only non-φ CFG nodes that consume values, are 4 and

6, and the set of nodes that make definitions are node 1, which publishes

value p1, node 4, which publishes value p2 and φ-node 3, which publishes p3.

It is evident that φ-node 3 will filter out the values published by nodes 1 and

3, only propagating its own value, p3, to nodes that are downstream of it.

1This is precisely the condition for postdominance, which we do not discuss in this
thesis. The interested reader is referred to the work of Cytron et al. [59] for a thorough
discussion of the subject.

86

1 2 3 (Ф)

4

6 X

N

5

p
1
 ...←

… ← p
3

… ← p
3

p
2
 ...←

p
3
 ← Ф(p

1
,p

2
)

e
1
 ...← e

3
 ← Ф(e

1
,e

2
)

e
2
 ...←

… ← e
1

… ← e
2

p

p

p

e

e

p

Figure 3.5: CFG annotated with data dependencies. Dependencies are shown
here as colored, dashed arrows: Φ dependencies (due to the consumption
of values published by 1 and 4 by the φ-node, 3) are shown in red, and
dynamic dependencies (due to the consumption of values published by the
φ-node, 3) in yellow. Static dependencies occur due to the publication of e
by straightline statements, and are shown in green.

Therefore, only definition (p3, 3) reaches nodes 4 and 6. Since the source of

the dependency is a φ-node in each case, the dependencies from φ-node3 to

4 and 6 are both marked as dynamic (yellow, dashed lines).

Now consider the definitions made by nodes 1 and 4. These reach φ-node

3, but do not propagate any farther, because φ-node 3 publishes its own

value that interferes with the value of either one. Since the target of these

dependencies is a φ-node, we annotate the graph with φ-dependencies, shown

as red dashed lines between nodes 1 and 3 and 4 and 3, respectively.

3.11.4 Graph contraction: preparing for code generation

For reasons of performance, compactness and analyzability of generated code

(as described in earlier work by the author [62]), we are interested in the

generation of structured SDAG (cf. § 2.5 and the work of Kale and Bhan-

darkar [32]) code to describe the message-driven behavior of Charisma ob-

jects. Therefore, we must first reconstruct the original hierarchical represen-

tation of the Charisma program from its augmented CFG. One can imagine

this phase as doing the reverse of the syntax-directed CFG construction.

Whereas in the latter we obtained a CFG from the AST, here we recover a

nested hierarchy of statements from a (different) CFG.

87

Our algorithm is structured as a series of iterations, in each of which we

check whether the application of a certain contraction rule is permissible.

The application of a contraction rule is allowed if all the nodes in the sub-

graph that it aims to contract, are ready. Initially, we mark all nodes as

not-ready; the application of allowed contraction rules changes the readiness

state of nodes, and allows the application of other rules, and so on. Once a

node becomes ready for contraction, it never returns to the not-ready state

again. If we identify a contraction rule applicable to a certain subgraph

within the CFG, we replace that subgraph with a single, ready node. We

make specific updates to the hierarchy of statements in order to record the

statement represented by the subgraph that has just been removed from the

CFG.

(q) A.f(p)←

(q) A.f(p)←

(a) Straightline code

Block

(b) Sequences

M

If

If

(c) Conditionals

Loop
Loop

(d) Loops

Figure 3.6: CFG contraction rules. Each panel shows on the left hand side
of a red rightward arrow, the state of the graph before the application of the
corresponding rule, and on its right hand side, the structure of the graph
after the application of the rule. Nodes that are ready for contraction are
marked yellow. Initially, only publish-consume and foreach nodes are ready.
Each application leads to the contraction of a subgraph within the CFG,
and produces a subtree of the code hierarchy. Repeated application of these
contraction rules yields a single node, which encapsulates the code hierarchy
for the entire program.

Applying these rules to the CFG for our running example (Figure 3.5), we

obtain the statement hierarchy shown in Figure 3.7. In this tree represen-

88

tation, sibling nodes form, reading from left to right, a sequence of (nested)

statements within a block.

Block

Enter (p1,e1) <- A.f1() Value(e1) (p3,e3) <- PhiWhile(p,e) A.f3(p3) Exit

Block

(p2,e) <- B.f2(p3) Value(e2)

Figure 3.7: The statement hierarchy obtained by the repeated application of
the contraction rules in Figure 3.6, on the graph in Figure 3.5.

3.11.5 Code generation

There are three key components to the code generation phase:

1. Obtaining the local control flow of each object collection, which encap-

sulates both the data dependencies on values consumed by members

of the collection, and the program order dependencies implied by the

sequential occurrence of multiple method invocations on a single object

collection.

2. Generating a centralized entity called the global state manager, which

records the particular control flow path being followed in the program.

This is done by managing dynamic dependencies and determining the

true identity of values published by φ-nodes.

3. Generating messaging code, in the form of asynchronous invocations

of Charm++ entry methods on objects, so as to communicate pub-

lished values generated within sequential code, to appropriate targets.

Targets are determined either statically, or dynamically, by the global

state manager.

Translating global control flow into local control flow

The contraction algorithm above yields a hierarchy of statements represent-

ing the Charisma program. In order to obtain from this global specification,

89

a representation suitable for locally-specified, structured, message driven ob-

ject code, we project the global hierarchy onto the object collections that

constitute the program.

We use a simple algorithm for this purpose, based on the following induc-

tive rules: (i) as the base case, a publish-consume statement only projects

onto the object collection on which it is invoked; (ii) in order to project

a block of statements, we examine each statement in the block. This pro-

cess of examination can be performed recursively, to account for statements

embedded within control flow constructs. If there are no statements in the

block that project onto the object collection in question, then the block itself

doesn’t project onto the object; (iii) an if-else construct is projected onto

an object collection if at least one of the then and else blocks projects onto

the collection; (iv) similarly, a loop construct (for or while loop) projects

onto an object collection if and only if the body of the loop projects onto

the object. The algorithm also accounts for the projection of statements

that fetch values for the evaluation of control flow predicates. Whereas such

a statement projects onto every object, if no other statement in a block

projects onto the object collection at hand, then the block does not project

onto the collection either.

Returning to our running example, projections of the statement hierar-

chy in Figure 3.7 onto the two object collections used in the Charisma pro-

gram, are shown in Figure 3.8. It is worth noting that since no substantive

statement (other than the one that fetches the values required for predicate

evaluation) within the while loop projects onto collection A, the while loop

doesn’t project onto it either.

3.11.6 Emitting SDAG from statement hierarchies

Once we have the hierarchical representation of the local control flow of each

object collection in the program, we can proceed to emit structured, message-

driven code for the classes corresponding to these collections. As mentioned

previously, we emit SDAG clauses, which embody an unfragmented and com-

pact representation of the message-driven control flow local to each object

collection. The procedure for this translation is described pictorially in the

following figures.

90

Block

Enter Foreach(A.f1) Foreach(A.f3) Exit

(a) Collection ‘A’

Block

Enter Value(e1) PhiWhile(e) Exit

Block

Foreach(B.f2) Value(e2)

(b) Collection ‘B’

Figure 3.8: Statement hierarchy projections, as obtained by projecting the
hierarchy in Figure 3.7 onto object collections ‘A’ and ‘B’.

Figure 3.9 shows the SDAG code generated for a tree node corresponding to

a publish-consume statement in the original Charisma source. In SDAG, data

dependencies are expressed through the when construct. Dependencies can be

conjoined by simply including a comma-separated list of method invocations

that occur upon the receipt of the corresponding messages. In the figure at

hand the SDAG code states that in order to invoke serial function f(), the

object in question must first receive n messages in the form of entry method

invocations recv p1, . . . , recv pn. Serial method ‘f’ may itself publish values,

which are represented by the “handles” passed into the method along with

the values that the method consumes. These handles are instances of the

class template Charisma::PublishedValue<T>.

Figure 3.10 shows the code emitted for a a foreach statement. The SDAG

if statement in the generated code allows the embedded publish-consume

statement to be invoked on only those objects whose indices satisfy two

conditions simultaneously: (i) the identifying index of the object must belong

to the index space referenced in the foreach construct, and (ii) the filter

predicate Q of the foreach construct must evaluate to true for that object.

91

(q
1
, q

2
, …, q

n
) A.f← (p

1
, p

2
, …, p

m
);

when recv_p
1
 (Msg<p

1
.type> *p

1
.var),

 recv_p
2

(Msg<p
2
.type> *p

2
.var), …,

 recv_p
m

(Msg<p
m

.type> *p
m

.var) {
 serial {

f(v
1
.var.data, v

2
.var.data, …, v

m
.var.data,

 q
1
.handle, q

2
.handle, …, q

n
.handle);

}
}

Figure 3.9: Translating a publish-consume node in the statement hierarchy
to SDAG.

foreach (x
1
, …, x

n
 in S : Q(...)){

<pubcon_stmt>
}

if((x
1
, …, x

n
) є S and Q(...)){

<codegen(pubcon_stmt)>
}

Figure 3.10: A foreach clause with an embedded publish-consume statement.

Recall that this predicate can be an expression over the indices of the object,

and within-scope for-loop index variables. Therefore, it may evaluate to

different Boolean values on different objects.

As shown in Figure 3.11 the generation of code for a block of statements

entails the sequential composition of the SDAG code generated for each sub-

tree in the block in turn.

The code generation procedure is called recursively on the body of a for

loop. The resulting generated code is enclosed within an SDAG for loop

that iterates over an appropriate range of integers.

We must be careful in generating code for while and if-else subtrees.

Recall that the predicates associated with these control flow constructs may

use values published by other statements. In general, these published values

are not available at all objects that depend on the value of the predicate.

Therefore, we task a special entity called the global state manager (GSM,

cf. § 3.11.7), with the centralized evaluation of all control flow predicates.

92

<codegen(s
1
)>

<codegen(s
2
)>

 …
<codegen(s

n
)>

Block

s
n

s
1
.
.
.

Figure 3.11: Sequential generation of SDAG for a block of statements.

for(J in e
beg

:e
end

:e
str

){
<codegen(B)>

}

for(J in e
beg

:e
end

:e
str

)

B

Figure 3.12: A for loop and its body of statements, B.

Objects that require the most recent Boolean value of the predicate are sim-

ply sent this value by the global state manager. We will discuss the GSM

shortly. Here we concern ourselves with code generation for object collections

that require evaluated data-dependent control flow predicates. Figure 3.13

shows the SDAG code generated when a “Value” subtree is encountered. It

specifies a dependency on the evaluated predicate, which is received from

the GSM. Upon receipt, this value is stored for later use in determining the

appropriate local control flow path.

The predicate value associated with a while loop is obtained from the

GSM, as seen above. All that remains, then, is to generate the SDAG code

for the body of the while loop, and an enclosing, object-local SDAG while

loop.

A similar strategy is followed for if-else subtrees.

3.11.7 Maintaining global program state

We saw in § 3.11.3 that in a Charisma program, certain data dependencies

could be identified as being static. Intuitively, this means that as soon as

the publisher (i.e. the source of the dependency) has finished publishing

93

when recv_Q(Msg<bool> *Q.var){
serial { Q.value = Q.var.data; }

}

Val(Q)

B

Figure 3.13: The SDAG for a Value statement declares a data dependency
on the evaluated predicate associated with a nearby control flow construct.

when recv_Q(Msg<bool> *Q.var){
serial { Q.value = Q.var.data; }

}
while(Q.value){

<codegen(B)>
when recv_Q(Msg<bool> *Q.var){

serial { Q.value = Q.var.data; }
}

}

while(Q)

B

Figure 3.14: A while loop and the block of statements, B, that it encloses.

the value, it can be sent to the consumer (the target of the dependency).

However, dependencies of the dynamic variety can only be resolved at run

time. That is, only when it is ascertained that the target of the dependency

will indeed execute, can the source send its published value to the target.

Therefore, information regarding the global state of the program, namely

which control flow paths have been activated in the past, must be maintained.

For the purpose of the discussion that follows, we recall that in the data

dependency analysis phase, every publication of a value space was given a

unique numeric label, denoting the version of the value space published by

it. We will simply use the term ‘version’ when the value space referred to is

clear from the context. The GSM performs book-keeping in order to perform

three tasks related to program correctness and efficiency:

1. Informing the source of a dependency that its source has become acti-

vated, so that the source may send to the target the published value

conveyed through the dynamic dependency. This case occurs when we

encounter a control flow node between the target and the source. It is

not guaranteed that the target of such a dependency will become acti-

vated following the source. The activation of the target could depend,

for instance, on the successful evaluation of an if-else predicate, and

94

when recv_Q(Msg<bool> *Q.var){
serial { Q.value = Q.var.data; }

}
if(Q.value){

<codegen(B
then

)>
}
else{

<codegen(B
else

)>
}

If

B
then

B
else

Figure 3.15: An if-else clause with embedded then and else blocks.

value of the predicate is known only to the GSM.

2. Recording the most recently published version of a value space, so that

it can be decided, at run time, which of the multiple merged versions

of a φ-node’s consumed values can be supplied to dependency targets.

This case occurs when multiple control flow paths intersect at a given

CFG node, allowing several definitions of the same value space to reach

the intersection point. In order to ensure that each consumption (other

than the consumptions of φ-nodes) has only one reaching definition that

can feed it, we placed φ-nodes in the original CFG of the program. In

essence, the GSM must merge the incoming definitions by choosing

the most recently published one, and propagating that to downstream

nodes.

3. Recall that the source of a dynamic dependency must buffer its pub-

lished value until the GSM routes it to a particular target. Therefore,

a natural question is, when is it safe for the source to discard/recycle

the memory allocated for this value? The GSM maintains metadata

that allow it to inform the source of a dynamic dependency that, given

the current global state of the program, its published value cannot be

consumed by any node in the CFG before the source publishes it again.

This allows the dependency source to kill that value, thereby freeing

the memory resouces allocated to it.

95

3.12 Inferring communication patterns from

publications and consumptions

Previously, we defined data dependencies as occurring between collections of

objects referenced within foreach statements. Here, we discuss dependencies

at the level of individual objects. Consider the general form of two foreach-

embedded, publish-consume statements, the first of which publishes a value

space that is consumed by the second.

foreach(~x ∈ ψ1) (p[~α(~x)])← A[~x].f()

foreach(~y ∈ ψ2) B[~y].g(p[~β(~y)])

In this section, we determine, for each ~x0 ∈ ψ1 those ~y0 ∈ ψ2 such that

A[~x0] sends a message to B[~y0]. For the time being, we consider dependencies

on produced, not reduced values.

In the above code A[~x0] publishes v[~α(~x0)], and B[~y0] consumes v[~β(~y0)].

Our inference procedure iteratively matches the component index expressions

of the produced value, v[~α(~x0)], with those of the consumed value, v[~β(~y0)],

to obtain a target expression referencing an object, or a number of objects,

in B. This is shown in Algorithm 2, where ~x(i) denotes the i-th component

of vector ~x.

Algorithm 2: Inferring message targets from a publication/consump-
tion pattern.
GenerateTargetObjectIndex (~x0, ~y)
Input: Source object index expression ~x0 and target object index expression, ~y.
Output: Target object index expression ~y0, to which the source sends a message.
begin

~y0 ← ~y
for i ∈ |~α(~x0)| do

e← ~β(~y0)(i)

if e is a wildcard expression then skip ;
k ← FindPosition(e, ~y)

if ~α(~x0)(i) is a range expression then ~y0
(k) ← ~α(~x0)(i) ;

else ~y0
(k) ← ri ;

end

end

Briefly, this algorithm operates as follows. We start with no information

about the specific B[~y0] to which A[~x0] is to send a message. Then, we iterate

over the components of the published (and consumed) value’s subscript. For

96

each index e expression in that subscript, if e is a wildcard expression, then

it doesn’t specify the identity of a particular value consumed by B[~y], so we

skip it. Otherwise, e can only be a foreach-bound identifier (cf. 3.7). In this

case, we determine the position in ~y at which e appears; call this k. Then, we

set the k-th component of ~y0 to the i-th component of the published value’s

subscript, ~α(~x0). However if ~α(~x0)
(i) is a range expression, then we handle

the implied scatter operation at the publisher by placing an identifier ri in

~y0
(k). This identifier is a placeholder in the generated code for the index

variable of the loop over all published range elements.

Intuitively, we exploit the fact that the value published by the message

source, and the value consumed by its target must have identical subscripts

for a message send to occur. In particular, the i-th index expression within

these subscripts must match. What if, at the end of this procedure, there

remains an index expression e′ at position i of ~y0, such that e′ is bound by

the consumer’s enclosing foreach statement? Then the following must be

the case: Identifier e′ is foreach-bound and not present in the consumed

value’s subscript, ~β(~y0), for otherwise, it would have been replaced by a

corresponding component of ~α(~x0). Therefore, there are multiple consumer

objects consuming the same value, v[~β(~y0)]. That is, a multicast operation

is implied, and so A[~x0] must multicast its message to all objects along the

i-th dimension of B. Let us consider an example code fragment:

foreach (x1,x2 in {0:N-1}*{0:N-1})

(p[(x1+x2)%N, (x1-x2+N)%N]) <- A[x1,x2].f();

foreach (y1,y2 in {0:N-1}*{0:N-1}){

B[y1,y2].g(p[y1,y2]);

Given the above dependency, we have ~x0 = (x1, x2), ~y = (y1, y2),

~α(~x0) = ((x1 + x2) mod N, (x1 − x2 +N) mod N)

and ~β(~y) = (y1, y2). Starting with i = 1, we have ~β(~y)(i) = y1, which appears

in position k = 1 in ~y. Therefore, we set ~y0
(k) = ~α(~x0)

(i) = (x1 + x2) mod N .

Similarly, for i = 2, we have ~β(~y)(i) = y2, which appears at position k = 2 in

~y, so that ~y0
(k) = (x1 − x2 +N) mod N . Therefore, object A[x1, x2] sends a

message to object B[(x1 + x2) mod N, (x1 − x2 +N) mod N].

However, what if a consumed value does not contain all of the foreach-

bound identifiers? This situation implies the multicast operation, as dis-

97

cussed previously, and is illustrated below:

foreach (x1 in {0:N-1})

(p[x1]) <- A[x1].f();

foreach (y1,y2 in {0:N-1}*{0:N-1}){

B[y1,y2].g(p[y1]);

Using our simple inference procedure, we determine that each A[x1] sends a

message to B[x1, y2]. Here, y2 is an identifier expression that is bound by

the consumer’s foreach statement. This identifier does not appear in the

subscript of the consumed value, p[x1]. Therefore, a multicast from A[x1] to

B[x1, 0 . . . N − 1] is inferred.

Reductions. In order to determine the set of publishers whose collective

action results in the publication of a reduced value, we note the following.

First, in Charisma, a reduced value’s subscript is of a strictly lower arity

than the subscript of the object collection that publishes it. Therefore, all

identifiers bound by the publishing foreach statement, that do not appear

in the subscript of the reduced value, constitute the dimensions of A over

which a reduction occurs. Let us clarify this with an example:

objects A : Aclass[N,N,N];

values r : MyType[N];

foreach (x,y,z in {0:N-1}*{0:N-1}*{0:N-1})

(+r[x]) <- A[x,y,z].f();

In the above example, A is a three-dimensional collection of objects, whereas

r is a one-dimensional value space. The foreach-enclosed publish-consume

statement above is interpreted as follows: invoke method f on each A[x, y, z]

such that (x, y, z) ∈ {0 . . . N − 1}3; each such invocation contributes to the

reduction of a value, named r[x]. Since y, z are foreach-bound, but do not

appear in the reduced value, r[x], the reduction to publish it occurs over all

objects A[x, 0 : N − 1, 0 : N − 1]. There are N such reductions implied, since

the arity of the reduced value is 1. The Charisma compiler generates code

that adheres to this semantics.

It is easy to chain reductions together with arbitrary consumption pat-

terns. Let the members of collection A reduce a value space r, and those

of B consume it. Conceptually, the compiler treats the values in r as being

98

consumed by the members of an intermediary collection, C, whose arity is

the same as that of r. Therefore, the result of each reduction over members

of A is (conceptually) sent to a single member of C. The members of C

then produce the same values that they consumed. These newly produced r

values are consumed by objects in B. This reorganization serves to decouple

the reduction operations over A from the subsequent consumptions by B,

and we use Algorithm 2 to determine the particular objects in B to which

each C must send the reduction result that it received.

3.13 Support for modularity

A piece of Charisma code can interact with another if it is declared as a

module. This provision also allows for Charisma code to be incorporated

into other Charm++ programs, as discussed in § 6.3. A piece of Charisma

orchestration code is declared as a module by including the directive module

<moduleName>; as the first line of the orchestration specification. This causes

the compiler to generate code allowing the module to be incorporated into

external code, instead of forcing control to originate within the code itself.

The compiler also generates a descriptor of the module so that the incopo-

rating code can instantiate and interact with the module as required. The

descriptor provides the incorporating code access to all of the objects and

parameters within the Charisma module. In§ 6.4, we see how external code

can use this descriptor to interact with individual objects within Charisma

module.

We will conduct our discussion in the context of an illustrative example.

Suppose that we have written a simple Charisma module that performs a

one-dimensional FFT opertion. The module splits up the butterfly compu-

tation into two local phases, which are mediated by a transpose operation

(i.e. the transpose-based one-dimensional FFT [39].) We assume a blocked

decomposition of the input data onto a one-dimensional object collection F

in the module. We will defer the question of how extra-module code can ship

data into and out of a Charisma module, until § 6.

99

module fft1d;

parameter N : int;

class FFT;

objects F : FFT[N];

values p : double[N];

foreach (i in {0:N-1}){

(p[0:N-1,i]) <- F[i].butterfly_near();

F[i].butterfly_far(p[i,*(N)]);

}

Basically, the code performs a transpose operation (the conjunction of a

scatter in the first publish-consume statement, with a gather in the second

one). The module includes a declaration of object collection F , and an integer

parameter, N . The compiler generates the following C++ module descriptor

for the above code:

struct CharismaModule_fft1d {

struct Descriptor{

int N;

CProxy_FFT F;

CProxy_Main_fft1d main;

};

static Descriptor instantiate(int N, const CkCallback&);

void start(const CkCallback&);

};

The module class CharismaModule fft1d encapsulates a descriptor, whose

attributes include a proxy to the object collection F declared in the module,

and an integer representing the parameter N . It also contains a proxy to the

object that serves as the GSM for this module. The instantiate method is

a factory method, and returns a descriptor to a new instance of the module.

100

CharismaModule_fft1d::Descriptor

CharismaModule_fft1d::instantiate(int N,

const CkCallback &cb){

Descriptor desc;

desc.N = N;

desc.F = CProxy_FFT::ckNew(N);

desc.main = CProxy_Main_fft1d::ckNew();

desc.F.moduleDescriptor(desc);

desc.main.moduleDescriptor(desc, cb);

return desc;

}

This method takes as argument the value of the parameter N to be used

by the Charisma module. Other parameters, had they been present in the

module, would have been similarly obtained. The factory method then in-

stantiates the constituent objects of the module, and broadcasts the module

descriptor to these objects. The callback argument provided to the fac-

tory method allows control to return to the instantiating context once the

Charisma module has been initialized. Our approach allows the programmer

to create multiple instances of each module.

void

CharismaModule_fft1d::start(const CkCallback &cb){

main.start(cb);

F.start();

}

Finally, the descriptor includes a start method, which is invoked by ex-

ternal code in order to commence module execution. When the module has

finished execution, it invokes the callback argument provided. Invoking the

start method and waiting for completion of the module is not the only way

in which the incorporating code can interact with the module. Once the

incorporating code obtains a descriptor to the module instance, it can di-

rectly communicate with the constituent objects of the Charisma module.

This method leads to a tight coupling between the incorporating code and

the module, and is discussed further in § 6.3.2.

101

3.14 Comparing performance and productivity with

hand-written codes

In this section, we consider the performance of the code generated by the

Charisma compiler. We compare the performance of Charisma-generated

code with hand-written, Charm++ code for three simple algorithms that are

easily expressed in the static data flow paradigm. We compare the SLOC of

both versions and their parallel performance on up to 4096 processor cores.

Through these results we illustrate that Charisma offers good performance,

even as it makes code more comprehensible and concise.

Most of the following performance experiments were done on Argonne Na-

tional Laboratory’s Intrepid, which is an IBM Blue Gene/P supercomputer.

Each Intrepid node has four 850 MHz PowerPC 450 processor cores and 512

MB of main memory per core. The nodes are connected by several networks,

but the one utilized for application communication by the Charm++ runtime

system is a proprietary three-dimensional torus network. Each Blue Gene/P

node has a total of 5.1 GB/s bidirectional bandwidth, which is shared be-

tween its four processor cores.

The molecular dynamics simulations were performed on a Blue Gene/Q

machine, Vesta, also at the Argonne National Laboratory. Each Vesta node

comprises 16 4-way SMT compute cores, with 16 GB of DRAM shared among

them. A 2 GB/s link connects nodes in a five dimensional torus configuration.

3.14.1 Jacobi relaxation

Our first benchmark is a three-dimensional stencil calculation representing

a Jacobi relaxation procedure. Its inherent halo exchange is an important

pattern of structured communication, forming the basis of applications such

as fluid dynamics, PDE solvers and lattice QCD solvers.

Figure 3.16 compares the performance of the stencil calculation benchmark

written in Charisma vs. Charm++. It is noteworthy that both implemen-

tations scale well up to 4096 cores. The Charisma version of the code was

faster across the board by about 5-10%.

We saw a 38% reduction in the total (parallel + sequential) number of

lines of code written, from 339 for the Charm++ version to 209 for the one

written in Charisma.

102

16 32 64 128 256 512 1024 2048 4096
1

10

100

1000 801

410

206

106

54

30

18

9

5

3D Jacobi Relaxation

Charisma

Charm++

Processors

E
xe

cu
tio

n
 ti

m
e

 (
m

s)

Figure 3.16: Performance comparison of hand-written Charm++ code and
Charisma-generated code for the three-dimensional Jacobi successive over-
relaxation scheme.

3.14.2 Parallel matrix-matrix multiplication

16 32 64 128 256 512 1024 2048 4096
0.10

1.00

10.00

100.00

26.2

13.3

6.6
4.0

2.0
1.2

0.8

0.5
0.3

Cannon Matrix Multiply

Charisma

Charm++

Processors

E
xe

cu
tio

n
 ti

m
e

 (
s)

Figure 3.17: Performance comparison of hand-written Charm++ code and
Charisma-generated code for the Cannon matrix multiplication algorithm.

We studied the performance of Cannon’s iterative matrix multiplication

algorithm [63, 64]. Inputs A and B are decomposed into tiles, which are

encapsulated within objects in a two-dimensional collection called ‘Cannon’.

The work of computing the result C (= A × B) is decomposed in a similar

manner: In each iteration of the algorithm, each Cannon[x,y] receives a tile

of A and one of B, and computes an incremental sum accumulated in its C

tile. It then sends the A tile to its left neighbor, and the B tile to the object

103

above it in the worker array, and proceeds with the next iteration.

In addition, the algorithm requires a tile-skewing phase to ensure that

appropriate inputs are available to begin the computation of each tile of the

result. The Charisma code for this reads:

foreach (x,y in {0:N-1}){

(A[x,(x+y)%N], B[(x+y)%N,y]) <- Cannon[x,y].produce();

Cannon[x,y].mult(A[x,y], B[x,y]);

}

The main iterative computation is shown below:

for (i in {0:N-1})

foreach (x,y in {0:N-1} * {0:N-1}){

(A[(x-1+N)%N,y], B[x,(y-1+N)%N]) <- Cannon[x,y].produce();

Cannon[x,y].mult(A[x,y], B[x,y]);

}

Even so, there was a 64% reduction in SLOC over the Charm++ version.

Thus, in this case, not only was the Charisma version more concise, it also

benefited from optimizations done by the orchestration compiler.

3.14.3 Three-dimensional FFT

8 16 32 64 128 256 512 1024 2048 4096
0.01

0.1

1

10 8.31

4.38

2.55
1.55

0.83

0.46

0.16

0.09
0.06 0.05

3D FFT

Charisma

Charm++

Processors

E
xe

cu
tio

n
 ti

m
e

 (
s)

Figure 3.18: Performance comparison of hand-written Charm++ code and
Charisma-generated code for a transpose-based, three-dimensional FFT al-
gorithm.

104

We consider the three-dimensional FFT with pencil decomposition [39]

onto a two-dimensional collection of objects. This leads to three line FFT’s

with two intervening transposes. Figure 3.18 compares the performance of

the Charm++ and Charisma versions with 5123 double-precision elements.

Both versions used the FFTW library [65] for (serial) one-dimensional line

FFTs. The results show that the Charm++ code performs better, especially

at scale. In fact, at 4096 cores, the Charisma code obtains a speedup (rela-

tive to performance at 16 cores) of 158 compared to the Charm++ speedup

of 191. However, neither version scales particularly well beyond the 2048

core mark: parallel efficiency is close to 40 per cent for the Charm++ code,

and about 30 per cent for the Charisma code. The reason is that the small

message overhead for the underlying Charm++ messages is significant. In

fact, in order to scale the all-to-all operation inherent in the parallel trans-

pose, dynamic aggregation and routing techniques, as used by Kale et al. [26]

would be required.

SLOC were reduced by 37% for this program. In this specific benchmark,

sequential code dealing with local FFT computation constitutes a significant

portion of the program, so that the reduction of SLOC is not as impressive

as achieved with some of the simpler programs. On the other hand, compli-

cated applications still stand to benefit from the clarity of global control flow

expression afforded by Charisma.

3.14.4 Lennard-Jones molecular dynamics

As a final benchmark, we present a molecular dynamics application that

performs the fine-grained decomposition of both space (data) and force cal-

culations (work). This decomposition technique follows the strategy of Kale

and colleagues [66], and is described in greater detail in § 3.9.2. Here, we

compare the performance of the three-dimensional extension of the Charisma

code from § 3.9.2, with a Charm++ code that has been written as a repre-

sentative mini-app for molecular dynamics simulators. Both codes simulate

three-dimensional ensembles of particles subject to the short range, Lennard-

Jones potential. The simulation volume is divided into a structured grid of

1Å patches, and the particles in a patch interact only with those within a

two-patch neighborhood in the x and y dimensions, and a one-patch neigh-

105

borhood in the z dimension. This is called a 2-away XY , 1-away Z simu-

lation. Particle migration between patches was disabled for the purpose of

benchmarking performance.

The Charm++ code uses the SDAG notation to express control flow local

to each object, and so enjoys a clean separation of parallel structure from

serial computations (namely the equations that describe the physics of the

simulation). As a result, we were able to borrow all of the serial code for the

Charisma version from its Charm++ counterpart. The Charisma code ran

to a total of 477 lines, much of it sequential code, and the Charm++ version

was 854 lines long. A more detailed analysis of the code for this benchmark

is presented in § 3.14.5.

Both versions used a two-tiered strategy (built into the Charm++ load

balancing infrastructure) for the placement of objects on processors. The

first twenty iterations of the benchmark were performed with a blocked as-

signment of objects to processors. Performance metrics collected during that

time were used to perform a greedy assignment of heavy objects to under-

loaded processors. The simulation was then resumed, and from that point

onward, a refinement of the greedy mapping was periodically performed.

128 256 512 1024 2048 4096
1

10

100

0.9

0.95

1

1.05

1.1

Molecular dynamics strong scaling

8 x 8 x 8 grid

Charisma
Charm
Speedup

Cores

B
en

ch
m

ar
k

tim
e

(s
)

Figure 3.19: MD Performance comparison for an 8× 8× 8 patch grid.

Figure 3.19 shows how the Charm++ and Charisma versions of the MD

benchmark scale. The “speedup” curve shown in that figure plots the ratio

of benchmark time for the Charm++ version, to that taken by the Charisma

106

versions. The figure demonstrates that Charisma code is comparable (to

within 5 per cent) to hand-written Charm++ in terms of performance Neither

code scaled particularly well beyond 1024 cores on the smaller configuration

of about 89, 000 particles decomposed over an 8 × 8 × 8 patch grid. For a

2-away XY , 1-away Z simulation, we obtained 19456 computes.

256 512 1024 2048 4096
20

200

0.9

0.95

1

1.05

1.1

Molecular dynamics strong scaling

16 x 16 x 16 grid

Charisma
Charm
Speedup

Cores

B
en

ch
m

ar
k

tim
e

(s
)

Figure 3.20: MD Performance comparison for an 16× 16× 16 patch grid.

Better scalability was observed on the larger, 715, 000 particle data set,

decomposed over 16× 16× 16 patches (307200 computes). The two versions

gave comparable performance on up to 4096 cores of Vesta (Figure 3.20).

3.14.5 Summary of productivity results

Figure 3.21 presents a summary of the reduction in percentage lines of source

code (SLOC) for the four benchmarks that we have examined. The percent-

age reduction is obtained by dividing the absolute difference in SLOC by the

number of lines in the Charm++ implementation. We see that the reduction

in SLOC is consistent and significant across the different benchmarks.

Figure 3.22 provides a deeper analysis of these reductions in SLOC for the

particular case of the molecular dynamics benchmark.

The graph plots several categories of code on the x axis, for both versions

of the MD benchmark. On the y axis is the number of lines of code present in

each category. The shorthand names for the categories denote the following,

107

0

10

20

30

40

50

60

70

FFT

MMM

Stencil
MD

Benchmark
%

 R
ed

uc
tio

n
in

 S
LO

C

Figure 3.21: Percentage reduction in source lines of code for the Charisma
version of each benchmark, over its Charm++ counterpart.

in order:

• Decls. declarations of variables relating to the parallel structure of the

program. For example, in Charm++ programs, one must declare prox-

ies to collections of objects. In Charisma, this would be code present

in the declaration preamble of the orchestration code.

• Par. Parallel structure of the application. In the Charisma code, this

is the section following the declaration and initialization sections in the

orchestration file. In the Charm++ version, it is the SDAG code that

represents object-local flow of control.

• Ser. Serial code, namely that present in the serial methods of objects,

in both the Charisma and Charm++ versions.

• Phys. Simulation physics, i.e. code to compute the Lennard-Jones

potential.

• Obj. Definition of classes representing coarse-grained objects (patches

and computes).

• DS. Serial data structures, e.g. particles and vectors.

• LB. Code required for the serialization/deserialization of object state

during migration-based load balancing.

108

Decls Par Ser Phys Obj DS Const LB Mcast Sparse
0

50

100

150

200

250

Charisma Charm++

Code category

S
LO

C

Figure 3.22: Break-up of MD benchmark code for Charisma and Charm++
verisons, into a number of categories. The key for the shorthand categories
on the x axis is provided in the text. The graph shows that Charisma pro-
grams are compact in the expression of their parallel structures, and benefit
from automatic generation of much of the code required for load balancing,
insertion into sparse object collections, and multicasts/reductions over sparse
arrays.

• Mcast. Creation and maintenance of sparse subsections of object col-

lections, the members of which may be spread over multiple processors.

This code is automatically generated in the Charisma version.

• Sparse. Insertion of objects into the sparse collection of computes. The

Charisma code for this comprises a total of 12 lines in the initialization

section of the orchestration file.

The graph shows that Charisma succinctly captures the parallel struc-

ture of applications, and automates the generation of code related to certain

routine tasks such as the creation and maintenance of sections of object

collections, and serialization/de-serialization required during load balancing.

Unsurprisingly, the amount of code in the serial portion of the computation,

as well as data structure definitions, are almost identical in the two versions.

We list some of the more intangible productivity benefits of Charisma

below:

1. The ability to capture global flows of data and control. This allows the

109

reader of a program to examine the unfragmented, overall structure of

communication and flow of data in the program.

2. An abstract publish-consume communication model. We believe that

this model yields a simple means to achieve communication between

the objects of a program. As seen in § 3.12, it is flexible enough to

express a number of commonly used communication patterns.

3. Clean separation of parallel and sequential components. Not only does

this separation allow users to employ familiar C++ syntax to achieve

the bulk of their computation, it also allows for a separation of con-

cerns for collaborative application development. Specifically, the par-

allelization strategy of the algorithm is largely separate from the se-

quential methods used therein, allowing their concurrent development

by computer scientists and domain specialists, respectively. Moreover,

the simple syntax of Charisma enables one to quickly assess first-order

performance ramifications of restructuring of the overall parallel algo-

rithm.

Of course, Charisma is a specialized language, and as such only supports

the expression of a limited subset of possible parallel programs. However, we

believe that the ability to succinctly express global data-independent commu-

nication patterns is important to HPC programmers and domain specialists

alike. Furthermore, the expressive gaps in Charisma can be mitigated by

other specialized languages (e.g. cf. § 4 and § 5), or through interoperation

with a more general-purpose language, such as Charm++ (cf. § 6).

110

CHAPTER

4

DIVIDE-AND-CONQUER

4.1 Introduction

Divide-and-conquer is a powerful programming technique and one that is

closely attuned to our natural understanding and expression of algorithms.

Many algorithms can be expressed in a compact and elegant manner through

this technique of recursive specification. Such an expression leads to pro-

grams that have an inherently parallel structure embodied by a recursion

tree, every node of which is a function invocation. The programmer needn’t

be aware of this task parallelism implicit in the program structure – it can be

extracted (with the aid of a compiler) at run-time by an intelligent runtime

system.

These observations have inspired extensive research on the use of the

divide-and-conquer paradigm as a medium for the expression of parallel pro-

grams. For example, the work of Loidl et al. [67] provide a survey of different

parallel dialects of the Haskell functional language [68], as well as a compre-

hensive review of various other approaches to parallel functional program-

ming. Much work has also been done in the management of grain size of

111

tasks generated by the parallel execution of such programs [69, 70], the load

balancing problems that they face [71], and increased efficiency through pri-

oritization [72]. Most work that shows good scaling on distributed memory

systems pertains to the solution of state space search problems (for example,

see the work of Dinan et al. [73]). However, in general, it has been difficult

to achieve good speedups on large scale distributed memory machines (al-

though good results have been obtained for relatively small, shared memory

machines) for divide-and-conquer programs, especially for algorithms that

involve large, distributed data.

4.1.1 This chapter

The objective of this chapter is to develop a parallel programming language

called DivCon, designed specifically for the expression of divide-and-conquer

algorithms operating on large sets of input data. In particular, we aim to pro-

vide a simple language that allows for the expression of divide-and-conquer

algorithms for distributed memory machines, especially for such algorithms

that exhibit generative recursion, and therefore nominally involve the move-

ment of large amounts of data over the network. In such an algorithm, each

invocation of a function receives as input a set of data elements. The func-

tion call, in turn, performs some work to generate new sets of data. Each

new set of data is then passed as input to a recursive function call. The book

of Felleisen et al. [74] describes this pattern as generative recursion. The

general form of such an algorithm is presented below:

Algorithm 3: DivCon(A)

Data: Set A of data elements

begin

if isBaseCase(A) then
return solveBaseCase(A)

(A1, . . . , Am)←− createSubProblems(A)

return combineSubSolutions(DivCon(A1), . . . ,DivCon(Am))

Typically for such algorithms, the application of the partitioning function

createSubProblems on a given element of A, is independent of its application

on any other. Therefore, the partitioning of the input collection A into

multiple sub-collections, is in fact data parallel.

Let us examine this pattern more closely, in the context of distributed

112

memory machines. If the input A to invocation DivCon(A) is assumed to be

very large, it must be decomposed over several processors (call this set of pro-

cessors PA) on the distributed memory computer. Similarly, each recursive

invocation DivCon(Ai) receives its input Ai as a set decomposed over several

processors (PAi
). Therefore, data elements generated due to the application

of createSubProblems must be partitioned onto processor sets PAi
. Typically,

this involves an expensive, each-to-many exchange over the network between

the members of PA. Thereafter, each invocation DivCon(Ai) performs a sim-

ilar partitioning operation, this time over a smaller set of processors, PAi
,

and so on, until sequential computations are invoked.

Bearing this pattern in mind, our objective is two-fold: (i) To provide an

abstraction that efficiently manages data parallelism in generatively recursive

divide-and-conquer applications. (ii) To design a simple language, called

DivCon, which serves as a vehicle for this abstraction.

DivCon is suited for the expression of divide-and-conquer computations

as a sequence of expression evaluations, including function invocations. The

language we develop is influenced by the design of Cilk [75], in that the

programmer explicitly declares certain tasks to be concurrently executable

with others through a spawn construct. As such, even though the underlying

runtime techniques used by our language differ from the work-stealing based

approach of Cilk [76], we do not claim our design to be particularly novel. On

the other hand, the DivCon compiler performs data dependency analysis, so

that a construct corresponding to cilk sync is not needed in our language.

Task parallel work is managed by the runtime using the techniques of Kale

et al. [77]: First, we dynamically agglomerate fine-grained tasks into larger

tasks, thereby reducing parallel overhead. Second, we employ seed-based

dynamic strategies to distribute load across the processors of the parallel

machine.

DivCon also provides a construct called the DivConArray, through which

the programmer specifies data-parallel operations. We outline the design of a

module within the DivCon runtime system that manages such data-parallel

computations. The chief purpose of this module is to avoid the each-to-many

operation nominally required at every invocation of a generatively recursive

function. In order to do this, redistribution of partitioned data is delayed.

Moreover, messages that initiate data-parallel operations are combined and

issued en masse. As we shall see, this allows the cost of data communication

113

to be amortized over multiple invocations of a generatively recursive function.

We will analyze the impact of these optimizations on a few applications that

typify tree-structured computations and generative recursion. We will end

with a comment on programming productivity.

4.2 Design principles

Our design of the DivCon language is rooted in the desire to provide a min-

imal set of constructs for expressing task and data parallelism within the

divide-and-conquer paradigm.

4.2.1 Task parallelism

Let us begin by enumerating some of the principles that guide the design of

DivCon constructs for task parallelism.

Fine-grained tasks

We provide a simple core language in which divide-and-conquer computations

are expressed in terms of fine-grained, concurrently executable functions,

called tasks. Thus, a task is the basic unit of work in DivCon. A task

evaluates a sequence of expressions, and may in turn invoke other tasks. The

programmer explicitly spawns tasks, in a manner similar to Cilk.

Dependencies between tasks

The expressions evaluated by a task may depend on the results of other

tasks. Such dependencies between tasks are specified by the production and

consumption of values. Tasks can produce values, and can consume values

produced by other tasks. We perform simple compiler analysis to determine

the data dependencies between tasks. If there are no such explicit data

dependencies between two tasks, then we assume that the tasks may be

executed in parallel. This means that a DivCon analogue of the explicit sync

operation of Cilk is not required: synchronization points are automatically

detected by the DivCon compiler.

114

4.2.2 Separation of parallel and serial code

We aim to limit the syntactic repertoire of the language, so as to keep the

language simple (thereby reducing the cognitive burden as well as novelty).

This simplicity has an added benefit, in that it allows for precise analysis of

dependencies by the compiler. In the absence of language constructs such as

pointers (coupled with a call-by-value semantics of function invocation), the

DivCon compiler can extract all the dependencies that exist in the program.

This is in contrast to, for example, Cilk, wherein artifacts such as memory

aliasing through pointers, and array expressions, can obscure the flow of data

in the program.

In this vein, DivCon provides only basic evaluation of expressions within

the language, but allows the invocation of serial, C++ functions from it.

We believe that this feature makes DivCon programs simple to understand

(both for the programmer, and for the compiler), while not unduly restricting

language expressiveness. The compiler does not attempt to parse or extract

parallelism from serial functions: to the compiler, such a function is a black

box.

4.2.3 Program order semantics

DivCon has a sequential semantics of execution. Each task contains a se-

quence of expression evaluations (which may in turn invoke other tasks), and

control flows from one such evaluation to the next as dictated by program

order. Recall that tasks may produce and consume values. A data depen-

dency can only exist from a DivCon expression that produces a value, to one

that succeeds it in program order. As a result, DivCon has an imperative,

rather than a declarative flavor.

4.2.4 Explicit data parallelism

We enable the explicit expression of data parallelism through a novel dis-

tributed data structure called the DivConArray. We pay particular atten-

tion to an important class of divide-and-conquer applications, namely those

that exhibit the so-called generative recursive pattern [74] over large sets of

data elements. Examples of this pattern include quicksort, median-finding,

115

quickhull, Delaunay mesh generation, etc.

Real-world divide-and-conquer applications are characterized by the large

size of input problems. This means that the input data set for each recursive

invocation must typically be distributed over several processors. As described

in § 4.1.1, the partitioning phase of divide-and-conquer applications with

generative recursion over sets of elements, is characterized by the movement

of data from one set of processors, to several different, and smaller sets of

processors. The associated each-to-many operation is expensive in terms of

data movement (communication) cost for distributed memory systems, and

must be incurred for each invocation of the function.

Our solution to this problem involves the amortization of data movement

costs over several invocations of the recursive function. In this thesis, we

develop a distributed array abstraction, namely the DivConArray, that real-

izes this amortization technique. That is, the DivConArray provides efficient

support for basic operations required by divide-and-conquer applications that

exhibit generative recursion over sets of data elements.

The DivConArray is available in the DivCon language as a first class con-

struct, thereby allowing programmers to leverage this abstraction using a

simple notation.

4.2.5 Dynamic optimizations

Our design leverages run-time strategies such as task agglomeration and

communication avoidance (using DivconArrays) to optimize performance of

the executing DivCon program. The DivCon runtime system is based on

Charm++, and as such uses its dynamic load balancing, and message com-

bining infrastructures.

Many of DivCon’s language constructs find echoes in previously developed

languages for recursive or divide-and-conquer computations. For this rea-

son, we do not claim the design of the DivCon language to be particularly

novel; instead, we consider its placement within the context of object-based,

message-driven and runtime-centric interoperability to be an important con-

tribution. In addition, as discussed in § 4.6.2 the DivConArray abstraction

provides a convenient and efficient means of expressing data parallelism in

generatively recursive divide-and-conquer algorithms.

116

4.3 Examples of DivCon code

To set some context for the description of DivCon that is to follow in § 4.4,

we present two well-known divide-and-conquer algorithms in DivCon.

4.3.1 Computing the i-th Fibonacci number

A DivCon program consists of a number of declarations, followed by the

definitions of functions. Declarations typically include external, immutable

symbols, whose values are set extraneously to the program (e.g. Tau below);

and (C++) serial functions (seqFib), which are meant to encapsulate serial

computations of a coarse grain size.

extern int Tau;

serial seqFib(int i) : int;

fib (int i) : int {

if (i <= Tau) return seqFib(i);

else {

int i1, i2, n;

i1 = spawn fib(i-1);

i2 = spawn fib(i-2);

n = i1 + i2;

return n;

}

}

main enter(int n) : int {

return fib(n);

}

Types of functions

A function is a sequence of expression evaluation statements. Control flows

from one such statement to the next in program order. A function receives

117

input arguments, performs some computations using these and other vari-

ables, and returns a number of results to its caller. The function fib takes

an integer i as input, and returns the i-th Fibonacci number as its only

result. When the invocation of a function is preceded by the spawn keyword,

it indicates that the invocation will be executed in a lightweight task that

executes concurrently with all other tasks, subject to data dependencies. An

expression (perhaps a function invocation) that depends on the results of pre-

ceding expressions (in program order) is not evaluated until all such results

are available. (The notion of availability is discussed more fully below.

Typically, tasks are fine-grained, and spawn other tasks. In the exam-

ple above, the task fib(i) spawns two other tasks, namely fib(i-1) and

fib(i-2). On the other hand seqFib is declared as a serial function. A

serial function is a C++ function, i.e. it is specified separately from the

DivCon code, and it may not contain DivCon statements. As a result, a

serial function may not spawn any DivCon tasks in its body. Therefore, the

invocation of a serial function results in the execution of some C++ code to

completion. One may spawn a new task to evaluate such a serial function.

Such tasks allow the overhead of parallel task creation to be amortized over

serial computations. It is expected that the programmer will encapsulate a

coarse-grained serial computation within a serial function. In our simple

example, the seqFib serial function might serially evaluate an appropriately

large member of the Fibonacci sequence.

Program execution

Control enters a DivCon program in the function labeled as main. The body

of a DivCon function consists of sequence (block) of statements. These state-

ments execute in program order, making for an imperative style of program-

ming. A statement may execute once the result of every one of its embedded

expressions has been evaluated. In turn, an expression is evaluated once all

of its subexpressions have been evaluated.

Given the presence of asynchronously executed tasks (via the spawn con-

struct), we must define when the result of an evaluated expression may be

used by the expressions that depend on it. For this purpose, we define the

notion of availability of results within a DivCon function. The result of an

identifier expression is available immediately if the identifier corresponds to

118

an extern constant, or is a formal argument of the function. On the other

hand, if the identifier has been assigned the result of an expression (through

an assignment statement of the form v = e), then it becomes available when

the result of the expression on the RHS becomes available. The result of

an arithmetic or logical expression becomes available when the results of its

operands are available, and the corresponding arithmetic/logical operation

has been performed. The result of a function invocation (whether spawned

or not) is available when it has returned a number of results to the calling

context. In this sense, DivCon employs strict evaluation.

More concretely, the task fib(i) results in the following sequence of com-

putations. We first check whether i is less than Tau. If so, we evaluate

seqFib(i), thereby executing a block of serial, C++ code. When the (C++)

body of seqFib has been fully evaluated, its result is returned to its calling

context, which in turn returns the result to the task that invoked it.

On the other hand, if i is larger than Tau, task fib(i) spawns a task

fib(i-1), and upon receiving its result, stores it in scope-declared variable

i1. Next, fib(i-2) is spawned, and its result (when it becomes available)

is saved in i2. The sum of these intermediate results is stored in variable n,

and returned to the caller of fib(i).

Although this is the programmer’s view of the sequence of computations,

the DivCon compiler constructs a CFG of interdependent sub-tasks from the

specification of each task. Consquently, execution is data-driven, and more

dynamic than suggested by the above discussion. Given the semantics of

evaluation, we could have specified fib more compactly:

fib (int i) : int {

if (i <= Tau) return seqFib(i);

else return spawn fib(i-1) + spawn fib(i-2);

}

Serial code

We now see how serial functions serve as an interface between DivCon and

C++ code. The C++ definition of seqFib is present in a different file from

the DivCon code above. This file is not analyzed by the DivCon compiler:

119

void seqFib(const Divcon::ConsumedValue<int> &i,

Divcon::ProducedValue<int> &result)

{

if(i == 0 || i == 1) result.produce(i);

else{

int i1, i2, i3;

i1 = 1; i2 = 0;

for(int j = *i; j >= 2; --j){

i3 = i1 + i2;

i2 = i1;

i1 = i3;

}

result.produce(i3);

}

}

A serial function’s consumed values are encapsulated by ConsumedValue’s.

The associated data can be accessed using the ‘*’ operator. The C++ signa-

ture of the serial function identifies it as having a void return type. Produced

values are encapsulated within ProducedValue<>’s, and can be passed to Di-

vCon code via the produce method.

4.3.2 Quicksort

Next we present the quicksort algorithm to introduce the use of DivconArrays

in expressing data parallelism. The code begins by declaring the user-defined

type, Record. As in Charisma, types are not defined within DivCon. They

appear instead in separate C++ files. Next, the externally defined threshold

for switching over to serial sorting is given by the immutable extern int Tau.

The serial function seqSort performs coarse-grained, serial sorting work in

order to amortize the cost of parallel tasks. Here, by coarse we mean on the

order of a few hundred to a thousand Records.

120

type Record;

extern int Tau;

serial seqSort(Array<Record>) : Array<Record>;

qsort(Array<Record> A) : Array<Record> {

int len = A.length();

if(len <= Tau) return seqSort(A);

else{

Array<Record> LT, EQ, GT;

Record pivot;

pivot = A.read(len/2);

foreach(Record a in A)

if (a < pivot) LT += a;

else if (pivot < a) GT += a;

else EQ += a;

A.free();

return (spawn qsort(LT)).concat(EQ).concat(spawn qsort(GT));

}

}

Now, consider the DivCon function qsort. It receives as its only input

a DivConArray whose elements are of type Record, denoted Array<Record>

A. DivConArray A is an indexed collection of elements that supports some

basic operations such as length, read and concat. We check whether A is

small enough (using length) that we can sort it serially. Otherwise, we read

a particular index within A, and assign the obtained value to the variable

pivot.

Next comes the application of the data-parallel, out-of-place partitioning

operation of the quicksort algorithm. Using the foreach construct of DivCon

we iterate over each element a in the DivConArray A. The foreach construct

provides an unordered iteration over all the elements in a DivConArray. For

our present discussion, we treat the ‘+=’ operator in statements of the form LT

+= a as adding a single element a to the DivConArray A. The precise meaning

of the ‘+=’ operator is discussed in § 4.4.1. Therefore, depending on the value

of the current element a relative to the pivot, we place it in one of the LT, GT

121

or EQ DivconArrays. Finally, we spawn qsort(LT) and qsort(GT) functions,

concatenate their results appropriately, and return the result.

Below is shown the C++ code for the serial function seqSort:

void seqSort

(const Divcon::ConsumedValue< Divcon::Array<Record> > &in,

Divcon::ProducedValue< Divcon::Array<Record> > &out)

{

int n = *in.size();

std::vector< Record > v(n);

std::copy(*in.first(), *in.last(), v.first());

if(n >= 2) std::sort(v.first(), v.last());

out.produce(Divcon::Array<Record>(v));

}

In the code above, arguments consumed by the C++ function are en-

capsulated Divcon::ConsumedValue, whereas data produced by the function

are encapsulated within the Divcon::ProducedValue class template. We first

copy the elements of the consumed DivConArray in into a C++ vector and

sort it using the C++ standard library. The sorted result is funneled to

DivCon via the produce call.

4.3.3 Discussion

From the examples above, we can make some preliminary observations about

the DivCon language. First, the simple notation used to specify functions,

forms a fine-grained scaffold into which are placed serially executing, coarse-

grained, serial functions. The latter can leverage the vast functionality af-

forded by C++ standard libraries, as well as other sequential libraries plugged

into the program by the user. Therefore, we believe that DivCon provides a

good mixture of simplicity of notation, and expressive power.

These serial functions provide a means to amortize the cost of spawning

function invocations over coarse-grained chunks of work. In cases where it is

not possible to statically determine a good cut-off criterion for serial work,

DivCon performs task agglomeration to mitigate parallelization overheads.

(cf. the unbalanced tree search benchmark, § 4.8.1.)

122

Notice that the language conceals from the programmer the fact that Div-

conArrays may be distributed across several processors. These arrays support

simple functionality such as read, length, concat, scan as well as the ‘+=’

operator to examine and manipulate DivconArrays. Additionally, DivconAr-

rays can be produced as a result of arbitrary C++ computations encapsu-

lated within serial functions. Such DivconArrays are not distributed over

multiple processors.

However, we do not believe these operations to be universally applicable.

Indeed, they provide very restricted functionality, and other languages and

frameworks provide richer distributed array abstractions (cf. ZPL [78], the

PGAS languages [5, 6], the APGAS languages [3, 4], the multiphase shared

array [79] and Global Arrays [80]). However, we believe that in conjunc-

tion with the foreach construct, the operations supported by DivCon cap-

ture an important set of manipulations performed in the divide-and-conquer

paradigm. Later, we exploit the specialized nature of our DivConArray ab-

straction in order to improve performance in a distributed memory setting.

The imperative nature of the DivCon language, and the explicit expres-

sion of parallelism is reminiscent of Cilk [75]. However, DivCon performs

the necessary dependency analysis so that the programmer doesn’t have to

identify sync points in the program. We believe that this automatic anal-

ysis leads to DivCon programs that are less prone to data races than Cilk

programs. DivCon and Cilk also differ in the manner in which they interact

with an otherwise-serial language: whereas Cilk spawn/sync operations are

embedded within C, DivCon enforces a strict separation between function

code and C++ code. Finally, DivCon makes provisions for the explicit ex-

pression of data parallelism with DivconArrays and the foreach construct.

The foreach construct is a restricted form of the list comprehension operator

of NESL [81]. NESL programs enjoy a great deal of generality in express-

ing data parallelism on shared memory machines. However, the restrictions

we impose on the foreach construct of DivCon are necessary to adapt to a

distributed memory setting.

123

4.4 Language design

Let us now take a closer look at the syntactic and semantic structure of

DivCon.

4.4.1 Base expression evaluation language

In the following, we discuss the syntax of DivCon in terms of its EBNF.

Top-level structure

〈program〉 ::= 〈decls〉〈functions〉

A DivCon program consists of a number of declarations, followed by func-

tion definitions.

Declarations

The declaration preamble contains individual declarations, each of which

declares a extern constant, a user-defined type, or a serial function written

in C++.

〈decls〉 ::= (〈decl〉 “;”) ∗

〈decl〉 ::= 〈externType〉 | 〈externConst〉 | 〈serialFunctionDecl〉

Constants declared as extern are defined externally to the DivCon pro-

gram, e.g. via the command line. Type declarations inform the DivCon

compiler of all non-primitive, user-defined types that are to be considered

valid in the DivCon program. Serial function declarations indicate pieces

of C++ code that are invoked by a DivCon program, but which cannot

themselves spawn DivCon tasks.

Types. A type declaration specifies a valid, externally-defined C++ type

that can be used in the DivCon program.

124

〈externType〉 ::= “type” 〈ident〉

Types used in the DivCon program are either declared (as above), or

primitive C++ types, e.g. int, bool, etc. Aggregate types are allowed, but

these cannot be defined within DivCon. A function witha void return type

can not return an evaluated expression.

External constants. An external constant is a C/C++ style declaration

of an externally defined parameter that is referenced (in read-only mode) in

DivCon code.

〈externConst〉 ::= “extern” 〈type〉〈idents〉

〈type〉 ::= 〈cppType〉 | “Array” “<” 〈cppType〉 “>”

Examples of such declarations are shown below:

extern int seqThreshold;

extern double maxAllowedError;

type MyType;

extern MyType myTypedConstant;

extern Array<MyType> someArray;

External constants may have user-defined types, and may even be Div-

conArrays. External constants may be defined either on the command-line,

or as shown in § 4.7, in an external module that invokes DivCon code. In

fact, extern DivconArrays form the basis for interoperation with Charm++,

and the other languages of this thesis. DivCon does not support Arrays of

Arrays.

Serial functions. Serial functions provide a way for DivCon to interface

with serially executed C++ code. A serial function is specified separately

from the DivCon part of a program. We believe that this separation helps to

125

keep the DivCon notation simple, while allowing sufficient flexibility in the

expression of serial computations.

A serial function may receive input parameters from (parallel) DivCon

code. The seqFib serial function in § 4.3.1 is an example of serial code

returning a single value, via the Divcon::ProducedValue<>::produce call, to

its DivCon calling context. In general, multiple values may be returned

to DivCon in the same way. The reader will note the similarity of this

mechanism with the one used in Charisma (cf. § 3).

〈serialFuncDecl〉 ::= “serial”

〈ident〉 “(” [〈paramDecls〉] “)” “:” 〈returnType〉

〈paramDecls〉 ::= 〈paramDecl〉(“,” 〈paramDecl〉) ∗

〈paramDecl〉 ::= 〈type〉〈ident〉

〈returnType〉 ::= “(” 〈type〉(“,” 〈type〉) ∗ “)”

Serial functions are provided so that DivCon code may interface with ex-

ternal, general-purpose code. For example, arithmetic operations that are

not supported by DivCon may be wrapped within serial functions.

// in DivCon file:

serial NewtonZero(Functor) : double;

// in .cpp file:

void NewtonZero(const Divcon::ConsumedValue<Functor> &f,

Divcon::ProducedValue<double> &y){

double root = 0.0;

while(fabs(f.evaluate(root)) > 0.001)

root = root -

(*f).evaluate(root)/(*f).derivative().evaluate(root);

y.produce(root);

}

The above serial function NewtonZero, when invoked from within Div-

Con, receives as input a Functor, f, and uses Newton’s method to find a

126

root of the corresponding (mathematical) function. The function was de-

clared (in DivCon) as consuming a Functor and returning a double. In the

actual C++ code, both input and output are encapsulated within DivCon

classes. The result is returned to the calling DivCon context by means of

the produce call on the corresponding Divcon::ProducedValue. The body of

NewtonZero makes free use of standard C/C++ library functions (e.g. fabs)

and constructs (e.g. while).

DivCon functions

A DivCon function allows the specification of recursive computations in the

form of a textually-expressed CFG.

〈functions〉 ::= 〈functionDef 〉 ∗

〈functionDef 〉 ::= [“main”]〈ident〉 “(” 〈paramDecls〉 “)” “:”

〈returnType〉〈stmtBlock〉

The input parameters to a function are given by a number of typed, for-

mal arguments. The body of a function is a sequence of statements. DivCon

is lexically (and in particular, block-) scoped, so that the input parameters

of a function are in-scope for all statements in its body. Statements within

a DivCon function may invoke other DivCon functions, and may make as-

signments to in-scope variables. These variables, in turn, may be the input

parameters of subsequent (in program order) function invocations, thereby

specifying data dependencies. Conceptually, DivCon function invocations

are blocking.

A single DivCon function may be marked with the main qualifier, indi-

cating that control enters DivCon through that function. Finally, unlike in

functional languages, DivCon functions are not first class entities, in that

functions cannot be passed as arguments to functions.

127

Expressions

DivCon expressions are simple in structure and not particularly different

from the kinds provided by other, well-established programming languages

such as C and C++.

〈expr〉 ::= 〈atomicExpr〉 | 〈attrAccess〉 |

〈arithExpr〉 | 〈boolExpr〉 | 〈invocation〉

〈atomicExpr〉 ::= 〈lit〉 | 〈ident〉

〈attrAccess〉 ::= 〈expr〉.〈ident〉

〈invocation〉 ::= [“spawn”][〈expr〉.]〈funCall〉

〈funCall〉 ::= 〈ident〉 “(” [〈exprs〉] “)”

〈exprs〉 ::= 〈expr〉(“,” 〈expr〉) ∗

The most basic DivCon expressions are the atomic expression, (i.e. exter-

nal constants, numeric or Boolean literals, and identifiers corresponding to

in-scope, declared variables), and the attribute access expression (of the form

x.attr, denoting a reference to an attribute named attr of object x). DivCon

also supports binary arithmetic expressions and binary Boolean expressions.

Negation of Boolean expressions is supported via the ‘!’ operator. Given

their structural similarities to their C++ counterparts, we do not discuss

these types of expressions further.

Invocations of functions (whether serial or not) are valid DivCon expres-

sions. Each argument of an invocation is itself a DivCon expression. Scalars

are passed into function invocations by value, whereas Arrays are passed by

reference. As indicated by the EBNF, DivCon supports the invocation of

C++-style instance methods (e.g. x.f(), for some object x and its declared

instance method, f) as well as “normal” functions (e.g. f(x) for some in-

scope object x and some declared function f).

Finally, an invocation may be preceded by the keyword spawn. From the

programmer’s point of view, this annotation dictates that a new lightweight

task be created for the evaluation of the associated invocation. This provides

an opportunity to the programmer to specify task parallelism. An invocation

128

that is not spawned is evaluated in-line. In § 4.6.1 we will see that the DivCon

runtime system agglomerates spawned lightweight tasks into chunks of work

that have a reasonable grainsize.

Statements

As noted previously, the body of a function is a sequence of statements. We

identify the various kinds of DivCon statement here.

Statement blocks. A statement block creates a curly-brace-enclosed scope,

which comprises a variable-declaration preamble, followed by a number of

statements.

〈block〉 ::= 〈stmt〉 | “{” 〈varDecls〉 (〈stmt〉) ∗ “}”

〈varDecls〉 ::= (〈varDecl〉) ∗

〈varDecl〉 ::= 〈type〉〈idents〉 “;”

The variables declared within such a statement block scope are available

to all statements therein. Statements within a block are executed in program

order. Consider the following fragment of code, which shows the else block

of the quicksort example from § 4.3.2:

if(A.length() <= Tau) ...

else{

Array<Record> LT, EQ, GT;

Record pivot;

...

}

The preamble of the else block declares a scalar pivot, of type Record, and

three DivconArrays of Records, namely LT, EQ and GT. Note that pivot is a

value object as would be familiar to C++ programmers, and not a reference

(as might be expected by Java programmers). DivconArrays are initially

empty.

Next, we discuss the four types of DivCon statement that may occur in a

block.

129

〈stmt〉 ::= 〈conditional〉 | 〈assignment〉 “;” | 〈forall〉 | 〈foreach〉

Conditional execution. An if-then-else statement specifies the execution

of either its then branch or its else branch, depending on the result of the

evaluation of an associated Boolean predicate expression.

〈conditional〉 ::= “if” “(” 〈expr〉 “)” 〈block〉 “else” 〈block〉

Variable assignment. The DivCon assignment statement takes the form

“LHS = RHS”. LHS contains a list of in-scope variables. RHS specifies a comma-

separated list of DivCon expressions.

〈assignment〉 ::= [〈idents〉 “=”]〈exprs〉

If variables are present in the LHS, their number must equal the aggregate

number of results returned by the expressions in the RHS, as defined next.

An identifier expression returns a single result, namely its most recently

assigned value. Similarly, arithmetic and Boolean expressions are single-

valued. Finally, a function invocation returns a number of results that is

implied by the declaration of the corresponding function. The assignment of

results to variables occurs in a one-to-one, left-to-right manner.

Statements that express dynamic task parallelism

So far, we have not discussed a looping construct within which the DivCon

programmer may arbitrarily enclose function invocations and task creations.

Indeed the absence of such constructs would restrict the scope of the language

to the expression of data-independent task parallelism, i.e. computations in

which the number of (children) tasks spawned, i.e. number of functions in-

130

voked, by a given (parent) task is determined independently of the input data.

Quicksort and related algorithms are an example of this data-independent

task parallel pattern: the number of recursive calls made is two, regardless

of the input data.

In order to allow a more dynamic expression of task parallelism in Di-

vCon, we provide the forall construct. Our intention is to provide func-

tionality akin to list comprehensions, an idea prevalent in many functional

languages (e.g. Haskell and OCaml) and more recently, Java (the for-each

construct) and Python. Such a facility is crucial for algorithms that exhibit

data-dependent task parallelism, wherein the number of child tasks spawned

by each parent depends on the input data of the parent. Examples of this

pattern abound in the state space search domain, including N -Queens, un-

balanced tree search, etc.

The forall construct executes a set of associated statements, once for ev-

ery element in a C++ data structure object that supports a list-like interface.

〈forall〉 ::= “forall” “(” 〈type〉〈ident〉 “in” 〈expr〉 “)” 〈forallBlock〉

Iteration occurs over a typed, so-called iteration variable that is dynam-

ically bound to elements of the list-like data structure specified by the in

clause. This iteration variable is in-scope for the enclosed block of state-

ments. More specifically, an expression is evaluated, whose result must be

a type that implements the DivCon list interface. This interface specifies

two methods: hasNext() and getNext(). The DivCon runtime system in-

vokes these methods on the list to iterate over the elements of the list. The

iteration variable is bound dynamically to each element in the list, thereby

creating an instance of the forall’s body. In this way, the forall loop body

is executed once for each list element.

The syntax of the forall construct is reminiscent of Java’s for-each loop,

and to similar provisions in the C++-11 standard. The similarity runs a

little deeper: the order of iteration over the result of expr is determined

by the programmer’s implementation, and is nominally unspecified. This

means that forall statements are specified to be non-deterministic. Next,

we discuss the structure of the body of a forall statement.

Statements embedded within the forall construct. A forall statement

131

may only enclose a block of statements of restricted type, as represented

by the EBNF non-terminal forallBlock . These restrictions are placed so as

to prevent the expression of dependencies between different instances of the

forall loop’s body, while catering to the requirements of common divide-

and-conquer applications.

〈forallBlock〉 ::= 〈forallStmt〉 | “{” (〈forallStmt〉) ∗ “}”

〈forallStmt〉 ::= 〈forallConditional〉 | 〈forallUpdate〉 “;”

A forall statement’s body can only consist of forallConditional or forallUp-

date statements. The intent is to allow only such changes to the program’s

state that associate and commute with each other. Given this restriction, a

forall statement cannot nest another forall statement.

The forallConditional statement executes one of two blocks, depending on

the value of the associated predicate expression.

〈forallConditional〉 ::= “if” “(” 〈expr〉 “)” 〈forallBlock〉

“else” 〈forallBlock〉

The forallUpdate statement comprises a LHS and a RHS separated by

the “+=” operator. The LHS specifies a comma-separated list of in-scope

variables, whereas the RHS specifies a list of evaluated expressions.

〈forallUpdate〉 ::= [〈idents〉 “+=”] 〈exprs〉

Just as in the assignment statement, the number of variables on the LHS

must equal the number of results returned by the expressions on the RHS.

The forall construct allows one to express data-dependent task parallel

patterns such as the N -Queens algorithm, a fragment of which is presented

below. (To be discussed fully in § 4.5.1):

132

type Board, BoardQueue;

serial placeNextQueen(Board b) : BoardQueue;

NQueens (Board b) : int {

if(...) ...

else{

int nQueens;

nQueens = 0;

forall(Board c in placeNextQueen(b))

nQueens += spawn NQueens(c);

return nQueens;

}

}

Above, the programmer-defined BoardQueue C++ class must define meth-

ods hasNext() and getNext(). The serial function placeNextQueen accepts

as input a chess Board configuration, and returns a BoardQueue object with

several configurations for the next level of recursive invocations of the NQueens

function. Each configuration in the BoardQueue corresponds to a chess board

configuration with a queen in the next row, placed at a viable position.

Therefore, for every feasible configuration, ‘c’, that results from a current

configuration, ‘b’, the above code spawns a new task to compute whether

any configuration that results from c (eventually) yields a solution to the

N -Queens problem.

4.4.2 DivconArrays

We have already introduced DivconArrays as one-dimensional, indexible col-

lections of data elements. Although these collections are distributed over

multiple PEs, the abstraction is designed to hide from the programmer, to

the extent possible, the artifacts of data distribution.

Scope of application

The DivConArray is not a general-purpose, distributed shared array. It is

meant for the narrowly-defined purpose of communicating large sets of data

133

between a parent task and its children in generatively recursive computations.

To be more concrete, consider a generatively recursive algorithm such as

quicksort, in which a parent task t evaluates an invocation f(A). Here A

is a large, distributed array of data elements. In the divide-and-conquer

paradigm, t prepares a static number of smaller, but still distributed, arrays

of elements A1, . . . , Ak, based on the elements of A. Typically, each element

of A is considered in turn, and is used to generate elements within A1, . . . , Ak.

Task t then creates new tasks t1, . . . , tk, each ti of which recursively evaluates

f(Ai). The DivConArray provides an efficient, and abstract means of gener-

ating Ai from A, thereby achieving efficient communication between task t

and its children ti.

As detailed below, the DivConArray supports a number of operations that

are useful in the context of large-scale, generative recursion. However, not

every supported function may be invoked in any given calling context. The

set of operations that may be invoked from within serial, C++ functions,

subsumes the set that may be invoked from within DivCon code. In this way,

commonly-used operations for which it is easy to provide efficient, parallel

implementations, have been made available to DivCon code. On the other

hand, array operations that are not common to generatively-recursive codes,

but which are necessary for interfacing with C++, are available in serial

functions.

Operations supported within DivCon

The following functions may be invoked on a DivConArray. Each such invo-

cation is a valid DivCon expression.

1. length. Returns the number of data elements present within the Div-

ConArray on which it is invoked. Example usage:

if(A.length() <= Tau) ...

else ...

2. read. The read function accepts a single, integral argument, i, and

returns the element at the i-th position of the DivConArray on which

it is invoked. Example usage:

134

Record r;

Array<Record> a;

int i;

r = a.read(i);

3. scan. The scan function applies the scan operation on the elements of

a DivConArray A. The resulting DivConArray, B, is returned, where:

B[i] =
⊕
j<i

A[j]

In the above,
⊕

represents a commutative-associative operation that

is applied to elements of A in order to get elements of B. The scan

function accepts as argument a single, user-specified functor, that en-

capsulates this operation. Compiler-generated code invokes this functor

with the appropriate arguments so as to realize the intended semantics

of the scan operation.

type Data, ScannedData;

type MyAToBScanFunctor;

Array<Data> A;

Array<ScannedData> B;

MyAToBScanFunctor f;

B = A.scan(f);

In the above, we perform the scan operation on DivConArray A, whose

elements are of type Data. The scan-functor f, of user-defined type

MyAToBScanFunctor, is applied to elements of A to obtain elements of

B, which are of type ScannedData. For this purpose, the scan-functor

class MyAToBScanFunctor must define the following:

const ScannedData &operator+=(const Data *in, int numIn) const;

const ScannedData &identity() const;

The operator+= determines the result of the application of the
⊕

oper-

ator on a set of consecutive elements from the operand DivConArray, to

135

get a partial result for an element within the scan result DivConArray.

The identity function determines, in the terminology of Blelloch [82],

the identity element of the
⊕

operator.

4. concat. A DivConArray, A, may be concatenated with another Di-

vConArray, B, by passing the latter as an argument to the concat

function invoked on the former. This invocation returns as its result

a third DivConArray, C, whose length is |C| = |A| + |B|, and whose

elements are as follows:

C[i] =

{
A[i] if 0 ≤ i < |A|
B[i] otherwise

The following code fragment from the quicksort example in § 4.3.2

illustrates the usage of the concat function:

type Record;

qsort(Array<Record> A) : Array<Record> {

...

Array<Record> LT, EQ, GT;

return (spawn qsort(LT)).concat(EQ).concat(spawn qsort(GT));

}

5. free. When invoked on a DivConArrayA, this function frees up all

resources associated with A, including all memory allocated to store

its data elements. An attempt to access a freed DivConArray results

in a dynamic error.

Unordered iteration over DivconArrays

Now, we discuss statements that enable iteration over DivConArray elements.

These statements enable the expression of intra-task data parallel operations.

The DivCon foreach construct executes an enclosed block of statements

for every element present within some DivConArray. The structure of the

foreach statement is given below:

136

〈foreach〉 ::= “foreach” “(” 〈type〉〈ident〉 “in” 〈expr〉 “)”

〈foreachBlock〉

As in the case of the forall loop, iteration occurs through the binding of

DivConArray data elements to a typed iteration variable that is in-scope for

the block of statements enclosed by the foreach construct. An expression is

evaluated, whose result must be a DivConArray. Only one iteration variable

is allowed, i.e. zippered iteration is not supported. For each element in this

resulting DivConArray, the associated block of statements is executed once.

The ordering between individual executions of the block is unspecified.

Statements embedded within the foreach construct. As in the case of the

forall loop, a foreach statement may only enclose a block of statements of

restricted type, as represented by the EBNF non-terminal foreachStmts .

〈foreachBlock〉 ::= 〈foreachStmt〉 | “{” (〈foreachStmt〉) ∗ “}”

〈foreachStmt〉 ::= 〈foreachConditional〉 | 〈foreachUpdate〉 “;”

A foreachStmt may either be a conditional, or an update statement. The

conditional statement executes one of two blocks, depending on the value of

an associated predicate expression, foreachExpr.

〈foreachConditional〉 ::= “if” “(” 〈foreachExpr〉 “)” 〈foreachBlock〉

“else” 〈foreachBlock〉

The update statement comprises a LHS and a RHS separated by the “+=”

operator. The LHS specifies a comma-separated list of in-scope variables,

whereas the RHS specifies a comma-separated list of evaluated expressions.

137

〈foreachUpdate〉 ::= [〈idents〉 “+=”] 〈foreachExprs〉

The number of variables on the LHS must equal the number of results

returned by the expressions on the RHS. The RHS is constrained to be have

a structure given by the EBNF non-terminal foreachExprs, which is a comma-

separated list of foreachExpr non-terminals. These non-terminals represent

expressions with the same structure as the previously defined non-terminal

expr, except that any they must be spawn-free: A serial function is spawn-

free. A non-serial function is spawn-free if its body does not contain the

keyword spawn, and every function that is invoked in its body, is itself spawn-

free. A foreachExpr is spawn-free if it is either a non-invocation expression,

or it invokes a spawn-free function. One may think of the foreach construct

as mapping a function onto the elements of a DivConArray. This mapped

function, then, has a simple form, and in particular, may not initiate other

DivCon tasks.

The semantics of the ‘+=” operator depends on whether the LHS variable

is a scalar or a DivConArray. Say that the i-th LHS variable is a scalar.

Then, the i-th result on the RHS is accumulated into the scalar variable. For

non-primitive types, the accumulation operation is programmer-defined, and

given by the C++ operator+=() for the type of the i-th LHS variable.

On the other hand, if the i-th LHS variable is a DivConArray, the i-th

value among the list of returned values of the RHS function is added to the

DivConArray. The type of the i-th result on the RHS must correspond to

the array’s base type. Since there is no ordering enforced on the execution

of different instances of a foreach statement block, this addition of elements

to the DivConArray also occurs in an unspecified order. Thus, one cannot

write individual elements within DivConArray, but only ‘add’ to it using +=.

This scheme avoids the question of coherence of updates. In our experience,

this relaxed mode of DivConArray update suffices for the divide-and-conquer

paradigm and permits optimizations, as discussed in § 4.6.2.

Previously we saw that just like the foreach construct, the forall con-

struct could also embed update statements with the += operator. However,

the programmer is allowed to place DivConArray variables in the LHS of

an update statement only when the update is embedded within a foreach

138

statement. The reasons behind this restriction are discussed in § 4.6.2.

We illustrate the foreach statement by revisiting the parallel partitioning

code from the quicksort example of § 4.3.2.

Record pivot;

Array<Record> LT, EQ, GT;

foreach(Record r in A){

if (r < pivot) LT += r;

else if (r > pivot) GT += r;

else EQ += r;

}

Whereas earlier we had explained the appearance of the ‘+=’ as an operator

that adds elements to an array, we can now see that it is part of a foreach-

enclosed update statement. Since the sole identifier in the LHS of each of

the above udpate statements is a DivConArray, each Record ‘r’ in the input

DivConArray A is appended to one of LT, GT or EQ, depending on how it

compares with the pivot.

Interaction with serial C++ functions

DivconArrays may be passed as arguments into serial, C++ functions. We

have seen an example of this in the quicksort algorithm from § 4.3.2. When a

DivConArray is passed into a serial function in this way, it is consolidated.

That is, all of its data elements are collected into a single, contiguous local

buffer that is accessible to the serial function. Given their inherently serial

nature, serial functions can invoke a larger set of operations on DivconAr-

rays. In addition to the length, read, concat, scan, free and ‘+=’ operations,

which are also available in DivCon code, the following DivConArray opera-

tions may be invoked exclusively from serial functions:

1. resize. This function accepts a single argument, n, and reshapes the

DivConArray on which it is invoked, to allow up to n elements to

be stored within it. Any required reallocation of underlying memory

buffers is performed by the function.

2. write. The write function accepts two arguments, the first an integer,

i, and the second, a C++ object t, of the same type as the elements of

139

the DivConArray on which it is invoked. The function overwrites the

i-th location of the DivConArray to t.

4.5 More examples of DivCon code

We now discuss two more examples of DivCon code. The objective of this

section is to present in a concrete context the language constructs discussed

previously.

4.5.1 N -Queens

The N -Queens problem is to find, given a chess board of size N × N , the

number of configurations of N queen pieces that can be placed on the board

such that no queen attacks any other. A queen is said to attack another

if the two pieces share the same row, column or positive/negative diagonal

on the board. There are no known polynomial-time algorithms to solve

this problem. Therefore, a brute-force approach with back-tracking is often

adopted, in which every possible feasible configuration is explored.

The brute-force algorithm is simple. The current row is initialized to the

first row, and the board is initially empty. Therefore, any square in the first

row is a feasible one. We place a queen at a feasible square on the current row,

record the set of feasible squares for the next row, and recursively explore

the feasible squares for the next row. This procedure is carried out for each

feasible square in the current row, and continues until we encounter a row

with no feasible positions, or we finish placing queens on the N rows.

Although there are few practical applications in which one encounters this

problem, there are three reasons why it is an important representative of

the broader class of combinatorial state-space search problems. First, the

computation generated by such an algorithm is tree-structured, where each

node of the tree is a task (invocation of a recursive function), and a directed

edge exists between two nodes if the source of the edge spawned the target.

Second, the amount of work done per node is very small: in the case of

N -Queens, it is the simple matter of generating a number of children con-

figurations given a parent configuration of the chess board. Third, it is hard

to predict the amount of work that will be done in exploring the search tree

140

rooted at a particular task node (although Kale [83] provides a surprisingly

effective heuristic for the particular case of N -Queens).

The DivCon rendition of this algorithm is presented below:

extern int Tau;

type Board, BoardQueue;

serial seqNQueens(Board b) : int;

NQueens (Board b) : int {

if (b.isSolution()) return 1;

else if (b.numRemainingRows() <= Tau) return seqNQueens(b);

else{

int nQueens;

nQueens = 0;

forall(Board c : b.nextConfigurations())

nQueens += spawn NQueens(c);

return nQueens;

}

}

The overall structure of the algorithm matches quite closely the verbal

description above. Given a Board ‘b’, if b is a valid solution (isSolution),

then we notify the caller of a single solution beneath the subtree rooted at b.

If b has fewer than a statically set number (Tau) of empty rows, we explore all

possibilities in that subtree serially (via seqNQueens). Otherwise, we place a

queen in each of the currently viable squares using the serial C++ function

nextConfigurations. This function returns a BoardQueue containing children

Boards ‘c’, each of which is the same as b, except that in c the first non-empty

row of b has a queen in a viable position. A new task, NQueens(c), is spawned

for each such configuration c. Every spawned task recursively returns the

number of solutions found underneath the corresponding node in the search

tree.

In the example above, only the fine-grained, parallel part of the compu-

tation is expressed in DivCon. The definition of the function that serially

explores sufficiently small search subtrees, namely seqNQueens, and the gen-

eration of child configurations from a parent, i.e. placeNextQueen, are both

141

present in the serial, C++ code. We show the latter below:

void placeNextQueen(const Divcon::ConsumedValue<Board> &b,

Divcon::ProducedValue<BoardQueue> &q){

BoardQueue children;

std::bitset<NUM_QUEENS> mask = b.markedCols |

b.markedNegDiags |

b.markedPosDiags;

for(int i = 0; i < NUM_QUEENS; ++i)

if(!mask.test(i)){

Board child;

std::bitset<NUM_QUEENS> colMark(1 << i);

child.markedCols = (b.markedCols|colMark);

child.markedPosDiags = (b.markedPosDiags|colMark) >> 1;

child.markedNegDiags = (b.markedNegDiags|colMark) << 1;

child.row = b.row + 1;

children.add(child);

}

q.produce(children);

}

A bitvector representation of Board rows is used, in which set bits denote

infeasible squares on the current row. The placeNextQueen function iterates

over all possible columns, and for every feasible column, marks it as occupied,

and updates the bitvector for the next row. We account for diagonal effects of

previous rows through the left- and right-shift operations. A Board ‘child’ is

created in this way, and added to the BoardQueue ‘q’. This queue is returned

to DivCon code via the produce method. The BoardQueue class implements

the getNext iterator method. This method is invoked by generated DivCon

code on the returned BoardQueue to get arguments for the recursive NQueens

calls within the forall statement.

4.5.2 Oct decomposition

The Oct decomposition strategy is frequently used in scientific and engineer-

ing applications to efficiently partition data elements with spatial attributes.

142

The basic idea behind the algorithm is simple. We begin with a simula-

tion volume (we call this a voxel after the terminology of the computational

graphics community) that encloses a large number of particles. These parti-

cles are arbitrarily equidistributed over a number of processors. Therefore,

a voxel’s enclosed particles may be distributed over several processors. If a

voxel v contains more than τ particles, we divide it geometrically into two

non-intersecting sub-voxels, vl and vr, whose combined volume is the same

as that of v. The procedure is applied recursively to vl and vr. Following the

precedent of N -body simulators such as ChaNGa [8], we have described the

algorithm as dividing each voxel into two sub-voxels. However, eight-way di-

vision of voxels is equally commonplace; hence the name Oct-decomposition.

The following code shows an implementation of this algorithm in DivCon,

beginning with the declarations.

extern int Tau;

type Particle;

type Key;

serial SendParticles(Key k, Array< Particle > P) : void;

serial ToSplitter(Key k) : Key;

The variable Tau is the previously described voxel size threshold. Particles

enclosed within voxels are of C++ type Particle. Each Particle has a

Key, which is a 64-bit integer unique to the particle. It is obtained from

the position of the particle, using the bit-interleaving technique described by

Warren and Salmon [84] and Aluru and Sevilgen [85]. The Key defines the

location of each particle in the Z space-filling curve (SFC) that runs through a

three-dimensional unit cube. The serial function ToSplitter takes a voxel’s

Key as its only input, and returns the Key of the first particle in the SFC that

lies within the voxel. This is used to determine which particles are within

the voxel, and which of them lie outside it.

The serial function SendParticles is used to transfer particles to members

of a collection of Charm++ objects (actors). It accepts the Key “k” of a

voxel, and sends the descriptor of the DivConArray that contains its enclosed

particles to the object whose identifying index is k. This collection of objects

is used in the actual gravitational simulation of particles. Since the simulation

is not amenable to expression in DivCon, we do not discuss it here. (This is

done in § 5 and § 6.)

143

Now for the recursive specification of the Oct-decomposition algorithm:

Oct(Array<Particle> P, Key k) : void {

if(P.length() <= Tau)

{

SendParticles(k, P);

return;

}

Array<Particle> Pleft, Pright;

foreach(Particle p in P)

if(p.key < ToSplitter(k))

Pleft += p;

else

Pright += p;

spawn Oct(Pleft, 2*k);

spawn Oct(Pright, 2*k+1);

}

The Oct function takes as input a distributed array of particles in Div-

ConArray P, and the Key, k, of the voxel that encloses these particles. The

following if statement checks whether the voxel encloses fewer than τ par-

ticles. If so, we invoke the serial function SendParticles, so as to send the

particles in P to the Charm++ object that is charged with computing forces

on all particles within the voxel.

On the other hand, if the voxel encloses too many particles, we split its

contents into a left and right set of paritcles, namely Pleft and Pright,

respectively. The foreach construct is used to iterate over all particles within

P in parallel. We recursively invoke the Oct procedure on these children

DivconArrays.

4.6 The DivCon runtime system

Having familiarized ourselves with the constructs of the language, we now

consider the dynamic optimizations performed by the DivCon runtime sys-

tem. These optimizations can be grouped into two categories: (i) techniques

144

to manage the concurrent execution of fine-grained tasks, and (ii) techniques

that enable efficient generative recursion over large sets of input data.

4.6.1 Adaptive grain size control through task agglomeration

In DivCon each spawned function invocation is treated as a task that is in-

dependent of all others, subject to data dependencies. In principle each

task could be executed in a separate parallel context. However, in order to

mitigate the overheads associated with such fine-grained parallelism, the Di-

vCon runtime system performs dynamic task agglomeration. In our scheme,

multiple tasks are agglomerated into a single parallel context, which in the

Charm++-centric vocabulary of this thesis, is a chare (cf. 2).

In this context, good performance can be obtained by carefully considering

the following factors:

1. Given that tasks spawn other tasks, how many tasks should we assign to

each chare; that is, at what point should the agglomeration procedure

create new chares from an existing one? In the terminology of the tree-

structured computation literature, when should we split the recursion

stack?

2. When creating new, children chares from an existing parent, how should

the parent’s tasks be partitioned among its children? That is, how

should we split the recursion stack?

3. On which processor in the parallel machine should the newly created

children be placed? Equivalently, where should we place the pieces of

the split task?

There is a significant body of work relating to the efficient execution of

tree-structured computations (which are characteristic of divide-and-conquer

algorithms) on both shared- and distributed memory machines.

Grama and Kumar [86] present a comprehensive survey of stack-splitting

techniques for efficient exploration of the tree structures of recursive compu-

tations. A similar compendium in the context of parallel logic programming

has been prepared by Gupta et al. [87]. Particular paradigms in parallel

combinatorial search have also been explored extensively – see the work of

145

Li and Wah [88] and Lai and Sahni [89] for discussions of techniques and

heuristics in branch-and-bound, [90] for parallel iterative deepening A∗, [91]

for game-tree search and [92] for parallel search of AND-OR trees.

A discussion of the impact of granularity on the performance of OR-parallel

programs has been given by Furuichi et al. [93]. That paper also provides a

multi-level load balancing scheme for multiprocessor systems.

The use of work-stealing as a load balancing strategy was first described by

Lin and Kumar [94] and subsequently popularized by the Cilk system [75].

The work on Cilk also provides asymptotic bounds on the performance of

the work-stealing approach. More recently, the Scioto framework [95] was

designed as a bridge between the task-parallel, and distributed, global address

space paradigms. The Scioto runtime system uses differential enqueuing

strategies to achieve locality-aware stealing of task-based work. Saraswat et

al. [96] have developed a low-overhead, and scalable variant of work-stealing

called lifeline-based stealing. Their technique is applicable in the async-

finish paradigm of X10 and related languages, and precludes the repeated

rounds of active termination detection that are otherwise required. Finally,

Lifflander et al. [97] have examined work stealing in the context of large-

scale, distributed memory machines. The key observation in their work is

that retention based stealing can significantly improve the scalability of the

work-stealing scheme.

The use of priorities in a variety of parallel search contexts has been out-

lined by Kale et al. [77]. They conclude, as does later work by Loidl and

Hammond [69] that a static cutoff criterion for sequential task creation does

not suffice in general, especially for computations with irregular tree struc-

tures. Kale et al. perform adaptive grain size control using the assumption of

nearly constant per-node work. The work of Duran et al. [98] applies similar

findings to the context of OpenMP.

In our work, we adapt the grain size control techniques of Kale et al. (more

recent work along these lines has been done by the author and colleagues [70])

to enable efficient, task-parallel execution of DivCon programs.

Figure 4.1 depicts the decomposition of work over multiple PEs of a par-

allel machine. Each PE hosts several objects (namely chares). Each chare

contains and manages the execution of a number of fine-grained spawned Di-

vCon tasks. The presence of several chares per PE allows the runtime system

to dynamically overlap useful computation with communication latency. Ad-

146

Figure 4.1: Decomposition of work in DivCon. Lightweight tasks are depicted
as CFGs. A darkly shaded node in a CFG depicts the current state of
execution of the corresponding task. Tasks are embedded within parallel
contexts called chares (unfilled circles), and there are several chares per PE
(unfilled squares).

ditionally, Charm++ provides the wherewithal to migrate chares across PE

boundaries, thus enabling dynamic load balancing.

Task execution

We use simple compiler analysis to encode the data and control dependencies

in DivCon functions into CFGs. Conceptually, the state of each task t can be

represented by (1) a stack of nodes that can be processed without violating

any control or data dependencies (i.e. the ready nodes of t, ready(t)); (2)

a stack of activation records, vars(t), one for each function invocation made

by t; and (3) a stack of the number of pending dependencies, pending(t) for

each invocation in the current call-stack of t. Stacks vars(t) and pending(t)

are synchronized, in that for each function invoked by t, a single element

is pushed onto the two stacks, and when the function invocation completes,

both stacks are popped. The elements in pending(t) map each node m of a

particular function’s CFG, onto the number of dependencies (both control-

and data-) that must be satisfied before m can be executed.

Initially, for each task t, ready(t) contains only the entry node of t’s CFG,

and vars(t) and pending(t) are empty.

147

Execution without spawn

Let us first discuss task execution in the absence of any spawned function

invocations. This will help us to describe the overall framework first, and

then address the question of dynamically spawned tasks. A newly created

chare contains a number of tasks t, all of which have been appropriately

initialized. A chare iterates over its assigned tasks, and for each task t, pops

ready(t) to get n, and executes n. If n represents an assignment statement,

the expressions in its RHS are evaluated first.

For each invocation of a function f embedded in the RHS of the assignment

statement, an activation record v is pushed onto vars(t) and a map p is

pushed onto pending(t). Activation record v encapsulates all the variables of

f . All variables except for the formal parameters of f are initially undefined

in v. Then, activation record variables on the LHS of the assignment are

updated using results obtained from the function invocations. Map p holds

the number of pending dependencies for each node m in the CFG of f : p[m]

is initially one more than the number of data dependencies in f ’s CFG with

target m. The “+1” provides an implicit test for whether the node on which

m is control-dependent, has been executed. Finally, the entry node of f ’s

CFG is pushed onto ready(t).

During the evaluation of an invocation of function f , a node corresponding

to a return statement causes some expressions to be evaluated, and the

results to be assigned to locations within the activation record beneath the

current top of vars(t). Then vars(t) and pending(t) are popped, returning

control back to the context that invoked f . At this point, the invocation has

finished executing.

For any node n that has finished executing, ready(t) is popped. Let

p← top(pending(t)). Then, p[m] is decremented for each m that is control-

dependent on n. Additionally, p[m] is decremented for each m that is the

target of a data dependency whose source is n. Finally, all m such that

p[m] = 0 and there exists a directed edge (n,m) in t’s CFG, are pushed onto

ready(t). If ready(t) is empty, the chare moves to the next t in its list of

tasks. Once all the tasks in a chare have been processed in this way, the next

chare on the PE is scheduled for execution. Since we assume that no task is

allowed to spawn children tasks, each chare is scheduled only once.

148

Handling dynamically spawned tasks

In the presence of dynamically spawned children tasks, we must modify the

above scheme. Each chare now maintains a new task queue. Suppose that

chare c is executing a ready node n of task t, and the execution of n results

in a new task t′ being spawned. Then, t′ is placed in the new task queue of c.

Moreover, c is marked as dirty. This indicates that c must be re-scheduled

for execution at a later point in order to process newly spawned tasks.

The results of a spawned invocation are not available to the parent task

immediately. Therefore, the parent’s activation record variables that hold

the results of the spawned invocation are updated at a later point in time.

Let p ← top(pending(t)). Then, the associated decrementing of p[m] for

those m that are targets of data dependencies from n, are similarly delayed.

However, p[m] is decremented for nodes m that are control-dependent on n.

When a CFG node corresponding to a return statement is executed, the

action taken is dependent on the nature of the executing invocation. If the

invocation of a function was not spawned, then the returned expression’s

evaluated results are used to update the appropriate variables within the

parent’s activation record. Otherwise, a message encapsulating these results

is sent to the chare containing the parent task. As an optimization, if the

spawned task and its parents are on the same PE, the parent’s activation

record is updated directly.

Creating parallel contexts from collections of tasks

We now examine the question of when it is fruitful to create a number of

new parallel contexts (i.e. chare) given a pool of newly spawned tasks. We

adopt a two-phase strategy, similar to the one used by Sun et al., to split the

current recursion stack of a chare among concurrent, children chares.

1. In order to maximize processor utilization, the top levels of the recur-

sion tree are eagerly and randomly disseminated across the machine.

2. PE utilization is measured dynamically through repeated reductions.

As global utilization increases, the system switches to adaptive grain

size control.

149

3. In the adaptive grain size control regime, newly created tasks are placed

on the new task queue.

4. Execution time for tasks is measured. Given the fine-grained nature

of tasks, a single call to the system timer per spawned task adds too

much overhead. However, we assume a low variance of the branching

factor across tasks, and therefore amortize the cost of timer calls over

several tasks. Thus, we obtain a reasonable estimate of the amount of

work done per task.

5. When the cumulative execution time for a chare, measured across all

the tasks executed by it thus far, matches a user-provided threshold,

the chare creates a number of new, children chares. The number of

tasks assigned to each child is such that the expected grain size of each

child chare is roughly the same as the user-provided threshold. We

use the previously calculated average work per task to determine the

expected grain size of each child chare.

Distributing chares across PEs

As described above, spawned tasks are agglomerated into chares to dynami-

cally manage the grain size of computations. We now consider the question

of where on the parallel machine newly created chares must be placed. The

key challenge here is to overcome global load imbalance, while minimizing

the amount of communication required for coordination and transfer of work

between PEs. We will be brief, since these techniques are not contributions

of this thesis. They were developed in the earlier work of Kale et al. [71, 99]

and Sun et al. [70].

DivCon allows the programmer to select (at run-time), one of three tech-

niques for balancing dynamically created chares across PEs. In all of these

strategies, once a chare has been assigned to a PE, it never leaves the PE.

1. Randomized scattering. Each newly created chare is sent to a randomly

chosen PE. This scheme incurs a large communication overhead, espe-

cially at scale.

2. Randomized work-stealing. We use a basic version of work-stealing, in

which a PE becomes a thief when it goes idle. A thief picks a randomly

150

chosen victim, and queries it for chares. This process is repeated until

the thief obtains some work. While the performance of this scheme is

better than that of randomized scattering, the algorithms of Saraswat

et al. [96] and Lifflander et al. [97] could further enhance scalability.

3. Neighborhood diffusion. A virtual topology, such as a dense graph, or a

k-dimensional torus, of PEs is created. Each PE places its chares on a

local queue. This queue is queried periodically by the PE’s topological

neighbors. Neighboring PEs’ queues are equalized by chare migration,

so as to reduce the amount of spatial variance in load across the sys-

tem. Like randomized scattering, but unlike work-stealing, this scheme

is proactive: PEs exchange chares before they become idle, so as to

prevent delays on the critical path. A time-to-live (TTL) counter is

attached to each chare. A chare’s TTL is decremented each time it is

migrated during load equalization. When a chare’s TTL drops to zero,

it is no longer eligible for migration. This helps to limit the amount of

communication overhead incurred by the load balancing algorithm.

4.6.2 A distributed array specialized for generative recursion

We now describe the dynamic optimizations performed by the DivCon run-

time system when operating on DivconArrays. As mentioned in § 4.4.2, Di-

vconArrays are designed for the purpose of efficiently communicating large,

indexed collections of data generated by a parent task, to the children that it

spawns. Let us recapitulate this usage scenario. Let f be a recursive function

call, that takes as input an indexed collection of data elements, A. Assume

that in the generatively recursive computation given by f the task t, eval-

uating f(A), generates elements of A1, . . . , Ak based on the elements of A.

Collections 〈Ai〉 are processed through recursive calls to f . That is t spawns

children 〈ti〉 to evaluate 〈f(Ai)〉, respectively. This situation is depicted in

Figure 4.2.

In that figure, rectangular cells represent pieces of distributed arrays. For

instance, the collection of 10 cells labeled A1 represents an array named A1,

which is distributed over 10 pieces. These pieces may be on different PEs.

In the following, we assume that arrays are distributed over non-intersecting

ranges of PEs. This allows for a compact representation of the PEs that host

151

Redistribute

A
1

A
2

A
3

A
7

A
6

A
14

A
15

A
9

A
8

A
4

A
5

Redistribute

Redistribute

Redistribute

Redistribute

Redistribute

Figure 4.2: Repeated movement of data over network in a typical generatively
recursive program.

any given distributed array. We refer to the range of PEs that collectively

hold Ai, as Pi. The subarray of data elements of Ai held by PE p ∈ Pi is

denoted Ai[p].

Figure 4.2 depicts the recursion tree for a function f that makes k = 2

recursive invocations. Therefore, invocation f(Ai) uses the elements of Ai

to generate data elements for A2i and A2i+1. It is convenient to refer to Ai

as the parent and A2i and A2i+1 as its children. Let the program-specific

actions taken by the generative process applied to the parent to obtain its

children, be denoted g. Children arrays A2i and A2i+1 are inputs to invocation

invocations f(A2i) (darkly shaded/blue in the figure) and f(A2i+1) (lightly

shaded/green), respectively.

Eager redistribution

In the following, we describe a typical implementation of generatively recur-

sive computations on distributed machines, e.g. the team-parallelism scheme

of Hardwick [43].

In every invocation f(Ai), each p ∈ Pi, applies g to every data element

d ∈ Ai[p]. The result, g(d) is placed in one of k = 2 local buffers, L
(2i)
p and

L
(2i+1)
p . Next, a parallel scan operation is performed on all p ∈ Pi, with each p

contributing the lengths of its k = 2 local buffers, L
(2i)
p and L

(2i+1)
p . The result

of the scan determines the ratio for splitting Pi into k = 2 sub-partitions,

P2i and P2i+1. The scan result also determines the PEs of P2i and P2i+1, to

which each p ∈ Pi scatters elements from L
(2i)
p and L

(2i+1)
p , thereby adding

to A2i and A2i+1, respectively. We call this the redistribution operation.

152

Typically, redistribution is performed eagerly, i.e. at every invocation of

the generative recursive function. When the redistribution has finished, P2i

and P2i+1 are two disjoint partitions of Pi, holding distributed arrays A2i

and A2i+1, respectively. The elements of the arrays are equidistributed over

their respective processor partitions. At this point, f(A2i) and f(A2i+1)

can be invoked concurrently. The same process continues recursively, until

distributed arrays become so small that it is more profitable to operate upon

them serially, than in a data-parallel manner.

A
9A

8

A
4

Redistribute
(scan + scatter)

Apply g and
copy to local

buffers

Figure 4.3: The each-to-many scatter inherent in the redistribution of data
from a parent invocation to its children.

Figure 4.3 depicts the application of g onto elements of a particular invo-

cation, f(A4) from Figure 4.2. For this invocation, A4 is distributed over a

range P4 consisting of five PEs. The (parallel) application of g on each p ∈ P4

yields differently shaded local buffers on each p. This is followed by a scan

operation (not depicted), and an each-to-many scatter operation, resulting

in the creation of arrays A8 and A9, distributed over partitions P8 and P9,

respectively. Partitions P8 and P9 are sized approximately in the ratio of the

arrays that they hold.

The cost of eager redistribution

A natural question to ask is, what is the cost of repeatedly redistributing data

over partitions of processors? We answer this question by means of a simple

experiment. We begin with an array of records, A, equidistributed over a

large set of processors, P . Array A represents the input of some recursive

invocation f(A). We model the cost of moving data from A to subarrays

A1 and A2, distributed over equally sized partitions of P , i.e. P1 and P2,

respectively. We control for time spent in the actual partitioning of A[p]

153

by each p ∈ P , by splitting A[p] into two halves, without actually iterating

through and operating upon its individual elements.

128 256 512 1024 2048 4096
1

10

100

1000
10000
100000

Cores

T
im

e
(m

s)

(a) 4-byte records.

128 256 512 1024 2048 4096
1

10

100

1000

1000
10000
100000

Cores

T
im

e
(m

s)

(b) 40-byte records.

128 256 512 1024 2048 4096
1

10

100

1000

1000
10000
100000

Cores

T
im

e
(m

s)

(c) 120-byte records.

Figure 4.4: Average time required to conduct one round of data redistribu-
tion, for various sizes of data elements, and various processor counts.

Figure 4.6 graphs the time taken to run a single iteration of this benchmark,

averaged over 1000 iterations, for three sizes of data elements, and values of

data density (i.e. number of data records per core) Our experiments were

conducted on 128 through 4096 cores of the Blue Gene/Q machine Vesta at

Argonne National Lab. The results indicate that the cost of moving large

volumes of data across the network can be significant, reaching almost 400

ms per redistribution for a density of 100000 120-byte records per core, on

4096 cores. These are not contrived values for data density and record size.

Similar (and even higher) values have been used by others [100].

154

Delayed Redistribution

The above benchmark presents a somewhat skewed view of communica-

tion cost in generatively recursive divide-and-conquer algorithms. In real-

ity, successive redistributions typically take place over smaller and smaller

partitions, so that we would never incur the worst case cost shown above.

Nonetheless, one would do well to avoid these costs when possible. In the

following, we describe an optimization called delayed redistribution, which

amortizes this communication cost over multiple recursive function invoca-

tions.

We build upon the following observation: If a child distributed array, Aj,

is distributed over the same range of PEs as its parent, Ai then we needn’t

generate any network traffic in the creation of the former from the latter. As

before, each p ∈ Pi applies g to d ∈ Ai[p], and creates a local buffer for each

L
(j)
p , which holds all those data elements g(d) that are to be added to Aj.

However, the each-to-many scatter operations on Pi are not performed (right

away); i.e. redistribution is delayed.

As a result, all children arrays Aj are distributed over the same PE range

as the Ai, i.e. Pj = Pi. Note that the distribution of an individual child

array over Pj is uneven. However, in the absence of any information about

the data elements, the probability distribution of the total number of data

elements per PE in Pj is expected to have low variance. That said, when

delaying redistribution, we must perform additional work to determine the

mapping of array elements to PEs. Specifically, we must perform a parallel

scan operation on the lengths of L
(j)
p , where p ∈ Pj, to obtain this mapping.

This process can be applied for several steps of recursion, thereby avoid-

ing the redistribution cost at every step. We call this scheme delayed data

redistribution (DDR).

Figure 4.5 pictorially depicts the operation of the delayed redistribution

scheme for the same set of function invocations as in Figure 4.2. The first

redistribution is delayed, so that following the generation of A2 and A3 from

A1, all three DivconArrays are distributed over the same partition of PEs,

P1. Similarly, the redistribution of the children of A2 and A3, namely A4 and

A5, and A6 and A7 is also delayed, so that A1, . . . , A7 are all distributed over

P1. Thereafter, the system determines that it is beneficial to redistribute

A4, . . . , A7 to individual sub-partitions of P1. This results in an each-to-

155

Copy

Redistribute

A
1

A
2
+

A

3

A
4
+

A

5
+

A

6
+

A

7

A
4

A
5

A
6

A
7

A
14

+

A

15
A

8
+

A

9

Copy

Copy Copy

Figure 4.5: Avoiding communication by delaying the redistribution of gener-
ated data elements.

many scatter, following which, invocations on each of A4, . . . , A7 proceed

concurrently.

Operation Agglomeration

DDR can be complemented with one further optimization, namely the ag-

glomeration of DivConArray operations (e.g. read, foreach data-parallel

operations, scan’s, etc.). Put simply, since each partition of processors con-

tains multiple distributed arrays, we collect the operations acting on these

arrays, and multicast them to the processors of the partition en masse.

Our strategy for agglomeration is as follows: every time a DivConArray

operation is issued by a DivCon task, it is placed in an appropriate (based

on the type of the operation), fixed-size buffer. There is one buffer for each

type of operation per processor range.

Whenever this buffer fills up, the operations are dispatched in a single

message to the corresponding processor range. A conservative scheme to

count blocked tasks is employed so as to guarantee progress. That is, when

the system determines that it is impossible to issue any more DivConArray

operations on arrays distributed over a given partition of PEs, all buffered

operations for that partition are released.

156

This agglomeration scheme has two advantages: First, we reduce the com-

munication volume when issuing DivConArray operations. More impor-

tantly, agglomeration mitigates the problem of load imbalance that arises

from delaying array redistributions. This is because even though the number

of elements of a particular array present on a given processor may vary widely

from processor to processor, since there are multiple such arrays distributed

over the partition, we would expect that the total number of elements as-

signed to each processor, across all arrays in the partition, would be roughly

the same.

4.6.3 DDR and Operation Agglomeration can improve
efficiency

We assess the efficacy of DDR and agglomeration using a benchmark that is

more representative of a typical divide-and-conquer workload than the bench-

mark in § 4.6.2. In particular, we wish to model the cost of redistributions

over successively smaller partitions of processors. As in § 4.6.2 we begin with

a single, large array of records, A, equidistributed over a set of processors P .

As with the previous benchmark, the idea is to split each A[p], for p ∈ P , into

two pieces, one meant for each of two children, A1 and A2 of A. However,

unlike the benchmark in § 4.6.2, each processor p actually iterates through

the records within its piece A[p], thereby simulating the work done during the

partitioning phase of a typical divide-and-conquer application. With eager

redistribution, the code performs the scan+scatter operation to redistribute

records meant for A1 and A2 from P to its two halves, P1 and P2. However,

with DDR, A1 and A2 remain distributed over the original set of processors,

P . This procedure is then recursively conducted on A1 and A2, until there

are fewer than 500 records per array. We call this the shuffle benchmark.

Figure 4.6 compares the performance of the shuffle benchmark on Vesta

with the eager and delayed redistribution schemes. The three graphs in that

figure quantify the relative advantage of avoiding redistributions. Processor

counts increase from left to right on the x axis. The y axis plots the ratio

teager/tddr(∞), where teager is the time taken to complete the shuffle bench-

mark under the eager redistribution scheme, and tddr(∞) is the time taken to

complete the same benchmark, but avoiding redistributions altogether (i.e.

157

128 256 512 1024 2048 4096
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1000
10000
100000

Cores

D
D

R
 (

in
f)

 s
pe

ed
up

(a) 4-byte records.

128 256 512 1024 2048 4096
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1000
10000
100000

Cores

D
D

R
 (

in
f)

 s
pe

ed
up

(b) 40-byte records.

128 256 512 1024 2048 4096
0

1

2

3

4

5

6

7

1000
10000
100000

Cores

D
D

R
 (

in
f)

 s
pe

ed
up

(c) 120-byte records.

Figure 4.6: The performance advantage of avoiding redistributions.

redistributing with a periodicity of ∞). As mentioned previously, the DDR

scheme is complemented with DivConArray operation agglomeration. Each

of the three curves in a graph depicts the teager/tddr(∞) ratio for a given data

density.

Our results suggest that the combination of DDR and agglomeration is

very effective for large record sizes, as well as large data densities. However,

for less dense (sparse) arrays, or arrays with small records (i.e. light arrays),

eager redistribution is often better. Even where DDR and agglomeration

are effective for sparse/light arrays, their performance advantage diminishes

with an increase in the number of processors.

This decrease in the performance of the DDR + agglomeration strategy is

due to the following factors:

1. If the per-array cost of metadata management is constant, then the

total overhead per PE rises exponentially (although with a small con-

158

stant). Metadata management costs include the calculation of a local

memory address corresponding to an element at some index within a

DivConArray. This operation involves the lookup of a table that maps

DivConArray keys to local buffer pointers.

2. The message-complexity of mapping foreach-embedded code onto ele-

ments of DivconArrays, decreases more slowly in the delayed redistribu-

tion scheme than the eager one. Recall that when we delay redistribu-

tion of children DivconArrays, they remain distributed over relatively

large PE ranges. The application of the generation function g foreach

element of a DivConArray involves a multicast over all the PEs that

hold the DivConArray. Therefore, the cost is logarithmic in the size of

the DivConArray’s PE range, and decreases more slowly when redistri-

bution is delayed.

3. Finally, by delaying redistributions indefinitely, processors are unable

to fully utilize the increased network bisection bandwidth that becomes

available with larger processor configurations. This reduces parallel

efficiency.

The performance impact of these inter-related effects is mitigated by the

runtime system through demand-driven redistribution of DivconArrays. That

is, redistribution is delayed by default, but can be triggered on demand.

In the current version, the burden of triggering redistribution lies with the

programmer. Ideally, the runtime system would dynamically measure the

average number of data elements per processor, and automatically trigger

redistribution for low-density arrays. We will demonstrate the performance

impact of dynamic redistribution in § 4.8.2 and § 4.8.2.

4.7 Provisions for modularity

DivCon code may be compiled into a module by passing an appropriate flag

to the DivCon compiler at compile-time. The presence of a main function in

such a piece of DivCon code is an error. By compiling the DivCon code in

this manner, we indicate to the compiler that control flow originates in some

other, external, piece of code. This allows the DivCon code to be included in

the external code as a module, to be instantiated and initiated as required.

159

In the present work, we only discuss the inclusion of DivCon modules into

external Charm++ code.

4.7.1 Spawning DivCon tasks from external code

In order to begin a DivCon computation, one need only spawn the root task,

providing it the appropriate input arguments. To do this in external code,

the following static C++ function template is provided:

template< typename T_Task >

void Divcon::Spawn(const Divcon::Task::Config &taskConfig,

const Divcon::Array::Config &arrayConfig,

const T_Task &root,

const CkCallback &callback);

The first and second arguments to this function are simple C++ structs

used to configure the DivCon runtime. The first contains attributes relating

to task execution, such as the targeted expected grain size of tasks, and the

policy used to enqueue newly spawned tasks (LIFO or FIFO). The second

configures DDR and operation agglomeration parameters for DivConArray

management.

The third argument to the Spawn function is a C++ object that encapsu-

lates the arguments to the root invocation. The specific type of this object

is generated by the DivCon compiler based on user code. For every function

named foo present in a DivCon module file, a class named foo is defined in

the Divcon namespace. The constructor for this class has arguments corre-

sponding to the arguments declared in the signature of the DivCon function.

For instance, assume that the following DivCon function is present in a file

being compiled as a module:

Fib(int n) : int {...}

Then, the compiler will generate the following C++ class to encapsulate

arguments to the root invocation of Fib:

160

class Divcon::Fib

{

public:

Fib(int n);

...

};

An object of the Divcon::Fib type can be used to initiate the root invoca-

tion of Fib from Charm++ code:

Divcon::Task::Config taskConfig;

Divcon::Array::Config arrayConfig;

taskConfig.ExpectedGrainSize = 2.0; // in msec

taskConfig.QueueingPolicy = Divcon::Task::Config::LIFO;

// When balancing arrays, split current partition into four

arrayConfig.BalancingSplitPartitions = 4;

// Agglomerate up to 100 operations before flushing

arrayConfig.MaxNumAgglomeratedOperations = 100;

Divcon::Spawn(taskConfig, arrayConfig,

Divcon::Fib(22),

CkCallback(...));

The above code sets up some configuration parameters for the DivCon

code, and then instantiates the compiler-generated class Divcon::Fib to ini-

tiate the computation of the twenty-second Fibonacci number. The role of

the final argument to the Spawn function is illustrated here: When the above

computation finishes, control will be transferred to the Charm++ method

specified by the CkCallback callback argument.

4.7.2 DivconArrays in external code

Now let us consider how to initialize and operate upon DivconArrays in code

that is external to DivCon. First we must provide a collection of Charm++

objects to serve as containers for pieces of the distributed DivConArray.

This is achieved by deriving a Charm++ object collection from the DivCon-

provided Divcon::Array::Container template class:

161

// In .ci file of Charm++ code

// For Divcon Array< Record >,

// where Record is defined by user

class Record;

array [1D] MyContainers : Divcon::Array::Container< Record >

{

// parallel interface definition

}

In this way, the MyContainers collection inherits DivConArray function-

ality. Records may be deposited into each container using the Add method,

and the contents of a container may be examined/modified using the Get/Set

methods, respectively:

template< typename T_Data >

void Divcon::Array::Container< T_Data >::

Push(const T_Data &data);

template< typename T_Data >

const T_Data &Divcon::Array::Container< T_Data >::

Get(int idx) const;

template< typename T_Data >

void Divcon::Array::Container< T_Data >::

Set(int idx, const T_Data &data) const;

To pass a DivConArray reference as an argument to a root function in-

vocation, we use the Divcon::Array::Descriptor template class. This class

serves as a typed handle to the DivConArray. It identifies to the DivCon

runtime system, the collection of containers over which the corresponding

DivConArray’s elements are distributed.

162

template< typename T_Data >

class Divcon::Array::Descriptor

{

public:

Descriptor(const Divcon::Array::

CProxy_Container< T_Data > &containerProxy,

int nContainers);

...

};

The constructor of the Descriptor class expects a proxy to the Charm++

collection of containers over which the DivConArray is distributed. Its second

argument is an integer that indicates the size of the container collection.

More concretely, the code below shows how we would call the qsort function

defined in § 4.3.2:

Divcon::Spawn(taskConfig, arrayConfig,

Divcon::qsort(Divcon::Array::

Descriptor(containerProxy,

nContainers)),

callback);

It assumes that the configuration objects passed as arguments to the Spawn

function have been initialized. It also assumes that the proxy to the container

collection is given by ‘containerProxy’, and that the input data to the sorting

procedure has been equidistributed over these containers.

4.8 Performance results

To end this chapter, we consider the performance of a sampling of DivCon

programs. We present results for several simple benchmarks. These bench-

marks are divided into two categories, namely task-parallel and data-parallel

benchmarks. The first of these broad categories emphasizes the efficiency of

the DivCon runtime system in managing dynamically spawned tasks. The

second category highlights the utility of the delayed redistribution technique

in the context of generatively recursive algorithms.

163

4.8.1 Task-parallelism

We present strong scaling results for different instances of the N-Queens and

unbalanced tree search problems. These are standard benchmarks used to

assess the efficacy of grain size control techniques in the context of dynamic,

tree-structured computations.

N-queens

The objective of this benchmark is to determine the number of queen pieces

that can be placed on an N × N chessboard, such that no queen on the

board attacks (i.e. is in the same row, column, diagonal or anti-diagonal as)

another. A backtracking exhaustive search for this purpose was implemented

in DivCon in § 4.5.1. That code was a simplification of the variant studied

here. The present variant avoids the generation of configurations that are

the mirror images of each other, thereby halving the total amount of work

performed. This optimization only affects serial code, however. We compare

its performance to an equivalent Charm++ program, which has been previ-

ously published [70]. Both versions employ a static tree depth cutoff, beyond

which each subtree is evaluated as a serial task. In the shallower portions of

the tree, adaptive grain size control is performed in either version.

128 256 512 1024 2048 4096
0.5

5

50

0.95

1

1.05

1.1

1.15

1.2

1.25

Divcon
Charm++
Slowdown

Cores

T
im

e
(s

)

(a) N = 18 queens.

128 256 512 1024 2048 4096
5

50

500

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Divcon
Charm++
Slowdown

Cores

T
im

e
(s

)

(b) N = 19 queens.

Figure 4.7: Comparing the performance of DivCon and Charm++ code on
the task-parallel N -Queens benchmark.

Figure 4.7 shows both versions scale well up to 4096 cores of Vesta. Al-

though the performance of the two versions is comparable, the Charm++

version is almost twenty per cent faster on 256 and 512 processors when

164

solving the 18-Queens problem. This difference diminishes as the core count

is scaled up. On the other hand, the Charm++ code demonstrates better

scaling on the larger, 19-Queens problem. The gap between the two versions

for this particular case rises with the number of cores, going up to a max-

imum of about thirty per cent on 2048 cores. This difference is likely due

to better memory management in the Charm++ version, and a more robust

load balancing strategy.

Unbalanced tree search

The unbalanced tree search (UTS) benchmark [101] is a means of testing

grain size management in the context of irregular tree-based computations.

Briefly, the UTS benchmark explores a tree, starting at the root, in which the

number of children of a given node is a random variable with a given proba-

bility distribution. The benchmark provides a variety of these distributions,

and varying their parameters allows one to generate trees of different sizes

and structure.

In such computations, the depth of a task bears little or no correlation to

the amount of work required to completely explore the corresponding subtree.

This is in direct contrast to, for instance, the N -Queens benchmark, wherein

the deeper one descends into the computational tree, the lower the expected

amount of work in exploring it. In such a case, one cannot rely on a static

depth cutoff beyond which all subtrees are explored sequentially. Although

it was originally intended to measure the efficacy of different flavors of work-

stealing, we use it here as a stress-test for the adaptive grain size scheme of

DivCon.

As with the N -Queens benchmark, we compare the performance of a Div-

Con code for this benchmark, with a corresponding Charm++ version from

previously published work [70].

Figure 4.8 compares the strong scaling performance of the DivCon and

Charm++ codes on three types of unbalanced tree. The parameters that

determine the structure and size of each tree are available elsewhere [70,

101]. Here we simply note that DivCon code remains competitive with its

Charm++ counterpart on the two trees with a Geometric distribution of

children nodes, but is up to thirty five per cent slower on the Binomially

distributed tree. On the other hand, at the 4096 core mark, the DivCon

165

128 256 512 1024 2048 4096
0.5

5

50

0.8

0.9

1

1.1

1.2

1.3

1.4

T1XL (1.6 billion nodes; Geometric)

Divcon
Charm++
Slowdown

Cores

T
im

e
(s

)

(a) T1XL

128 256 512 1024 2048 4096
1

10

100

0.8

0.9

1

1.1

1.2

1.3

1.4

T1XXL (4.2 billion nodes; Geometric)

Divcon
Charm++
Slowdown

Cores

T
im

e
(s

)

(b) T1XXL

128 256 512 1024 2048 4096
2

20

200

0.8

0.9

1

1.1

1.2

1.3

1.4

T3XXL (2.9 billion nodes; Binomial)

Divcon
Charm++
Slowdown

Cores

T
im

e
(s

)

(c) T3XXL

Figure 4.8: Performance comparison of DivCon and Charm++ code on
another task-parallel benchmark, namely unbalanced tree search (UTS).

code is about twenty per cent faster than its Charm++ counterpart on the

Binomial tree search.

4.8.2 Data-parallelism

Next we examine the ability of DivCon to effectively manage data paral-

lelism. This data parallelism results from foreach constructs within DivCon

code. Our main aim here is to demonstrate that the DDR and agglomeration

techniques developed in § 4.6.2 increase the scalability of divide-and-conquer

codes that operate on large, distributed arrays of data.

166

Quicksort

Our first benchmark is the well-known quicksort algorithm, adapted to a

distributed memory setting. The partitioning of each input array across

a pivot is performed out-of-place, resulting in memory transfers as well as

network traffic.

The Charm++ version of this benchmark uses the team-parallel technique

of Hardwick [43], and therefore eagerly redistributes newly created arrays (i.e.

LT, EQ and GT). The DivCon code for this benchmark adapted from § 4.3.2.

We note the use of the foreach construct in that code for the out-of-place

partitioning operation. The DivCon runtime system agglomerates these (as

well as the read, free and serial function tasks seqSort). The redistri-

bution of newly created DivconArrays is delayed indefinitely (cf. § 4.6.2).

However, one large all-to-all redistribution step was performed at the end,

in order to collect distributed data onto single processors for invocations of

serial sorting tasks. This redistribution is automatically triggered by the use

of DivConArray contents by serial tasks seqSort. As a result, each Div-

ConArray that is an input to a leaf task in the recursion tree, is collected

onto a single (randomly assigned) processor, where the seqSort operation is

invoked on it.

Figure 4.10 presents the comparison between the DivCon and Charm++

codes on the quicksort benchmark. As before, we present results for different

values of record size, data density and processor count. The x axis of each

graph in Figure 4.10 plots increasing processor counts, and the y axis, as in

§ 4.6.3, the ratio teager/tddr(∞). Here teager is the time taken by the Charm++

version to sort the input array (with eager redistribution), and tddr(∞), that

taken by the DivCon code with infinite delay of intermediate redistributions

(but including one large all-to-all operation at the end). We see the greatest

improvement in performance with arrays that have large data densities and

record sizes (Figure 4.10(c)). In fact, for arrays with the smallest sized

records and low data densities, the eager redistribution scheme is clearly

superior (Figure 4.10(a)). These results are in keeping with the general

trends seen in § 4.6.3.

Therefore, one might ask whether judicious redistribution of intermediate

arrays can lead to an increase in performance for input arrays with low data

densities and record sizes. We endeavor to answer this question next.

167

128 256 512 1024 2048 4096
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1000
10000
100000

Cores

S
pe
ed
up

(a) 4-byte records.

128 256 512 1024 2048 4096
0

0.5

1

1.5

2

2.5

3

1000
10000
100000

Cores

S
pe
ed
up

(b) 40-byte records.

128 256 512 1024 2048 4096
0

0.5

1

1.5

2

2.5

3

3.5

1000
10000
100000

Cores

S
pe
ed
up

(c) 120-byte records.

Figure 4.9: Performance comparison of DivCon and Charm++ code on
quicksort benchmark.

To obtain the results in Figure 4.10 we ran the DivCon quicksort bench-

mark with user-triggered redistribution of arrays created at intermediate

depths of the recursion tree. In effect, redistribution was triggered periodi-

cally at different depths of the recursion tree. For instance, given a period

of 4, and starting with an input DivConArray distributed over 1024 pro-

cessors, all DivconArrays created at depths 0 (the root, which generated 3

DivconArrays, LT, GT and EQ) 1, and 2 remained distributed over the initial

1024 processors. All DivconArrays created at depth 3 were redistributed by

the runtime system using a greedy assignment of arrays to a fixed number

(here, 4) of equally sized partitions of the original 1024 processors. There-

after, DivconArrays created at depths 4, 5, and 6 remained distributed over

partitions of size 256 processors, whereas those created at depth 7 were re-

distributed over partitions of size 64 processors each, etc.

We ran these experiments with various periodicities, and calculated the

best time obtained across periodicities for a given data density, record size

168

128 256 512 1024 2048 4096
0

0.5

1

1.5

2

2.5

1000
10000
100000

Cores

S
pe
ed
up

(a) 4-byte records.

128 256 512 1024 2048 4096
0

0.5

1

1.5

2

2.5

3

1000
10000
100000

Cores

S
pe
ed
up

(b) 40-byte records.

128 256 512 1024 2048 4096
0

0.5

1

1.5

2

2.5

3

3.5

1000
10000
100000

Cores

S
pe
ed
up

(c) 120-byte records.

Figure 4.10: The same benchmark as in Figure 4.9, except that the DivCon
code performed user-directed, dynamic delayed redistribution.

and number of processors over which the input array was distributed. This

time is denoted t∗ddr . Each graph in Figure 4.10 plots the ratio teager/t
∗
ddr

for different configurations of input array and processor configuration. Our

intent here is to show that if a proactive runtime strategy were available to

dynamically determine the profitability of redistribution, one could combine

the benefits of communication avoidance with DDR at scale, with those of

the eager redistribution strategy for lighter and sparser arrays.

Finally, we remark that in our results, we found that no one statically set

value for DDR periodicity outperformed the eager scheme over all configu-

rations of input array and processor count. Therefore, a dynamic scheme is

essential to ensure that we get good performance across the board.

169

Oct decomposition

As our last benchmark, we consider the performance of the DivCon code

for Oct decomposition, introduced in § 4.5.2. The algorithm is widely used

in the simulation of particles with spatial location, subject to a force field.

To recapitulate the discussion in § 4.5.2, the algorithm geometrically decom-

poses the simulation volume, and therefore the set of particles, over a set of

processors. The input to the algorithm is a set of particles with locations in

three-dimensional space, and its output is a set of non-intersecting voxels,

each of which contains no more than a set threshold, τ of particles. Begin-

ning with the root voxel, which encloses all particles, the idea is to gradually

partition each voxel v with more than τ particles in it, into axis-aligned sub-

voxels 〈vi〉, such that: the vi are contained within v, are non-intersecting,

and have a combined volume that equals v’s.

We compare the DivCon code from § 4.5.2 with the implementation of

the Oct decomposition strategy used in a previously published Barnes-Hut

mini-app [26] written in Charm++. The Charm++ version maintains a list

of pending voxels, each of which encloses an unknown number of particles.

The algorithm is iterative: initially, the root voxel, enclosing all simulated

particles, is placed on the pending list. In every iteration the algorithm

performs the following two operations. First, the list of pending voxels is

broadcast to the set of processors. Second, each processor determines the

number of particles owned by it, that are enclosed by each voxel in the

pending list, and contributes these counts to a reduction over all processors.

The reduced counts are used to modify the pending list. All voxels enclosing

up to τ = 500 particles are simply removed from the list. All voxels enclosing

more than τ particles are replaced in the list by two children sub-voxels. The

algorithm continues as long as the pending list is non-empty.

As with the quicksort benchmark, we ran the DivCon code with various re-

distribution periodicities, and collected the best times obtained across all pe-

riodicities for a given particle size (64, 96 or 176 bytes), number of particles (1

million, 10 million and 100 million) and processor count (256 through 8192).

These numbers resulted in plots of speedup over the Charm++ version, de-

picted in Figure 4.11. The results are impressive: dynamically redistributing

DivconArrays can reduce decomposition time by more than an order of mag-

nitude. These gains are more consistent than those seen for the quicksort

170

128 256 512 1024 2048 4096 8192
0

2

4

6

8

10

12

14

16

1m
10m
100m

Cores

D
D

R
 s

pe
ed

u
p

(a) 64-byte particles.

128 256 512 1024 2048 4096 8192
0

2

4

6

8

10

12

14

1m
10m
100m

Cores

D
D

R
 s

pe
ed

u
p

(b) 96-byte particles.

128 256 512 1024 2048 4096 8192
0

1

2

3

4

5

6

7

1m
10m
100m

Cores

D
D

R
 s

pe
ed

u
p

(c) 176-byte particles.

Figure 4.11: Performance on the Oct-decomposition benchmark.

benchmark, because the Charm++ version never performs any redistribu-

tion at all. However, the cost of redistributing particles grows with particle

size, and our gains diminish as we move from 64-byte particles through to

176-byte particles. We have attempted to keep particle sizes realistic, and

approximately equal to those used in real applications (e.g. ChaNGa [102])

and benchmarks (e.g. the Barnes-Hut benchmark [26]).

Once more, the point here is that the ability to redistribute DivconArrays

dynamically, and to delay their redistribution when it is profitable to do so,

confers a significant performance advantage. The DivCon infrastructure pro-

vides this ability. However, we must couple it with a good, dynamic strategy

to determine when it is profitable to delay distributed array redistribution,

and when to effect it, in a divide-and-conquer setting. Such a facility is

currently lacking in the DivCon runtime system.

171

4.9 Productivity

In this section, we compare the previously discussed DivCon codes with their

Charm++ counterparts, looking for differences in algorithm expression, and

hence implied gains in productivity.

4.9.1 Task-parallel benchmarks

We begin with the smaller, task-parallel benchmarks, N -Queens and UTS.

The DivCon rendition of the N -Queens benchmark comprised a total of

159 lines of code, whereas the Charm++ version comprised 206 lines. It is

noteworthy that the Charm++ version was based on a framework for state

space search applications [70]. Therefore, code required for efficient grain

size management was provided by the framework, and is not included in the

SLOC count presented here.

Driv Ser Par Decl Total
0

50

100

150

200

250

Divcon
Charm++S

LO
C

Figure 4.12: Comparison of source lines of code (SLOC) for the N -Queens
benchmark.

In spite of this, we saw a modest, 23 per cent, reduction in overall SLOC

for the N -Queens benchmark. Figure 4.12 reveals that the majority of the

benchmark consists of serial (Ser) code, namely, the construction of child

board configurations from the parent. This code remained nearly identical

between the two implementations. The Charm++ version also contained

driver (Driv) code, in order to interface with the Charm++ runtime system.

This code is automatically generated in the DivCon version. Importantly,

the DivCon code embodies a separation of parallel structure (Par) from serial

172

code. Remarkably, this parallel structure was expressed in a total of 11 lines

of DivCon code, as shown in § 4.5.1.

Driv Ser Par Decl Total
0
20
40
60
80
100
120
140
160
180

Divcon
Charm++S

LO
C

Figure 4.13: Comparison SLOC for the UTS benchmark.

Next, we consider productivity gains for the UTS benchmark. Overall, the

DivCon version of the benchmark had a total of 96 lines, and the Charm++

version, 171 lines: a total reduction in SLOC of 44 per cent. The break-up of

these SLOC into various categories is shown in Figure 4.13. Once more, the

Charm++ version was based on the previously mentioned state space search

framework. This pushed the responsibility for grain size management, which

is a crucial aspect for this benchmark, into the framework/runtime system.

This also meant that the parallel structure (Par) of the Charm++ code

was implied by the constraints of the state space search framework, and not

explicitly specified. On the other hand, the parallel structure of the algorithm

can be expressed in all of 13 lines of DivCon code:

173

Uts(UtsNode n) : uint64_t {

uint64_t n;

n = 0;

forall(UtsNode c : GetChildren(n))

n += spawn Uts(c);

return n;

}

main() : uint64_t {

spawn Uts(GetRootUtsNode());

}

In the above, the definition of the UtsNode data structure, and the serial

functions GetChildren and GetRootUtsNode are included in the serial code

(Ser). As with the N -Queens benchmark, the size of the serial code accounts

for the majority of the program.

4.9.2 Data-parallel benchmarks

Now we discuss productivity gains for the larger, data parallel benchmarks.

The Charm++ version of the quicksort benchmark includes code for a lot

of the functionality that is handled by the runtime system underlying Di-

vconArrays. This includes code for mapping the pivot-partition operation

onto the elements of distributed arrays, the underlying containers for the

distributed array, and a parallel scan operation that precedes array redis-

tribution. The Charm++ version also implements continuation-based task

management, whereas DAG management for tasks is done by the compiler-

generated code in the case of the DivCon version.

Figure 4.14 shows the composition of the DivCon and Charm++ versions

of this benchmark. For the Charm++ implementation, we base the Map and

Scan operations on existing MapReduce and parallel scan libraries, respec-

tively. The code included as part of the benchmark only contains what is

required to interface with these libraries. Regardless, the code for Map/Scan,

combined with the implementation of containers for distributed arrays (Arr)

accounts for a significant portion (893 lines; 53 per cent) of the Charm++ ver-

174

Task Arr Map Scan Driv Ser DS Decls
0

100

200

300

400

500

Divcon
Charm++S

LO
C

Figure 4.14: Comparison of SLOC for the quicksort benchmark.

sion. Task management adds another 453 lines (27 per cent) to the Charm++

code. In the DivCon version, however, task DAGs are managed by the run-

time system. In fact, the quicksort task’s DAG is generated from a total of

17 lines of DivCon code. The two versions are evenly matched in terms of

serial code (12 lines for DivCon, and 14 for Charm++) and the definition of

the sorted record’s C++ class (68 lines each). As a result, we see a reduction

in SLOC of 93 per cent over the Charm++ version.

Finally, we present productivity results for the Oct-decomposition bench-

mark. The algorithmic structure of the benchmark was discussed in § 4.5.2,

and its Charm++ implementation in a tuned Barnes-Hut mini-app was dis-

cussed in § 4.8.2. Here, we recall that the Charm++ implementation per-

formed a (data-dependent) number of multicast-reduction iterations, with

each iteration dividing above-threshold voxels in two sub-voxels. This rela-

tively simple parallel structure results in a Charm++ code that is only 340

lines long. Even so, its DivCon counterpart, at 162 lines long, represents an

an overall reduction in SLOC of 52 per cent.

As has been the case with other benchmarks, both versions have similar

amounts of serial code (Ser). In Figure 4.15 the iterative broadcast-reduction

histogramming code is presented as the “Histo” column. Revisiting the code

box in § 4.5.2, we see that this histogramming is implied in the DivCon ver-

sion: we invoke the P.length() function to check whether the DivConArray

of particles enclosed within a particular voxel has sufficiently few elements.

175

Task Histo Driv DS Decls
0

20

40

60

80

100

120

140

160

Divcon
Charm++S

LO
C

Figure 4.15: Comparison of SLOC for the Oct-decomposition benchmark.

4.10 Conclusion

In summary, the task-parallel benchmarks over which we assessed the DivCon

language have demonstrated that compiler-generated code can be compet-

itive with hand-written Charm++ code in terms of performance. DivCon

also provides an automated grain size control mechanism and a succinct ex-

pression of recursive algorithmic structure. We believe that these factors

contribute to an improvement in productivity. Using SLOC as a crude in-

dicator of productivity, we have shown that task-parallel DivCon programs

are compact, and allow the programmer to focus on serial code, rather than

parallel structure.

For the data-parallel benchmarks, we saw that delayed redistribution and

agglomeration performed by the DivCon runtime system can lead to better

performance, particularly for large data ensembles. We believe that by com-

bining DivCon’s infrastructure for delayed redistribution, with a dynamic

strategy that assesses the feasibility of redistribution, one can attain good

performance across data ensemble sizes, and processor counts. The produc-

tivity gains for data-parallel divide-and-conquer programs can be especially

noteworthy, given that the DivCon language obviates the need to implement

generic containers for distributed arrays.

In its current form, the DivConArray abstraction has several limitations.

First, the strategy for agglomeration of DivConArray operations relies on the

association of a single array with each task. Second, the dynamic redistribu-

tion infrastructure relies on the user to trigger redistribution. Furthermore,

176

the DivConArray abstraction supports a limited set of operations and has

a restrictive semantics. It is thus intended for use in the narrow case of

divide-and-conquer algorithms with generative recursion on large arrays of

elements. It remains to be seen whether the optimizations developed in this

thesis can be extended to more general use-cases. More generally, the Di-

vCon language would benefit from the provision of other distributed data

structures besides arrays. For instance, a distributed graph data structure

is required for the implementation of algorithms such as recursive Delaunay

mesh generation [103]. We will address these limitations in future work. For

now, we conclude by saying that DivCon provides a productive means for

the expression of task- and data-parallel algorithms. It incorporates a num-

ber of optimizations, such as adaptive grain size control, and delayed array

redistribution, to improve performance of divide-and-conquer algorithms.

177

CHAPTER

5

DISTRIBUTED TREES

5.1 Introduction

Tree-based data structures have countless applications in HPC. Such data

structures are a natural fit for applications that require the hierarchical ar-

rangement of an underlying set of data elements in order to achieve efficiency.

Examples of such applications include N -body problems in computational

cosmology, high performance graphical rendering, Lagrangian gas dynamics,

granular dynamics, high throughput correlational statistics of large astro-

physical data sets, etc.

Especially in HPC settings, it is desirable to distribute not just the un-

derlying set of data elements, but also the tree structure constructed over

it, across a number of processors. This means that the programmer must

implement parallel operations to build and maintain the distributed data

structure. The main purpose of this chapter is to provide a framework that

removes this burden from the programmer. We present the design of a frame-

work called Distree, which enables the productive expression of object-based,

explcitly decomposed, distributed memory applications based on distributed

178

trees. The Distree framework has the following provisions for productivity

and performance:

1. It is flexible, in that it allows the programmer to decide the: (i) decom-

position of the tree over multiple processors, (ii) the precise structure

of the tree’s nodes, and (iii) the relevant attributes of tree nodes to be

serialized when subtrees are to be communicated over the network.

2. It automates tasks such as data decomposition, tree construction and

consolidation of pieces of the tree across SMP processors.

3. It presents an abstract model of traversals over the distributed tree, and

separates them from the computational operations to be performed dur-

ing tree traversal. This modular separation allows the reuse of traver-

sals across different tree-based applications. The framework provides

implementations of common traversal types.

4. Distree supports fine-grained computational operations on the tree

data. The runtime system associated with the framework is based

on Charm++, and optimizes performance through data and communi-

cation aggregation techniques.

We first describe the tree data structure that forms the basis of the Distree

framework. We also consider its distribution over a set of PEs.

5.2 A tree data structure for parallel HPC applications

Programmer-defined data elements form the basic entitities from which the

distributed tree is built. Such data elements could be, for example, particles

in the case of an N -body simulation, or triangles in a tree-based rendering

engine. Data elements are arranged hierarchically by placing them in the tree

structure. In the code box below, we provide the definition of the node data

structure as a C++ template class. The template has as its sole parameter a

TreeDataDescriptor. This is provided by the programmer when instantiating

the tree. The TreeDataDescriptor class collects the definitions of appropriate

data types (e.g. the types of the key, data elements, and node payload).

These types are chosen by, and therefore known only to the programmer,

but required by the framework to create and manage the tree data structure.

179

template <typename TreeDataDescriptor>

class Node {

TreeDataDescriptor::Key key;

vector<Node<TreeDataDescriptor> *> children;

TreeDataDescriptor::DataElement *data;

int nData;

TreeDataDescriptor::NodePayload payload;

};

Each node has a key that identifies it uniquely among all nodes in a dis-

tributed tree. We use the scheme of Warren and Salmon [84, 104]) to assign

keys to nodes. The root of the tree is assigned a key of 1: key(root) = 1. For

all n 6= root , key(n) = (key(parent(n)) � k) + i, where i ∈ {0 . . . k − 1} is

the rank of n among its siblings.

A node also contains a list of pointers to each of its children, as well as a

pointer to the data elements that are associated with it. This association is

typically decided by some aspect of the tree-based algorithm. For instance,

in an N -body computation, the data elements associated with a node are the

particles that are contained within its extent. Each node has a programmer-

provided payload (a class encapsulating the attributes that summarize the

node for the purpose of the programmer’s tree-based algorithm). Continuing

with the N -body example, the payload associated with each node is typically

a set of so-called multipole moment expansions, which compactly summarize

the distribution of mass within the tree node. An example of such a tree is

shown in Figure 5.1.

5.2.1 Decomposition

Tree T (comprising nodes N(T) and edges E(T) between them) must be

decomposed (explicitly, either by the programmer, or using one of the Distree

decomposition procedures) into a number of subtrees called tree pieces. Each

tree piece is encapsulated within a message-driven Charm++ object called a

chare (cf. § 2). Typically, there are several hundred to a few thousand data

elements (depending on the computational cost of the calculations associated

with each element) per chare, and several (on the order of ten) tree pieces

180

8

18 19

1

2 3

6 7

12 13

24 25

14 15

4

9

5

Figure 5.1: Schematic of a tree constructed over a set of data elements.
Data elements are shown as squares at the bottom. Each node contains a
pointer to the contiguous set of data elements that has been assigned to it,
although only the pointers from leaf nodes to data elements are shown (as
dashed lines) for clarity.

per PE. As mentioned in § 2.2 this coarseness is necessary to amortize the

cost of scheduling message deliveries to objects.

A tree leaf is the unit of data decomposition over pieces: each leaf (con-

taining several particles) in N(T) is assigned to a single tree piece. Suppose

that the set of all leaves assigned to p is given by L(p). Then, the set of nodes

contained within p, N(p) = E(p)∪R(p)∪S(p), with each of the components

described below:

Exclusively owned nodes, E(p)

If n ∈ L(p) then n ∈ E(p), i.e. all leaves assigned to a piece p are owned

exclusively by it. This makes sense given the assignment of each leaf to a

single tree, so that n ∈ L(p) ∧ n ∈ L(p′) ⇒ p = p′. If there is a node

n ∈ N(T) such that for all children c of n, c ∈ E(p), then n ∈ E(p). It is

easy to see that for all pieces p and p′ with p 6= p′, E(p) ∩ E(p′) = ∅.
For the purpose of the tree-based algorithm, the properties of an exclusively

owned node of p are completely determined by locally available tree data, i.e.

data elements within leaves assigned to p. Figure 5.2 shows the tree in

Figure 5.1 decomposed over three tree piececs. Exclusive nodes are shown in

green (leaves) and orange (non-leaves): nodes 4, 8, 9 and 19 in tree piece 0,

and 5, 12, 24 and 25 in piece 1 are examples of exclusively owned nodes.

181

8

18 19

1

2 3

4

9

5

1

2 3

6 7

12 13

24 25

4 5

1

2 3

6 7

12 13 14 15

Tree Piece 0 Tree Piece 1 Tree Piece 2

Figure 5.2: Distributing the tree over several pieces. The distribution entails
the addition of remote nodes (node 3 in piece 0; 4 and 7 in piece 1 and nodes
2 and 12 in piece 2) and remote leaves (node 5 in piece 0 and node 13 in
piece 1).

Remote nodes, R(p)

A node n ∈ R(p) if n ∈ E(p′) for some p′ 6= p. Therefore no descendant of n

is a leaf of p, so that the properties of n are completely determined by tree

data that is remote to p. Nodes 3 and 5 in piece 0, and nodes 2 and 12 in

piece 2 are examples of remote nodes.

Shared nodes, S(p)

A node n is shared by a piece p (among others) if n 6∈ E(p) but some

descendant of n is a leaf assigned to p. More formally, n ∈ S(p) if n is not

a leaf of the global tree T , and at least one, but not all, of its children is

remote to p. In such an event, the properties of n are partially determined

by tree data that is local to p. Also, if n ∈ S(p) then ∧n ∈ S(p′) for some

p 6= p′. Nodes 1, 2, 3 and 4 in piece 1, and nodes 1, 3 and 6 in piece 2 are

examples of shared nodes.

5.3 An example tree application: the Barnes-Hut

algorithm

To motivate the main thrust of this chapter, let us consider the structure of

the well-known Barnes-Hut algorithm [42]. Our objective here is not so much

182

to provide a precise and comprehensive listing of the code for this particular

algorithm, but rather to assess the stylistic and semantic requirements of

tree-based algorithms in general. We will use this alogrithm to guide the

design of Distree, as detailed in § 5.4. Later, we will show that our design

generalizes well to other types of tree-based algorithms (cf. § 5.8.2).

The Barnes-Hut algorithm provides an efficient solution to the N -body

algorithm for long-range forces such as gravity. It is considered to typify

the behavior of applications with highly irregular, and dynamic patterns of

computation and communication. In the field of computational astronomy,

variants of the algorithm are used to compute the evolution of large, self-

gravitating systems of point particles with mass.

Since gravity is a long-range force, we must compute the gravitational

interaction between every pair of particles. Naively, this leads to an O(N2)

complexity, where N is the number of particles being simulated. Therefore,

the all-pairs method is considered infeasible for large ensembles (billions to

trillions of particles [105]).

The Barnes-Hut scheme uses a tree-based algorithm to compute the ap-

proximate interactions in such large ensembles. To give a brief description of

the algorithm, it considers the cumulative effect of a set of masses, instead

of their individual effects, at those points in space where an approximation

is valid. The algorithm embodies a tradeoff between accuracy and computa-

tional cost: an increase in desired accuracy means that a greater number of

pairwise evaluations must be performed. The theoretical complexity of the

method is O(N logN).

5.3.1 The parallel Barnes-Hut algorithm.

Here, we present the iterative structure of the parallel version of the Barnes-

Hut algorithm. We assume that the particles have already been read to

memory from an input file, and each PE holds some arbitrary set of particles

initially. Then, the following steps are performed in each iteration.

Discretization of particle positions

Particle positions are discretized onto a fine, three-dimensional grid, yielding

the integral key of each particle. This process is akin to applying a unique

183

hashing function to particle positions. The outcome is that each simulated

particle (bearing a unique three-dimensional position) is assigned a unique

key.

Particle decomposition

Typically, a distributed memory sorting algorithm is used to sort particles

by their keys, and create n contiguous partitions of these sorted particles.

Each one of these n partitions is used to construct a piece of the distributed,

Barnes-Hut tree (as below). In the terminology of distributed memory sort-

ing, each partition contains a set of particles whose keys are bound by the

so-called splitter keys for the partition.

The Barnes-Hut tree

We construct a tree whose leaves contain the simulated particles. The tree

has a uniform branching factor, 2k (k = 1 in this treatment). A key is

assigned to each node based on the lexicographic ordering of Warren and

Salmon (cf. § 5.2). The tree is such that each node either has no children,

or 2k children.

Tree construction

As mentioned above, each piece is assigned a range of particles given by

its splitter keys. Conceptually, the tree encapsulated within a piece is con-

structed by iterative insertion of particles within the range of the piece. Each

piece begins with a tree that has only a copy of the shared root node. It then

inserts its particles into the tree, beginning at the root. Each particle is prop-

agated down to some leaf of the tree, while maintaining the prefix property:

For each particle π, the leaf l that it is placed in, is such that key(l) is a prefix

of key(π). No leaf is allowed to have more than a programmer-determined,

threshold number of particles. A leaf that contains too many particles by

this measure is split into 2k children, and is converted into an internal node.

A bottom-up pass is then performed over the tree, so as to compute the

multipole moments of each node. The moments of a node give an approxi-

mate summary of the distribution of mass enclosed by it, and are valid only

184

past a certain distance from the node. For a leaf, moments are computed

from the particles that it contains. The moments of a non-leaf node are com-

puted from the moments of its children. Finally, nodes are given labels local,

remote, or shared, in a manner similar to § 5.2.1.

Remote frontier annotation

A piece has no multipole moment information about its remote nodes. There-

fore, it uses splitter key information to determine the list of pieces that share

the node, and requests the multipole moment information from one of those

pieces. We refer to this process of requesting the payload of remote nodes

from the appropriate pieces, as remote fronter annotation. Remote frontier

annotation is not a trivial operation, and requires hierarchical book-keeping,

since a tree piece requesting the moments of a node might itself have received

a request for a (different) node that it shares with other tree pieces.

Tree traversal

Each tree piece traverses the global Barnes-Hut tree in order to compute

forces on the particles encapsulated within its local leaves. One traversal is

performed for each leaf, l, in the piece, and each traversal begins at the root

(which is shared by all tree pieces, and therefore available to each one). For

each node, n, encountered during a traversal, we check whether n is distant

enough from l that we can reasonably approximate n’s mass distribution by

its multipole moments at l. If so, the force computation is performed, and

we recursively return up the tree. Otherwise, each child of the node is visited

recursively. Given the distribution of the global tree over multiple pieces, the

computation may attempt to access portions of the tree that are not available

locally, thereby generating communication requests and responses.

5.4 Design considerations for a tree code framework

The Barnes-Hut algorithm is representative of a large and important class of

irregular HPC algorithms. Here, we reflect on the mechanics of the algorithm,

185

and synthesize a basis for the design of a framework for the expression of tree-

based codes.

Appropriate division of responsibilities between programmer and
framework

We ask whether it is the responsibility of the programmer, or the system

to perform each one of the following tasks: data decomposition, local tree

building, distributed tree construction, remote frontier annotation, and tree

traversal. Although programmer productivity increases as the system sub-

sumes a greater number of these phases, in general, flexibility and generality

suffer. A good compromise is to provide a toolkit of common methods for

each one of the above steps, but to allow the programmer to plug-in custom

strategies.

Support for fine-grained parallelism

The framework must provide an opportunity for the expression of compu-

tations in a fine-grained manner. We believe that this affords the ability

to express tree-based algorithms in their natural form. For instance, in the

Barnes-Hut algorithm, the traversal of the tree (which dominates execution

time) for each piece is best expressed as a series of independent traversals over

the global tree, one for each leaf local to the piece. It should be the responsi-

bility of the framework to transparently perform aggregation of computation

and communication to increase efficiency in the face of such fine-grained

pieces of work.

Seamless, asynchronous access to remote data

For programming productivity, the programmer’s expression of a tree-based

algorithm should be agnostic to details such as the decomposition of tree

data over PEs, or whether a given subtree is local to the current PE. More-

over, the interface between programmer code and framework must be such

that continuations can be spawned transparently for traversals that require

remote data. Such traversals would result in the generation of asynchronous

communication events, whose latency can be overlapped with traversals that

186

are currently performing computations on locally available data. A simi-

lar method has been adopted, though in the narrower context of a single

application variant, by Zhang et al. [106].

Explicit differentiation of local and remote data

The performance-conscious HPC programmer must be given access to infor-

mation about data locality. This allows the programmer to exploit algorithm-

specific knowledge to increase performance in a manner that cannot be done

by the framework alone. For instance, in the Barnes-Hut algorithm above,

the programmer could initiate two traversals (instead of a single one) for each

leaf local to a piece. One traversal would be given priority over the other,

and would operate only on remote data; the other traversal would operate

with lower priority, and operate only on local data. This allows a greater

proportion of the communication latency (suffered by the first traversal) to

be overlapped with local computation (performed by the second traversal).

Intuitive and relaxed semantics for update of remote data

Algorithms that require write-through or accumulate access to remote data

should be able to use these modes efficiently, without much effort to under-

stand update semantics on the part of the programmer.

5.5 The Distree framework

Motivated by our observations in the previous section, we describe the design

of the Distree framework.

5.5.1 Programming model

We first give the reader a feel for Distree’s programming model.

1. There is a set of spatially organized data elements on which the tree

algorithm operates. A distributed tree is constructed over these data

elements.

187

2. The tree is distributed coarsely over so-called tree pieces. Each tree

piece is a container for a partition of the underlying set of data ele-

ments, as well as the minimal subtree that exists over this set. The

decomposition is such that the shallower levels of the tree are shared

across several tree pieces (cf. § 5.2.1). Typically, there are several

(tens of) tree pieces on every PE. This overdecomposition of the tree

into more pieces than there are PEs, allows for flexibility in mapping

the work and data to PEs.

3. The algorithm begins with the user instantiating a collection of tree

pieces. These tree pieces are typically loaded with the underlying data

elements, e.g. by reading input files.

4. Tree pieces inherit functionality from the Distree system. The pro-

grammer leverages this functionality by invoking methods on the pieces,

thereby performing tasks such as key-based decomposition of data ele-

ments over pieces, and distributed tree construction.

5. A Distree program includes programmer-defined collections of coarse-

grained, message-driven work units in the form of chares (cf. § 2.2).

The ARTS assigns to each work unit a PE on which it executes. How-

ever, work units are not bound to PEs: they may move due to dynamic,

migration-based load balancing. The collection of work units may be

the same as the collection of tree pieces.

6. Regardless of the PE it is on, a work unit has access to (at least) the

root of the global tree. The programmer directs work units to initiate

concurrent, fine-grained traversals over the global tree.

7. The crux of a Distree algorithm is embodied by the traversal. A traver-

sal is a combination of (i) a walk, which provides a loose, partial or-

dering over nodes in the tree, and (ii) a visitor, which performs some

programmer-defined computational actions each time a node is vis-

ited by the walk. The visitor directs the traversal, by signaling to the

walk whether the children of a visited node should in turn be visited.

Therefore, the structural recursion inherent in tree-based algorithms is

driven by the actions of the visitor. Different traversal orderings over

188

tree data may be suitable for different algorithms, and each algorithm

may require a unique visitor behavior.

8. During tree traversal, the visitor may implicitly request the Distree

framework to fetch a remote subtree to the PE on which it is execut-

ing. The framework uses the mapping of nodes/data elements to tree

pieces in order to fetch the required subtree. Meanwhile, the traver-

sal continues to operate on other, available nodes of the tree; a con-

tinuation is created and stored, so as to resume the traversal at the

missed node when it is finally fetched. Therefore, the execution model

is inherently and implicitly (i.e. without the programmer’s knowledge)

asynchronous.

We can now discuss the salient features of the Distree framework in greater

detail.

5.5.2 Explicit decomposition of work and data

The Distree programmer explicitly partitions the global tree into a num-

ber of distributed units, called pieces. The principle purpose of these pieces

is to serve as containers for distributed tree data. The mapping of tree

nodes to pieces can be obtained (incrementally) on any PE, so that any

computation may discover the tree piece that contains a given node/data el-

ement, and hence request that data from the container. Each piece is coarse

in the amount of tree data it contains. Tree pieces are user-defined enti-

ties, but every tree piece class must inherit from the system class template

distree::Piece. This class encapsulates several important functions related

to decomposition, tree building, serialization/deserialization and communi-

cation of subtrees across processors, saving the programmer the trouble of

having to implement them.

As with other chares, the programmer may construct an indexed collec-

tion of pieces, using Charm++-generated factory classes. The size of the

collection is generally independent of the number of processors on which the

program is to run, though typically tens of pieces are present on each PE.

The mapping of pieces to processors is handled by Charm++.

Although it is not necessary to do so, the chare-based decomposition of

Distree encourages the programmer to decompose parallel work over a dif-

189

ferent collection of chare from the tree pieces (which hold data). This ability

is useful in algorithms such as Dehnen’s momentum-conserving scheme for

gravity calculation [107], which is most naturally expressed in terms of in-

teractions between pairs of spatial extents (i.e. tree pieces). Both work and

data units (tree pieces) are amenable to migration by the Charm++ ARTS

so as to effect dynamic load balancing.

5.5.3 Division of tasks between the programmer and Distree

Data decomposition

Distree provides three levels of support for data decomposition onto pieces,

and the programmer may use any one of these, depending on the requirements

of the algorithm.

Built-in strategies. A suite of commonly used decomposition strategies is

provided by the Distree framework. Currently, these include Oct- and Space-

filling curve (SFC) based strategies. The programmer specifies an identifying

key for each data element. Conceptually, the key of a data element deter-

mines its position along a linearization of the data elements. Based on this

assumption, the framework splits the linearized data elements among pieces.

The particular partitiong that results depends on the strategy used by the

programmer. the SFC strategy orders data elements using the Peano curve,

and evenly partitions elements among pieces (up to a programmer-specified

tolerance). The Oct strategy performs a similar ordering of elements, but

ensures that the deepest common ancestor node of all the elements assigned

to a piece p is exclusively owned by p. This constraint is helpful in tree codes

that require that each piece have a compact extent: it ensures that if the

data elements are particles with positions, then the bounding box of each

tree piece is non-intersecting with that of any other tree piece.

Pluggable comparison-based strategies. The Oct and SFC decomposition

strategies above are based on a more general-purpose, parallel histogramming

strategy, into which may be plugged programmer-provided serial comparator

functions. The algorithm proceeds in a manner similar to the comparison-

based parallel sorting algorithms of Kale and Krishnan [108] and Solomonik

and Kale [100].

190

The histogramming occurs as a series of coordinated histogramming iter-

ations involving a master and several workers; there are as many workers as

there are PEs, and each worker holds a partition of the set of data elements.

In each iteration, the master broadcasts a list of sorted keys to the workers.

In the first iteration, the key of the root node (1) is broadcast. For each key k

in the broadcast list, a worker counts the number of data elements for which

k is a prefix of the data element’s key. One may think of two consecutive keys

ki and ki+1 as forming a bin. Then, a programmer-provided comparator may

be used to efficiently determine the bin into which each data element falls.

These counts are reduced to the master, so as to construct a histogram of the

number of data elements in each bin. The master examines this histogram,

and attempts its equalization by splitting some bins.

The decision of which bins to split is made based on a programmer-

provided, binary static load balancing parameter. If the parameter is switched

on, the master obtains and broadcasts the sorted list of keys of the children of

every previous key. This continues until the list of bins can be halved evenly

(up to a programmer-provided precision) among the input set of pieces. The

master then performs the histogramming recursively for each half of the set

of pieces, and the corresponding set of keys. The recursive procedure termi-

nates when a list of keys is obtained for each individual piece. This strategy

does not provide optimal partitioning of data elements over pieces, but re-

sults in a reasonably small load variance for large numbers of input data

elements and pieces.

On the other hand, if the static load balancing parameter is switched

off, then the histogramming proceeds on a per-bin basis, each bin being

split until it has fewer than a (programmer-provided) threshold number of

data elements. This mode provides poor load balance between pieces, but

guarantees that each piece can have no more than a certain number of data

elements. In this case, the Charm++-prescribed overdecomposition of the

problem into more pieces than PEs can be leveraged to perform measurement-

based, dynamic load balancing.

Programmer-defined strategies. If the comparison-based decomposition of

Distree does not suffice for the programmer’s algorithm, she may write her

own Charm++ code to determine the partitioning of data elements over

pieces. In this case, Distree allows individual pieces to submit their data

191

elements to the framework post decomposition for tree building (described

next).

5.5.4 Building the local tree

Distree supports the building of the local tree for each piece, from the data

elements assigned to it. This can be done at one of two levels of abstraction.

Comparison-based tree construction

Once a piece p has received the data elements assigned to it by the decom-

position procedure, it uses the key of each data element to insert it into a

local tree structure. A procedure similar to the one described in § 5.3.1 is

used, thereby ensuring the prefix property of keys, and preventing leaves

from enclosing too many particles. A programmer-provided comparator may

be plugged into the insertion procedure, so as to customize its behavior.

The tree construction procedure also assigns a type to each node. Remote

nodes, as well as the list of pieces that share each such node, are identified.

The identification of remote nodes is depicted in Figure 5.3. Let [fi, li) be

the range of data element keys assigned to piece i (i.e. its splitter keys).

Therefore, we can use the key prefix property to identify each node ν in

the local tree of i whose key cannot be a prefix of any particle assigned to

piece i, i.e. Key(ν) is not a prefix of any key in the range [fi, li). Therefore,

Key(ν) can only be the prefix for a paricle assigned to some piece other than

i. Therefore, ν is remote to tree piece i.

Each node n is shown to cast a shadow representing the range of keys

such that Key(n) = k is a prefix for all keys in that range. We call this the

prefix shadow of n, Πk. Therefore, if Πk intersects with the range of keys

represented by the j-th green box, i.e., Πk ∩ [fj, lj) 6= ∅, then the node is at

least shared by piece j. This is because the intersection implies that at least

some keys with prefix k are found in [fj, lj).

On the other hand, if Πk is completely contained within box j, i.e. Πk ⊆
[fj, lj), then piece j is the exclusive owner of the node with key k. Intuitively,

this is because all keys with prefix k are contained within [fj, lj). If n is

owned exclusively by j, then all its descendants will be owned by j, so that

we will never find a remote node beneath n. Therefore, when computing the

192

... l j-1 j j+1 j+2 m ... QP

k
i-1 k

i
k
i+1

k

... ...

... ...

Figure 5.3: The inductive procedure for determining the owner(s) of the
i-th child of tree node k. Boxes represent the sorted list of splitter keys
assigned to all tree pieces. Array element j represents the range [fj, lj) of
keys assigned to the j-th piece. The grey shadow cast by a node n represents
the range of data element keys for which Key(n) is a prefix.

remote frontier of j (i.e. the set of nodes in R(j)), we need only consider

nodes n such that n is shared by a set of pieces that includes j. The figure

shows k to be such a node: Πk ∩ [fj, lj) 6= ∅, so that k must be shared by

j, among other pieces. However, j is not the exclusive owner of k, since

Πk 6⊆ [fj, lj). Considering the children of k, we find that child ki is the

only one whose prefix shadow intersects [fj, lj). For other children of k, e.g.

ki−1, we have Πki−1
∩ [fj, lj) = ∅, so that no key with prefix ki−1 can be in

[fj, lj). Therefore, node ki−1 is remote for tree piece j. Applying this logic

recursively, we identify all the remote descendants of ki.

We can augment this procedure to discover the owners of nodes in the

remote frontier. Notice that
∧Q
r=P (Πk∩[fr, lr) 6= ∅). That is, node k is shared

by pieces P, P+1, . . . , j−1, j, j+1, . . . , Q. We write this is as Πk∩[FP , LQ) 6=
∅. Now, consider the children of k. In particular, Πki−1

∩ [Fl, Lj−1) 6= ∅, so

that node ki−1 is shared by pieces l, . . . , j−1. Similarly, Πki∩[Fj−1, Lj+2) 6= ∅,
etc. Note that j is one of the owners of ki, as we had identified earlier. Again,

if this procedure is applied in a recursive fashion, one can find the owners

of all nodes in the remote frontier of piece j. In this way, the tree held by

piece j can be augmented so that for every node n, either n is exclusively

owned by j, so that j has access to the entire subtree underneath it, or n is

remote and j knows the piece from which to request portions of the subtree

underneath n.

193

Arbitrary, programmer-defined tree structures

On the other hand, the programmer may choose to construct a tree cus-

tomized tree, based on a different strategy. The only requirement is that

each node in the tree be manually augmented with ownership information

(which is automatically inferred when the previous, built-in strategy is used

for tree construction).

5.5.5 Annotating the local tree

A remote node’s ownership information is used by the Distree framework to

obtain information about the structure of the subtree rooted at that node.

Algorithm 4 presents a distributed algorithm that automates this task of

remote frontier annotation. It performs the following basic functions: (i)

requesting the payload of each remote node from some tree piece that exclu-

sively owns it, or shares it with other pieces; (ii) tracking requests from other

pieces for nodes either exclusively owned by the current piece, or shared with

others; and (iii) upon receiving the payload of some remotely requested node,

recursively moving up the tree and fulfilling pending requests as possible.

The algorithm is structured as a series of interdependent “when” clauses to

reflect its message-driven nature. Here, the expression “when m S” denotes

that when a message m is received, statements S are performed. Algorithm 4

is executed by every tree piece.

Let us first consider the initialization of data structures. The requests

table of piece p stores requests received from other pieces for nodes owned

(either exclusively or in a shared manner) by p. The missing table stores the

pointers to those nodes of the piece p that have been identified as remote.

Next, there is a key-indexed nodes table that maps the key of each node to

a pointer to that node. (It could be a local node, or a remote node that has

already been been fetched during the course of the algorithm.) This table

is used to respond to requests from other pieces for nodes local to this tree

piece. Finally, we maintain a Ready list that stores the keys of all nodes for

which we have payload information. This list is initialized with the keys of

all local nodes, since their payload information is known once the local trees

have been built.

When a piece p receives a REQUEST message for the payload of a node

194

Algorithm 4: Annotating the remote frontier of a consolidated local
tree.
Initially do

requests ← ∅;
Ready ← ∅;
for n ∈ P do

k ← Key(n);
if Type(n) = Local then

Ready ← Ready ∪ {k};
nodes[k]← n;

else missing [k]← n ;

end

end

when REQUEST(k, i) do
if k ∈ Ready then

n← nodes[k];
Assert(Type(n) = Local);
SEND to i, REPLY(k,Payload(n));

else requests[k]← requests[k] ∪ {i} ;

end

when REPLY(k, p) do
n← missing [k];
Payload(n)← p;
Up(n);

end

when Up(n) do
k ← Key(n);
nodes[k]← n;
for i ∈ requests[k] do SEND to i, REPLY(k,Payload(n)) ;
requests[k]← ∅;
Ready ← Ready ∪ {k};
p← Parent(n);
if p 6= nil then

if
∧

c∈Children(n) c ∈ Ready then Up(p) ;

else DoneFrontierAnnotation() ;

end

with key k, it checks whether k is in its Ready list. If so, the payload of that

node is available to p, and it responds to the requestor with that payload.

Otherwise, p adds the request to requests [k]. The fact that the node with key

k is currently unavailable indicates that at least one successor of k is remote

to p, and that its payload has not yet been fetched. However, k cannot itself

be remote to p, since the requestor must have determined p to be an owner

of k before sending it the REQUEST message.

Recall that for each node that was initially identified as remote, the pointer

195

to its node data structure was placed in the missing table, in the entry

corresponding to its key. Upon receiving a REPLY message, this table is

used to obtain the pointer to the node corresponding to the received payload.

Its payload is then set to the received value, and the node, n, is passed into

a recursive procedure, Up.

The Up procedure does four things: (i) It associates the key of n with a

pointer to it in the nodes table; (ii) It checks whether there are any out-

standing requests for n; if so, it sends out the payload of n to each one of its

requestors; (iii) It places n in the Ready list; and (iv) It then checks whether

the newly set readiness of n has resulted in its parent, p, becoming ready as

well. That is, we check whether every child of p is in the Ready list. If so, it

is safe to update the payload of p using its children. This is done through a

function provided by the programmer, and is not shown here for conciseness.

Once the payload of p has been set, it is passed into a recursive invocation

to Up. This results in an upward traversal of the consolidated tree, where at

each node outstanding requests for it are sent to the requestors of that node.

When we reach the root of the tree in this manner, the algorithm terminates.

5.6 Traversing the tree

We consider a computation over a distributed tree to be equivalent to a

structured iteration over some subset of the nodes and data elements in the

global tree. Such a computation is said to traverse the tree, and in what

follows we do not distinguish between the computation and the traversal of

the tree that it entails.

In explicitly parallel distributed-memory tree codes, concurrency is gener-

ally expressed in the form of concurrent traversals over the tree. The Distree

framework employs a visitor pattern over the tree, The grain size of com-

putation encapsulated by each visitor is defined by the programmer, and

is typically very fine. For instance, in the Barnes-Hut algorithm, a single

traversal might consist of a top-down traversal for a handful of particles.

Visitors are not aware of the structure of the tree, and do not rely on

information about whether tree nodes and data elements have been fetched

from a local or remote source although they may use this information to

optimize performance.

196

5.6.1 Tree traversal equals a walk with a visitor

Distree enforces a separation of the tree data structure from the traversal

algorithms that are employed over it. As a result, the programmer phrases

each traversal as the composition of (i) a tree walk, or simply, a walk, and

(ii) a visitor.

The walk visits nodes of the distributed tree, and invokes particular meth-

ods on the visitor (cf. § 5.6.3) as it does so. The programmer may employ

different types of walks, so as to change the order in which the visitor receives

tree nodes to process. If the framework determines that a node required for

a traversal is not present locally, it is requested from its remote source. A

corresponding continuation is created and saved by the framework, for invo-

cation upon receipt of the remote data. Meanwhile, other traversals may be

resumed or initiated.

The visitor encapsulates the programmer-provided logic to process nodes of

the tree as they are encountered. Moreover, it guides the walk, by indicating

to it whether or not a visited node should be expanded into its children. This

separation makes it easy for the programmer to write code for tree traversals.

It also simplifies the process of adding new, independent traversals to the

tree-based algorithm.

5.6.2 Types of tree walks

A walk over a tree is a loosely ordered iteration over its nodes and data

elements. The Distree framework provides walk objects that encapsulate the

details of traversing the distributed tree. The walk object insulates the user

from details of traversal, e.g. the chunking scheme used to amortize the cost

of fetching required remote nodes. The Distree framework provides two types

of walk, each of which visits nodes in a different order.

The top-down walk

The top-down walk is a best-effort, recursive, depth-first descent into a tree.

The ordering has been relaxed from a strict depth-first in order to exploit

locality of access and to leverage asynchrony in fetching remote subtrees. A

top-down walk guarantees only that the children of a node are visited after

197

the node itself.

The traversal adheres to depth-first ordering when possible. In particular,

local nodes are visited in depth-first order. However, if a remote node, r,

is encountered, the traversal continues to the next available (local) node in

depth-first order, skipping the nodes underneath r temporarily. A message

requesting a subtree beneath r is sent, and a continuation of the traversal

at r is created. When r becomes available locally, all pending traversals for

it are invoked, thereby resuming depth-first visits over the fetched subtree

underneath r. Therefore, traversals are allowed to process remote data op-

portunistically, i.e. as soon they become available locally. Of course, this

means that the precise ordering in which nodes are visited, is dependent on

the order in which the traversal receives the messages containing them. As

such, the ordering of visited nodes is inherently non-deterministic.

The top-down walk is useful in such applications where the regions of the

distributed tree that are of interest to a given traversal, are known before

the start of the traversal. An example of such a scenario is the calculation of

gravitational forces in tree-based cosmology codes. Recall from § 5.3 that we

traverse the tree once for each leaf, and that each traversal descends deeply

into only those subtrees that are proximal to the leaf.

Another example is the calculation of the radial two-point autocorrelation

function of a point distribution. This technique offers a quantitative measure

of the lumpiness of the distribution, and can be approximated based on the

following principle. Given two sufficiently distant and geometrically compact

sets S1 and S2 of spatially distibuted points, the distance between each pair

of points (p1, p2) such that p1 ∈ S1 and p2 ∈ S2, will be similar in magnitude.

Therefore, if we consider the traversal as searching the tree, the top-down

walk is useful in situations where we know the tree pruning condition prior to

beginning the traversal. Such algorithms have the interesting property that

the number of nodes processed per traversal is independent of the order in

which the walk visits those nodes. Instead, the number of nodes processed is

determined completely by the specifics of the visitor algorithm, and the set

of data elements underlying the tree structure.

198

The up-and-down walk

There are certain tree-based algorithms in which the pruning condition for

a traversal cannot be determined prior to the start of the traversal. In fact,

the pruning condition is gradually refined as the traversal progresses. This

characteristic of a dynamic pruning condition can cause the number of nodes

processed by a traversal to depend very strongly on the order of visited

nodes. Therefore, a bad ordering of visited nodes can significantly increase

the amount of computation performed in achieving a given result through

the traversal.

Let us consider a concrete example of this situation. Suppose that we

are given a spatial distribution of points, and would like to compute the

k points nearest (by some user-defined metric) to each point, where k is a

fixed positive integer. This is the k-nearest neighbors problem, and given the

spatial layout of points, is typically solved by arranging the points in a tree.

Now, let us consider the application of a top-down traversal to find the k

closest points to a target point. For the purpose of explication, assume that

we already have a list of k candidate nearest neighbors for the target. We

will return shortly to the issue of initiating the traversal without this list of

k candidates. So, we have a list of k points, arranged in descending order of

distance from t. However, we have not finished processing all points in the

distribution yet, so we are not sure that these k are the closest neighbors of

t.

What should be our pruning condition given these k points? By imposing

a tree structure on the points, we have ensured that each node of the tree

represents a spatial extent within which are bounded some potential neigh-

bors for the target. Now, let dmax be the distance from t to the farthest of

its k neighbors. Therefore, whenever we encounter a node so far from t that

it does not intersect with a sphere of radius dmax centered at t, we can safely

prune our search for close neighbors at that point in the tree. However, if the

node is close enough to intersect the aforementioned sphere, then we could

find points closer to t than its current list of neighbors. We must recursively

descend into such a node, and if we do find a point p closer to t than its

current farthest neighbor f , we must update our neighbor list to include p

and exclude f . We must also shorten the pruning radius for the traversal:

That is, we set dmax to the distance from t to its new farthest neighbor.

199

This sounds reasonable, but how do we initiate the traversal for target

t? That is, what should our pruning condition be when we have fewer than

k candidate closest neighbors? Obviously, if it doesn’t have k candidates

already, the traversal must accept every point offered to it, as a candidate

for one of the k closest to t. Correspondingly, the pruning condition is very

conservative at the start of the algorithm, and will attempt to recursively

descend into nodes that might (in simulated space) be very distant from the

target t. Therefore, we require a walking strategy that first visits those parts

of the global tree that are likely to be closer to t before searching more distant

parts of it.

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.80.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

(a) top-down ordering

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.80.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

(b) up-and-down ordering

Figure 5.4: For certain traversals, node ordering can significantly impact the
amount of computational work done. This is shown for a k-nearest neighbor
search. The target point is shown as the large, off-center pink dot. Its 40
nearest neighbors for a simple, uniform distribution of particles, are shown
in red. Those nodes that are processed by the walk are shown in yellow (and
red), and the ones that remained untouched by the walk are shown in light
gray. Panel (a) shows the result for the top-down (depth-first) traversal,
whereas panel (b) shows the same computation, peformed using far fewer
point accesses with the up-and-down walk.

The Distree framework provides the up-and-down walk for such scenarios.

The walk begins at a node of the user’s choosing, n, which is referred to as the

current node. The walk then travels up to the parent of n, p, and performs

a top-down walk on each child of p except for n. Thus, the siblings of n are

visited in top-down order. Thereafter, the parent of n becomes the current

node, and the siblings of the new current node are visited in top-down order,

200

etc. This process continues all the way up to the root of the tree. Therefore,

if the starting node for a walk is a leaf, the up-and-down walk first visits

the siblings of the leaf, then visits, in a top-down fashion, the subtrees of

its uncles, its grand-uncles, and so on. This ordering uses the heuristic that

topologically proximal nodes represent regions of the simulation domain that

are physically proximal, and therefore interact strongly.

This ordering heuristic helps to reduce the total number of nodes processed

in a traversal algorithm that progressively refines its pruning condition. Fig-

ure 5.4 demonstrates this effect for the k-nearest neighbor search algorithm.

As can be seen, the number of points accessed (yellow circles) by the top-down

walk (Figure 5.4(a)) is much greater than that accessed by the up-and-down

walk (Figure 5.4(b)). Of course, the above scheme is not the only way to cal-

culate the k nearest neighbors of a point – Fukunaga and Patrenahalli [109]

have developed a so-called ball-tree to efficiently compute the same relation.

5.6.3 A visitor pattern fosters separation of concerns

In Distree the actions that are taken whenever a node is visited by a walk,

are dictated by user code, and encapsulated by a visitor object. Visitors

may be stateful, and the actions they perform are expected to be reentrant.

The walk iterates over nodes in the tree, adhering to some loose ordering

constraints. For each node visited, the walk invokes a suitable visitor method,

together with appropriate data arguments as context for the visitor, to drive

the computation forward. For instance, whenever the walk visits a node of

the global tree, it forwards the node to the visitor by calling the its node()

method. This method takes as argument the visited node, and returns a

Boolean value, which indicates to the Distree framework whether the visitor

requires that the visited node be opened, i.e. its children be visited in turn.

If a leaf is opened by a visitor, the walk fetches the contents (data elements)

of the leaf. When the walk has obtained the contents of the leaf, it invokes

the visitor’s leaf method. In this way, the visitor can steer the traversal

according to its program logic.

This scheme allows visitor code to access the global tree in a seamless man-

ner. Consider what happens when the visitor wishes to open a node whose

children are present on a remote processor. In this case, the walk generates

201

a request message for the remote data and saves a pointer to the visitor

along with other context about the traversal. This saved context enables the

walk to resume the traversal when the remote data become available. If, on

the other hand, the data have already been fetched from a remote proces-

sor when the visitor asks to descend into the associated remote subtree, the

data is simply fed to the visitor via its appropriate node/leaf method. In

either case, the only way that the visitor can determine the origin of a vis-

ited node or leaf, is by examining the attributes of the node itself. Therefore,

by adopting the visitor pattern, Distree allows the programmer to leverage

message-driven execution without having to write fragmented code that is

phrased as a collection of asynchronous message sends and associated com-

pletion callbacks.

A visitor written by the programmer must implement the following inter-

face of functions.

Computational actions

Each visitor must define a node() and a leaf() function, which are invoked

by the walk on the visitor when it visits, respectively, a non-leaf node, or a

leaf of the distributed tree.

State update actions

Distree provides a declarative and asynchronous model of computation. Thus,

calls to fetch remote data do not block. Therefore, Distree provides certain

hooks that allow the visitor to do book-keeping when specific events oc-

cur (e.g., a node is missed, a node is received, etc.) A visitor may define

the miss() and hit() functions for this purpose. Using these methods, the

programmer’s code can determine when all computation associated with a

certain traversal has finished.

The orthogonalization of the walk and visitor is a realization of the visitor

design pattern [110]. The ensuing separation of concerns [111] allows us

to achieve reuse of each walk class across multiple, suitable traversals, and

insulates the user from the mechanics of tree traversal.

202

5.7 Run-time optimizations

Let us now discuss some performance optimizations incorporated into the

Distree framework.

5.7.1 Local tree pieces are consolidated automatically

In order to increase the amount of local tree data available to traversals,

Distree consolidates tree pieces present on a PE. The programmer can even

instruct Distree to consolidate all pieces across an entire SMP domain. As

detailed by Gioachin et al. [8], such consolidation can lead to a considerable

reduction of communication volume. Our work differs from their algorithm in

that Distree couples consolidation and remote frontier annotation, thereby

leading to further reductions in communication volume, both during tree

construction and tree traversal.

8

18 19

1

2 3

4

9

5

1

2 3

6 7

14 1512 13

+

1

2 3

6 7

14 15

4 5

12 138

18 19

9

Tree Piece 0 Tree Piece 2 Consolidated tree

Figure 5.5: Schematic of the tree piece consolidation algorithm. The al-
gorithm receives as input a list containing the roots of two co-resident tree
pieces. The procedure recursively considers the corresponding children of
these listed nodes, until it encounters the base case: (i) either only a single
node is listed, or (ii) none of the listed nodes has any children. Note that a
listed node without a child is not necessarily a leaf – it could just be a remote
node for all of the tree pieces on the PE/SMP.

In a nutshell, Algorithm 5 descends into the pieces present on a PE (or

SMP) recursively, and for every remote node n of a tree piece t1 encountered,

it checks whether there exists another tree piece t2 on the PE, for which n

is not remote. If this is the case, then the subtree underneath t2’s copy of n

can be used for both t1 and t2.

In slightly greater detail, Consolidate algorithm operates as follows. It

203

Algorithm 5: Consolidation of tree pieces.
Consolidate(L)
Input: list L of tree pieces rooted at node with key k
Output: root with key k of consolidated piece
begin

if |L| = 1 then
return L[0];

end
pick ← BestNode(L);
for i ∈ {0 . . . |Children(pick)| − 1} do

L′ ← ∅;
for n ∈ L do

if n is not a leaf then L′ ← L′ ∪ {Child(i, n)};
end
if L′ 6= ∅ then Child(i, pick)← Consolidate(L′);

end
if IsRemote(pick) then

REQUEST Payload(pick) from piece p ∈ Owners(pick);
end
return pick ;

end

BestNode(L)
Input: list of nodes, L
Output: best candidate from L for root of merged tree
begin

best ← nil ;
for n ∈ L do

if EltsBeneath(n) > EltsBeneath(best) or IsRemote(best) and IsLocal(n)
then

best ← n;
end

end
return best ;

end

receives as input a list of tree nodes, each one from a different tree piece

on the PE (or SMP processor). Each one of the nodes in the list has the

same key (call it k), a property that is maintained in the recursive call. The

output of the algorithm is a single node, which represents the merged tree.

The merged tree is obtained by consolidating the subtrees rooted at nodes

from the input list. The algorithm picks the best suited node as the root of

the consolidated tree beneath k. In this context, the best node is the one with

the most data elements underneath it. If all nodes have an equal number of

data elements underneath, we pick the one that is exclusively owned by a

tree piece on the current PE. For each i from zero to one short of the number

of children of the best node, the procedure recurses on the list containing the

204

i-th child of each one of the listed nodes. An example of the result of this

operation is shown in Figure 5.5.

The process of consolidation leads to significant savings in execution time

for both the tree construction, and tree traversal phases. It is especially

relevant in the strong scaling regime, where the amount of computation per-

formed on the tree per core decreases with the addition of more cores, so that

the time taken for distributed tree construction can become comparable to

the time taken to complete the computation on the tree thus constructed.

5.7.2 A software cache promotes remote data reuse

Data reuse can be critical in determining the performance of tree-based al-

gorithms [8]. Furthermore, modern SMP-based supercomputers offer several

levels at which data sharing can be effective. Requests for the same remote

elements from two visitors on a PE can be merged. When the requested data

are received at the PE, they can be shared among those objects. Similarly,

PEs in the same SMP domain can share remotely fetched data. In the follow-

ing we describe a two-level caching scheme that enables the data reuse across

computational units on a PE, as well as across PEs on an SMP processor.

This caching mechanism is transparent to the programmer’s visitor code.

Algorithm 6 gives the outline of our two-level caching scheme. Each PE on

the SMP has a private cache, which stores pointers to the remotely fetched

data that has been requested by traversals on that PE. There also exists one

cache at the level of the SMP processor that is shared by all the PEs in the

SMP. The shared cache contains the union of all the entries in the private

caches of these PEs.

Briefly, the algorithm funnels all requests for remote data through the

cache. If the data are found in the private cache, then they are immediately

passed into the requesting traversal’s visitor code. If the data are not found

on the PE, we check whether some other piece on the PE has requested them

previously. If so, a lightweight continuation is created to resume the traversal

at the requested node upon its receipt. Otherwise, the more expensive, SMP-

wide table lookup is performed.

Two schemes have been devised to manage concurrent accesses of the

shared, SMP-wide cache table. The first version funnels all requests for

205

Algorithm 6: Searching for remote data with a two-level cache.

FetchData(k, owner , traversal)
Input: Key k of remote data; remote data owner ; and requesting traversal .
Output: pointer to the requested data if available on SMP processor of request;

or nil otherwise.
begin

e← privateCache[k];
if e = nil then

e← new PrivateCacheEntry(k, owner , traversal);
Requestors(e)← {traversal};

end
if Data(e) 6= nil then return Data(e) ;
else

if RequestSent(e) then
Requestors(e)← Requestors(e) ∪ {traversal};
return nil;

else
data ← LookupSharedCache(k, owner);
Data(e)← data;
if data = nil then

Requestors(e)← {traversal};
RequestSent(e)← true;

end
return data;

end

end

end

remote data generated by traversals on the SMP processor through a single

core, which is termed the fetcher for that SMP processor. Cheap, intra-node

messaging between PEs is used for efficiency. We call this the single-fetcher

version. The second implementation follows a first-touch policy for fetching

remote data. That is, the first core to request the data corresponding to a

particular key, is responsible for sending the message to its owner to initi-

ate its fetching. This scheme uses fine-grained locking to prevent read-write

conflicts on cached entries. Experiments (not shown here) suggest that the

second approach is better suited for SMP processors with 4-8 cores/SMP,

whereas the first one is better for wider SMPs.

The caching mechanism allows delayed write-throughs

As we shall see in § 5.8.2, certain traversals require write-through access to

remote data. That is, when a remote subtree is fetched from its source, the

206

Figure 5.6: Load imbalance in a 512-core run of the Barnes-Hut algorithm
with a highly non-uniform spatial distribution of about five million particles.
Time increases along the horizontal axis, whereas colored regions indicate
cumulative work performed across all 512 cores at each instant in time. The
left panel profiles the execution of an iteration without load balancing, and
the right panel, with load balancing switched on.

local traversal might update the subtree through its computations. For such

traversals, the programmer may configure walk objects to be write-through.

When a write-through walk finishes, the software cache module flushes out

all changes accrued in the cached data to the owner of that data. The

programmer will find this feature useful in implementing algorithms such

as Dehnen’s O(n) momentum conserving tree scheme [107]. Currently, we

only support the application of a commutative-associative operation on the

writethrough data. This restriction allows us to provide a simple consistency

semantics, and can be implemented efficiently.

Remotely fetched data is organized into subtrees, so that the cost of send-

ing node and data element updates to their owners can be amortized over

several nodes. However, the write-through cache flush operation is still very

communication intensive. As such, it can benefit from a message aggregation

optimization provided by the tram module of Charm++. This module en-

ables the dynamic aggregation of short messages in order to optimize network

bandwidth usage [26, 112]. A completion detection algorithm [29] is used to

detect when all updates have been applied to data sources.

5.7.3 A heuristic for dynamic load balancing

Tree-based methods are well-suited to situations in which data elements are

inhomogeneously distributed over the simulation domain. As such, these al-

207

gorithms are subject to severe load imbalance, as demonstrated in Figure 5.6.

Distree provides a communication-heuristic based load balancing strategy

that attempts to balance both computational load and communication vol-

ume. Previous work [102] has shown that strategies that map pieces onto PEs

based only on the computational load of each piece, can achieve good load

balance, but simultaneously incur significant communication overhead. Our

algorithm, called Orb3dLB, allows the programmer to provide hints about

the location of each tree piece in simulation space. The Distree framework

treats proximity in simulation space as a strong determinant of the volume

of communication between tree pieces. Together with this heuristic, an or-

thogonal recursive bisection strategy is used to map tree pieces onto PEs.

Figure 5.7 shows the improvement in performance with Orb3dLB in the con-

text of a Barnes-Hut simulation of a realistic, non-uniform distribution of 5

million particles.

128 256 512 1024 2048
1

10

100
94

50

26

14

8

55

29

14

8

5

Load balancing improves performance

Barnes-Hut, 5m dwf data set

NoLB
Orb3dLB

Processors

E
xe

cu
tio

n
tim

e
(s

)

Figure 5.7: Performance improvement due to the communication heuristic
load balancing strategy of Distree. For each core count, the left column shows
performance without load balancing, and the right column, performance with
load balancing switched on. Performance numbers are given for a Barnes-Hut
simulation of a non-uniform, five million particle input distribution.

5.8 Composing the elements of the Distree framework

Figure 5.8 summarizes the interactions of the various components of Distree.

208

Software
Cache

Visitor Visitor

Pieces

Request remote
data

Respond with
subtree

Callback

Processor 1

Processor 2

Walks

Visitor
methods

Request

Figure 5.8: Schematic of the overall flow of control in a Distree traversal.
The participating entities are visitors, walks, and the software cache. The
walk provides an ordered iteration over tree nodes, and is guided by the
visitor, which uses the nodes it receives for computations. A traversal over
the tree generates remote data requests, which are mediated by the software
cache. Lightweight continuations are created on data misses, to be resumed
upon receipt of remote data.

The tree walk hides the implementation of the distributed tree data struc-

ture, and performs an ordered iteration over the nodes and leaves of the tree.

The visitor processes the nodes visited by the walk, in a manner specified by

the programmer. It dictates which nodes should be expanded by the walk

into their children. The amount of local data is increased by combining the

subtrees present on an SMP. The software cache enables remote data to be

reused by co-located traversals with similar data access patterns. Finally,

the load balancer takes into account the computational load exerted by tree

pieces, as well as their spatial layout, to map them to PEs in an intelligent

manner.

We now provide two examples of tree codes written using Distree. These

examples serve not just to give concreteness to the constructs discussed pre-

viously, but also demonstrate their aptness for tree-based codes.

5.8.1 Barnes-Hut

We have already discussed the Barnes-Hut algorithm in some detail in § 5.3.

Here we will use components provided by the Distree framework to implement

this algorithm. Let us begin by identifying the various entities used in the

program.

209

Tree data

class Particle {

Vector3d<Real> position;

Vector3d<Real> velocity;

Vector3d<Real> acceleration;

Real mass;

};

class Payload {

Vector3d<Real> centerOfMass;

Real mass;

};

(a)

class TreeDataDescriptor {

typedef uint64_t Key;

typedef Particle DataElement;

typedef Payload NodePayload;

};

(b)

Figure 5.9: Data structures required for Barnes-Hut algorithm, and a
TreeDataDescriptor that is used to instantiate the distree::Node<> tem-
plate. The TreeDataDescriptor defines the key, node payload and data ele-
ment type for the tree.

Figure 5.9(a) shows the Distree particle and node data structures to be

used in the tree. The particle and node data types are used to create a tree

data descriptor. As mentioned in § 5.2, the tree data descriptor collects in

one place types that are of interest to Distree, but defined by the user. In

our case, the TreeDataDescriptor class states that each node/data element

has a 64-bit key, data elements have the type Particle and each node has a

payload of type Payload.

Tree pieces

Functionally, a tree piece is a container for a portion of the global, distributed

tree. From the point of view of the execution model, a tree piece is a message-

driven chare that may be migrated across PEs by the load balancer. A

tree piece must derive from the distree::Piece class, so that it inherits

functionality for decomposition, tree building, and tree traversal.

210

class BarnesHutTreePiece :

public distree::Piece<TreeDataDescriptor> {

vector<TreeDataDescriptor::DataElement> myParticles_;

vector<distree::Node<TreeDataDescriptor> *> myLeaves_;

void load(...);

void decompose(...);

void build(...);

void gravity(...);

void integrate(...);

};

For our Barnes-Hut application we define the BarnesHutTreePiece class.

Each piece contains a number of particles, and an (initially empty) list of

pointers to the leaves that will hold the particles decomposed onto it. The

list myLeaves is properly initialized by the Distree framework during tree

building.

The tree piece class defines a number of methods. Particles are loaded in

parallel with other tree pieces using the programmer-defined load method.

The decompose method is provided by the distree::Piece parent class, and

decomposes the input particles over the set of tree pieces using either Oct

or SFC decomposition. Similarly, the distree::Piece’s build method con-

structs an Octree over the particles assigned to each piece after decomposi-

tion. After building the tree, the Distree framework also performs tree piece

consolidation and remote frontier annotation.

In our example, both data and work are distributed over the pieces ar-

ray. We compute the net gravitational force on each particle of a tree piece

by invoking the gravity method on it. The gravity method instantiates

traversals by using Distree constructs, as we shall see later. Finally, particle

trajectories are integrated through the user-provided integrate method.

Tree visitor

Next, let us examine the tree visitor class for gravity computation. Recall

that traversal happens in parallel on each tree piece. Each tree piece initiates

a single, fine-grained traversal for every one of its local leaves. Call such a

211

local leaf the target (since forces are being evaluated on its particles). The

traversal’s visitor maintains a pointer (myPiece) to the tree piece that initi-

ated it, as well as a pointer to the target leaf (myTargetLeaf). The visitor

defines computational, and state-update actions, as shown below:

class GravityVisitor {

// state

BarnesHutTreePiece *myPiece_;

distree::Node<TreeDataDescriptor> *myTargetLeaf_;

// behavior

template<typename NodeType> bool node(NodeType *n);

void leaf(TreeDataDescriptor::Key sourceLeafKey,

TreeDataDescriptor::DataElement *sources,

int nSources);

void miss(TreeDataDescriptor::Key missedNodeKey);

void hit(TreeDataDescriptor::Key hitNodeKey);

};

The visitor’s node method is invoked once for every source tree node that is

visited during the traversal for the target leaf. The node method of the visitor

encapsulates the essence of the Barnes-Hut algorithm: if the target leaf is

far enough away from a source, we compute the approximate Barnes-Hut

interaction between the two, and return false. This signals to the top-down

walk that the source node should not be expanded into its children for the

current traversal. Otherwise, the target and source are too close, and we

consider the children of the source in turn.

212

bool GravityVisitor::node(distree::Node<TreeDataDescriptor> *n){

if(!Physics::open(myTargetLeaf_, n)){

Physics::forces(myTargetLeaf_, n);

return false;

}

return true;

}

void GravityVisitor::leaf(TreeDataDescriptor::Key sourceLeafKey,

TreeDataDescriptor::DataElement *sources,

int nSources){

Physics::forces(myTargetLeaf_, sources, nSources);

}

For every source visited that is a leaf, the visitor computes the pairwise

forces between the target leaf and the particles within the source leaf.

void GravityVisitor::miss(TreeDataDescriptor::Key missedNodeKey){

myPiece_->oneMoreOutstanding();

}

void GravityVisitor::hit(TreeDataDescriptor::Key hitNodeKey){

myPiece_->oneLessOutstanding();

}

Finally, the hit and miss methods are used to tabulate data hits and

misses, so that we can tell when the algorithm has terminated.

Overall control flow

We now show the overall flow of control in the parallel application, beginning

with the constructor of the main object, Main. Thish is where control first

enters the user’s program.

213

distree::TopDownWalk walk;

CProxy_BarnesHutTreePiece pieces;

distree::Tree<TreeDataDescriptor> tree;

Main::Main(CkArgMsg *m){

// process parameters

...

pieces = CProxy_BarnesHutTreePiece::ckNew(10*CkNumPes());

tree = distree::Tree<TreeDataDescriptor>::instantiate(pieces);

walk = distree::TopDownWalk::instantiate(readonly, readonly);

auto nodeCache =

distree::Cache<TreeDataDescriptor>::instantiateNodeCache();

auto leafCache =

distree::Cache<TreeDataDescriptor>::instantiateLeafCache();

nodeCache.addReadonlyClient(walk);

leafCache.addReadonlyClient(walk);

thisProxy.commence();

}

We begin by instantiating a collection of tree pieces using the Charm++

factory method ckNew. It directs the Charm++ ARTS to create ten times

as many pieces as there are PEs. This method returns a handle to the tree

piece collection.

We then inform the Distree framework of this newly created tree piece

collection through the Tree::instantiate call. In turn, we receive a handle

to the global tree, which is used later in the program. Next, we instantiate

the top-down walk object, requesting read-only access to remotely fetched,

cached elements during traversal. Finally, we instantiate software caches for

tree nodes and leaves (both in read-only mode), and commence the iterative

Barnes-Hut algorithm.

214

void Main::commence(){

tree.initialize(pieces);

walk.initialize(tree);

pieces.load(...);

for(int i = 0; i < NumIterations; i++){

pieces.assignKeys(...);

pieces.decompose(...);

pieces.build(...);

walk.sync();

pieces.gravity(...);

walk.done();

pieces.integrate(...);

tree.free();

}

CkExit();

}

The code box above shows the driver code for the Barnes-Hut algorithm.

Each method invocation therein is a blocking call, and returns only after the

corresponding computations have finished on all members of the correspond-

ing chare collections. As such, the code captures the overall structure of the

algorithm. However, the data-driven computation of the traversal is hidden

within the Distree framework. After some initialization, we load particles

from disk into tree pieces, and enter the iterative part of the algorithm.

In each iteration, we: (1) Determine a key for each particle from its posi-

tion (assignKeys); (2) Decompose the simulated particles onto the tree pieces

(decompose); (3) Build the local tree for each tree piece (build). This opera-

tion is automatically succeed by tree piece consolidation, and remote frontier

annotation; (4) Initiate the gravity traversal (gravity, sandwiched between

sync and done calls to the Distree top-down walk object); and (5) use the

calculated forces to integrate particle trajectories over a small time interval

(integrate).

215

We can see that much of the parallel implementation of the Distree frame-

work is hidden from the programmer behind calls to decompose, build, sync

and free. Moreover, save their instantiation, the code includes no mention

of software caches. Therefore, a program that uses Distree is able to very

clearly demarcate the lines between framework code and user code.

This theme of separation of concerns is evident even in the manner in

which the user-provided visitor interfaces with the Distree walk. To see how,

let us look at the BarnesHutTreePiece::gravity() method, which is invoked

in step (4) above.

Traversal initiation

distree::TopdownWalk walk;

distree::TreeHandle<TreeDataDescriptor> tree;

void BarnesHutTreePiece::gravity(...){

gravityOutstanding() = 0;

for(int i = 0; i < myLeaves_.size(); i++){

GravityVisitor *g = new GravityVisitor(&myLeaves_[i], this);

walk.instance()->go(tree.root(), g);

}

}

In § 5.8.1, we noted that a fined-grained traversal is instantiated for each

local leaf of a tree piece. The definition of the gravity method of the tree

piece class above shows how this is done. An instance each of GravityVisitor

and TopdownWalk are obtained, together constituting a traversal over a par-

ticular leaf local to the tree piece (myLeaves [i])). The traversal is initiated

by invoking the go method on the walk, with the visitor as an argument.

The point at which the traversal starts is given by the first argument of the

method (the root of the tree).

At this point, the Distree framework takes over, invoking various methods

on the programmer-provided visitor objects, and fetching subtrees of the

global tree that are remote to the current SMP processor via the cache, as

necessary.

216

5.8.2 Smoothed particle hydrodynamics

The smoothed particle hydrodynamics (SPH) algorithm [113] is a Lagrangian

(mesh-less) method for the computation of a given kernel over the neighbor-

hood of each point in an input distribution. It is used extensively in compu-

tational astrophysics to simulate the interactions of the dynamics of gaseous

distributions [114], including galaxy and star formation. It is also a popular

method for computing the motion of fluids [115].

At the core of the algorithm is the k nearest neighbor search operation,

which is used to create a cloud of k ≈ 32−64 neighbors around each particle

p. This cloud is used to determine a weighted average of the density at each

particle p, whereafter pressure gradients (and hence force) can be evaluated.

Below, we phrase the SPH algorithm as a composition of two successive

traversal phases. The first, an up-and-down walk, calculates the density dis-

tribution, whereas the second, a top-down walk, uses the calculated densities

to calculate forces due to pressure gradients. The code to initiate data decom-

position and tree building procedures is nearly identical to that in the Barnes-

Hut example, and so we do not discuss it here. The SphTreePiece class used

to encapsulate Distree pieces, is also similar to the BarnesHutTreePiece class

from our previous example. We present only those portions of the SPH code

that are significantly different from the previous example.

class Particle {

Vector3d<Real> position;

Vector3d<Real> velocity;

Vector3d<Real> acceleration;

Real mass, density, pressure;

SphParticleData *sphData;

};

class Payload {

Vector3d<Real> centerOfMass;

Box<Real> boundingBox;

Real radius2;

Real mass;

};

(a)

class TreeDataDescriptor {

typedef uint64_t Key;

typedef Particle DataElement;

typedef Payload NodePayload;

};

(b)

Figure 5.10: The user-provided node and data element structures for the
SPH algorithm; and the tree data descriptor class.

217

Tree data descriptor

The particle and node data structures for the SPH algorithm are similar to

those of Barnes-Hut. However, an SPH Particle has additional density and

pressure attributes. Each node also has a radius2 attribute. This attribute

defines the sphere within which a visited source particle p must lie, in order

for p to be a viable candidate for one of the k-nearest neighbors of any

target particle enclosed by n. Finally, a per-particle, distance-sorted priority

queue (SphParticleData) is maintained in order to efficiently construct the

k nearest neighbors list. The tree data descriptor provides Distree these

concrete classes as template parameters.

Visitors

class DensitySphVisitor : public BaseSphVisitor {

bool node(distree::Node<TreeDataDescriptor> *n);

void leaf(TreeDataDescriptor::Key sourceKey,

TreeDataDescriptor::DataElement *sources,

int nSources);

};

(a)

class DensitySphVisitor : public BaseSphVisitor {

bool node(distree::Node<TreeDataDescriptor> *n);

void leaf(TreeDataDescriptor::Key sourceKey,

TreeDataDescriptor::DataElement *sources,

int nSources);

};

(b)

Figure 5.11: The programmer-defined visitor classes, and its two children,
one each for the density, and pressure gradient walks.

The SPH walk defines two concrete visitor classes, both of which derive

from the common BaseSphVisitor class (not shown). The base class main-

tains a pointer to the tree piece that initiated its traversal, as well as the local

target leaf of particles. In addition, it maintains per-target-particle SPH data

structures such as distance-sorted source-particle priority queues. These are

used to find neighboring source particles for individual target particles within

myTargetLeaf . The DensitySphVisitor calculates density at every target

218

particle by finding its k nearest neighbors, whereas the PressureSphVisitor

computes pressure gradients. We show the node and leaf methods of the

DensitySphVisitor class to outline its behavior.

bool node(distree::Node<TreeDataDescriptor> *source){

return open(myTargetLeaf_,

myTargetLeafSphData_,

source);

}

Every time we visit a node of the tree, we ask Distree to recursively visit

its children only if the opening criterion (open) for the target leaf is satisfied,

given the current set of neighbors (k or fewer) for each of the leaf’s enclosed

particles.

bool open(distree::Node<TreeDataDescriptor> *leaf,

SphLeafData *leafSphData,

distree::Node<TreeDataDescriptor> *source){

Real rLeaf = leafSphData->size() + leafSphData->maxDist();

Sphere<Real> leafSphere(leafSphData->center(), rLeaf);

if(!intersect(source->boundingBox, leafSphere)) return false;

for(auto target : leaf->getParticles()){

if(target->sphData.numNeighbors() < MAX_SPH_NEIGHBORS ||

intersect(source->boundingBox,

Sphere<Real>(target->position,

sqrt(target->sphData.maxDist2()))))

return true;

return false;

}

The opening criterion checks whether the source node is so distant that

its bounding box doesn’t intersect with even the union of the target par-

ticles’ search spheres. If so, we discard the source right away. Otherwise,

we consider the individual search spheres of the target particles, and if any

one of them intersects the source’s bounding box, then we direct the walk to

consider the children of the source in turn (by returning true).

219

void leaf(Key sourceKey,

TreeDataDescriptor::DataElement *sources,

int nSources){

for(int i = 0; i < nSources; i++)

Physics::Sph::adjustNeighbors(&sources[i], leaf(), data());

}

For every leaf of source particles encountered during the traversal, the

DensitySphVisitor performs an all-pairs comparison between the target par-

ticles and the source particles (in adjustNeighbors). The idea is to deter-

mine, for every source particle s and every target particle t, whether s is

closer to to t than any of t’s k current neighbors. If t currently has fewer

than k neighbors, we add s to the priority queue of t without doing any

distance comparisons. We omit the code for adjustNeighbors in the interest

of brevity.

Overall control flow

We now briefly discuss the initialization of the SPH algorithm, and its overall

flow of control.

220

distree::UpAndDownWalk densityWalk;

distree::TopDownWalk pressureWalk;

CProxy_SphTreePiece pieces;

distree::Tree<TreeDataDescriptor> tree;

Main::Main(CkArgMsg *m){

// process parameters

...

pieces = CProxy_SphTreePiece::ckNew(10*CkNumPes());

tree = distree::Tree<TreeDataDescriptor>::instantiate(pieces);

densityWalk = distree::UpAndDownWalk::instantiate();

pressureWalk = distree::TopDownWalk::instantiate();

auto nodeCache =

distree::Cache<TreeDataDescriptor>::instantiateNodeCache();

nodeCache.addReadonlyClient(densityWalk);

nodeCache.addReadonlyClient(pressureWalk);

auto leafCache =

distree::Cache<TreeDataDescriptor>::instantiateLeafCache();

leafCache.addReadonlyClient(densityWalk);

leafCache.addWritethroughClient(pressureWalk);

thisProxy.commence();

}

As before a collection of tree pieces is created using the appropriate factory

method provided by Charm++. Then, a distree::Tree is instantiated with

the algorithm’s tree data descriptor, and up-and-down and top-down walks

are instantiated. Although both walks access remote nodes (through the

nodeCache) in read-only mode, the pressure gradient walk accesses leaf data

in write-through mode. This is done to ensure symmetry of forces: a cached

source particle fetched from some remote tree piece itself experiences reactive

forces due to its interactions with targets (by Newton’s Third Law). Reactive

forces are accumulated on remotely fetched particles, and at the end of the

walk, these particles are flushed back to their owner tree pieces.

221

void Main::commence(){

tree.initialize(pieces);

densityWalk.initialize(tree);

pressureWalk.initialize(tree);

pieces.load(...);

for(int i = 0; i < NumIterations; i++){

pieces.assignKeys(...);

pieces.decompose(...);

pieces.build(...);

densityWalk.sync();

pieces.density(...);

densityWalk.done();

pressureWalk.sync();

pieces.pressure(...);

pressureWalk.done();

pieces.integrate(...);

tree.free();

}

CkExit();

}

The overall flow of control of the algorithm is similar to that of Barnes-

Hut: after loading particles from an input file, they are decomposed onto

tree pieces, and the distributed tree is built using Distree-provided meth-

ods. We initiate the density computation walk first, and when it has com-

pleted, follow up with a walk to calculate pressure gradients. It is when

the pressureWalk.done() invocation is made, that the cache writethroughs

occur.

222

Traversal initiation

Finally, we present the initiation of the two SPH walks.

distree::UpAndDownWalk densityWalk;

distree::TopDownWalk pressureWalk;

distree::Tree<TreeDataDescriptor> tree;

void SphTreePiece::density(...){

for(int i = 0; i < myLeaves_.size(); i++){

DensitySphVisitor *d;

d = new DensitySphVisitor(&myLeaves_[i], this);

densityWalk.instance()->go(&myLeaves_[i], d);

}

}

void SphTreePiece::pressure(...){

for(int i = 0; i < myLeaves_.size(); i++){

PressureSphVisitor *p;

p = new PressureSphVisitor(&myLeaves_[i], this);

pressureWalk.instance()->go(tree.root(), p);

}

}

Note that in the code above, each up-and-down density-finding traversal

begins at a particular leaf of the distributed tree, and not at its root.

5.8.3 Discussion

Given the similarity of the above code to that present in the Barnes-Hut

example, we call attention to the following. When expressed in Distree,

the high-level structures of markedly different algorithms (in our case, the

Barnes-Hut and SPH algorithms) appear very similar. In our estimation,

this points to the goodness of the abstractions provided by Distree.

The differences in algorithms are not structural, but are instead encapsu-

lated within specializations of visitors, and the types of traversals that are

initiated on the tree. Algorithms can be pieced together by appropriately

composing different combinations of walks and visitors. One can imagine a

223

component-based approach to tree code construction using our framework.

A library of commonly-used walks and visitors would be provided, and pro-

grammers could assemble a variety of tree codes using these building blocks.

5.9 Performance results

Let us now consider the performance of Distree code. For the Barnes-Hut

algorithm, we compare performance against a manually tuned code written

entirely in Charm++. However, such a point of comparison was not available

for the SPH code. As such, we only demonstrate good scaling numbers for

that algorithm.

We obtained strong scaling results on the Blue Gene/P machine at Argonne

National Lab. For the Barnes-Hut benchmark, we used two datasets. The

first, dwf, is a 5 million particle data set representing the formation of a

dwarf galaxy [102]. This data set has a wide density variation, with a very

dense center. The second data set, hrwh, has a more uniform distribution of

mass, and contains 16 million particles. It has been adapted from the work

of Heitmann et al. [116] and our own previous work [102]. Both simulations

suffer from load imbalance due to density variations, though these imbalances

are much more marked in the first data set.

For the SPH experiments, we used the dwf data set and a synthetic one-

million particle data set with Plummer statistics [117]. It models, in a semi-

realistic way, the mass distributions of certain star cluster formations, and

is popular among N -body practitioners for its analyzability. The mass dis-

tribution is clustered near the center of the data set, and falls off rapidly in

the radial direction, leading to load imbalance.

For both applications, the load balancing strategy of § 5.7.3 was used to

dynamically reassign tree pieces to PEs based on load measurements.

5.9.1 Barnes-Hut

We compare performance of the Distree version of the Barnes-Hut algorithm

with a hand-tuned, comparable, Charm++ code. The latter was part of the

winning entry to the HPC challenge [26], and has previously demonstrated

good scaling results on up to 32K cores.

224

128 256 512 1024 2048 4096
1

10

100
54.5

28.5

14.4

7.7

4.5
2.9

Barnes-Hut algorithm

5m dwarf

Distree

Charm++

Cores

E
xe

cu
tio

n
 ti

m
e

 (
s)

Figure 5.12: Performance comparison of Distree code (blue) with Charm++
code for the Barnes-Hut algorithm. The input data set was the clustered,
dwarf simulation.

Figure 5.12 compares the performance of Distree code with its highly op-

timized Charm++ counterpart for the 5 million particle, clustered data set,

dwarf. The blue (left) bars are labeled with the average time taken by the

Distree code to complete one iteration of the dominant force computation

phase of the algorithm. As we can see, the Distree code performs compa-

rably with the Charm++ version, especially as the code is scaled up. The

parallel efficiency at 4K cores relative to 128 cores is about 59 per cent.

This is a remarkable result, given that at that scale, we have only about a

thousand particles per core.

256 512 1024 2048 4096 8192
1

10

100

23.9

12.2

6.3

3.5

1.9
1.3

Barnes-Hut algorithm

16m particles (hrwh_lcdms)

Distree

Charm++

Cores

E
xe

cu
tio

n
 ti

m
e

 (
s)

Figure 5.13: Performance comparison of Distree and Charm++ for the 16
million particle, hrwh data set.

In Figure 5.13 we compare the performance of the two versions of the

225

Barnes-Hut algorithm on the uniform, 16 million particle data set, hrwh.

This figure shows even better scaling results than Figure 5.12. We get good

speedups all the way up to 8192 cores. However, in this particular simulation,

we see that the optimized Charm++ has a slight performance edge over its

Distree counterpart. Although the difference in performance between the

two versions is negligible on up to 1K cores, it grows as we scale to 8K cores.

The parallel efficiency at 8K cores relative to 256 cores is about 57 per cent

for the Distree version, and about 65 per cent for the Charm++ version.

5.9.2 SPH

We now assess the performance of the SPH benchmark on the same, Blue

Gene/P machine on two data sets. The first set of tests used the one-million

particle Plummer distribution. For the second set of tests, we used the same

highly non-uniform, five-million particle dwf data set as previously.

64 128 256 512 1024 2048 4096
1

10

100

1000

19.1

9.6

4.9

2.6
1.9

212.5

110.5

62.3

30.6

15.3

8.1

Density computation

1m and 5m points

1m
5m

Processors

E
xe

cu
tio

n
tim

e
(s

)

Figure 5.14: Strong scaling for SPH benchmark on two data sets.

The Distree SPH algorithm scales well on up to 512 cores with the Plummer

distribution. However, performance starts to level off at 1k cores. This is

because at that scale, there are fewer than one thousand particles on each core

(and fewer than a hundred per tree piece), whereas standard benchmarking

tests for production-quality simulators normally feature ensembles of at least

ten thousand particles per core (For instance, in recent results Warren [118]

uses about 100,000 particles per core at scale.) We obtain linear scaling

226

for the larger, dwf data set on up to 4k cores. There was no hand-tuned,

Charm++ version of the SPH code with which to compare performance and

program length. However, we believe that given the asynchronous nature of

the Distree model, the performance of codes written in this framework will

be comparable to corresponding codes written in Charm++. Indeed, our

claim is supported by the similarity in scaling profile of the Charm++ and

Distree versions of the Barnes-Hut algorithm.

5.10 Productivity

Let us make a comparison of the number of lines of code written by the user

when using Distree, and when using only Charm++. We caution that the es-

timates used here are subject to coding styles, as well as the presence of some

comments. Therefore, the numbers here are only a first-order approximation

of the amount of effort expended in writing code.

Overall, the Distree version of the Barnes-Hut algorithm comprised 2199

lines, whereas its Charm++ counterpart consisted of 4603 lines. Therefore,

by basing our application on Distree, we saw a reduction in SLOC of about

52 per cent. Figure 5.15 examines the causes for this reduction.

Actor Adv Const Dcmp DS Iface Init IO LB Par Phys Trav Tree Util
0

200

400

600

800

1000

1200

1400

Charm++
Distree

S
LO

C

Figure 5.15: A comparison of SLOC for the Charm++ and Distree versions
on the Barnes-Hut benchmark.

Most notably, the Charm++ version contains a significant amount of code

for tree building (Tree; 1127 lines or 24 per cent of the Charm++ code),

traversal (Trav; 1158 lines, 25 per cent) and decomposition (Dcmp; 518

lines; 11 per cent). The majority of the code for these phases is pushed

227

into the framework in the Distree version. The only code present in the

Distree version is that required to configure and invoke the corresponding

Distree routines. This results in saved development and debugging effort,

and increased reusability across instances of tree-based algorithms.

The contributions of code for I/O to load particles (IO), load balancing

(LB), physics routines (Phys), utilities for bit-word manipulations (Util), and

data structures describing the nodes and leaves of the distributed tree (DS),

are similar between the two versions. The Charm++ version does not in-

terface (Iface) with Distree. However, it manually sets up (Init) the objects

(actors) of the simulation, which is otherwise done internally by the Distree

framework. The amount of C++ code required to describe the behavior of

the main set of coarse-grained objects (Actor), i.e. tree pieces, is nearly iden-

tical in the two versions. Finally, the code to update particle trajectories by

advancing (Adv) their positions, is comparable in the two versions. How-

ever, the Charm++ version requires some additional parallel code in order

to achieve this.

No point of comparison was available for the SPH algorithm. However, we

note that its implementation in Distree contained 3317 lines of code. So as

to gain some insight into the relative contribution of different phases to the

codebase, we compare the SPH algorithm with the Barnes-Hut algorithm in

Figure 5.16.

Actor Adv Const Dcmp DS Iface Init IO LB Par Phys Trav Tree Util
0

100

200

300

400

500

600

700

800

BH
SPH

S
LO

C

Figure 5.16: Break-up of SLOC for the Distree SPH benchmark.

The break-up shows that the SPH algorithm has a nearly identical count of

SLOC for some categories that relate to interfacing with Distree, e.g. Dcmp,

Init and Tree. However, there are some categories for which the SPH al-

228

gorithm requires slightly more code (e.g. Actor, Init, Par and Trav). This

is chiefly due to the fact that the SPH algorithm incorporates two traver-

sals, compared to the single one in the Barnes-Hut algorithm. There are

other categories still, for which the SPH code requires significantly more

code than does Barnes-Hut. These categories, namely DS, Iface, Phys, and

Trav, are larger than their Barnes-Hut counterparts because the SPH algo-

rithm requires more sophisticated data structures, and more code to simulate

physical interactions between particles. Therefore, the size of this last set of

categories is determined mainly by the demands of the application.

Thus, we believe that Distree provides a flexible, productive and perfor-

mance oriented means for writing tree-based algorithms. Our eventual aim is

to provide a larger toolkit of commonly used tree walks, and visitor classes,

which can be used by programmers to rapidly develop and experiment with

tree codes. We believe that Distree’s ethos of assembling algorithms from

components is especially well-suited to this paradigm.

5.11 Related work

Let us close this chapter with a look at some approaches that provide a

counterpoint to Distree. The Global Trees (GT) framework [119] provides

a shared memory view of a distributed, abstract tree data structure. Simi-

lar to our own proposals, GT considers the chunking of tree data, both for

layout in memory and coarse-grained communication over the interconnect.

It also provides a separation of concerns between tree traversals and the

actions performed on each visited node. However, efficiency of tree manip-

ulation operations is provided through relaxed memory consistency models.

We consider the associated use of barriers and fences to be decidedly low-

level in nature, and hard to program with and reason about. By contrast, we

provide an object-oriented, phase-based approach to tree accesses, which al-

lows an efficient implementation (through, for example, bulk communication

of accrued updates) without sacrificing programmer productivity.

Jo and Kulkarni [120] consider the use of compiler-directed tiling of recur-

sive tree traversals to enhance locality in shared memory machines. We have

used similar techniques designed for use in the ChaNGa N -body code [8,102]

to increase cache performance both for remotely fetched data and locally

229

traversed portions of trees. Subsequently, these techniques have been incor-

porated into Distree as well.

The Distree framework has a strong grounding in computational cosmol-

ogy, chiefly due to the author’s involvement in the ChaNGa project. Other

scalable, distributed memory tree codes for the efficient calculation of grav-

ity include GADGET-2 [121] and the MPI-based predecessor of ChaNGa,

PkdGrav [122]. In previous work, Singh et al. [123] have studied aspects of

parallel performance, namely data locality and load imbalance, of tree-based

codes. That study was conducted in the context of shared memory systems,

and represents some of the earliest computer-science oriented investigation of

these algorithms. Shan and Singh [124] provide a discussion of algorithms for

the parallel construction of trees on shared memory multiprocessors. More

recently Zhang, Behzad and Snir [106] have built on that work, and have

developed a PGAS variant of the algorithm. Much in the vein of Gioachin et

al. [8], they provide a systematic discussion of optimization techniques that

enable irregular, tree-based codes to scale on distributed memory machines.

However, distributed trees are not the preserve of computational cosmol-

ogy. The distributed systems community has developed several tree-based

abstractions for loosely coupled concurrent systems. Among these are a

search tree for peer-to-peer applications (Brushwood [125]), a distributed,

fault-tolerant, B-tree that employs migration-based load balancing [126],

and a distributed tree that monitors communication between its constituent

nodes in order to dynamically optimize its topology [127]. These tree data

structures support a richer set of functionality than do the trees of Distree.

However, they have not been designed for the demands of tightly coupled

parallel simulations. As a result, these data structures have not received

wide consideration in the HPC realm.

230

CHAPTER

6

INTEROPERATION

Synopsis. Having explored the productivity and performance benefits of

three specialized languages, we now turn our attention to the matter of in-

teroperation between them. Essentially, we wish to address the question of

how a module written in one specialized language can communicate with a

module written in another. Recall that the languages discussed in Chap-

ters 3, 4 and 5 were incomplete: Each language was useful in expressing

a certain strict subset of all possible parallel programs. Here, we devise a

framework to regain completeness of expression through interoperation. This

chapter provides the final ingredient of our multi-paradigm approach, and il-

lustrates it through a case study. We consider a Barnes-Hut application com-

posed of four pieces, one written in each of Charm++, Charisma, DivCon,

and Distree. We show that the performance of this multi-paradigm code is

competitive with a corresponding, hand-tuned, Charm++ application. We

also argue that the multi-paradigm code is more succinct, and presents a

global view of control flow where possible. To end, we discuss some of the

shortcomings of our approach to interoperation.

231

6.1 Scope of interoperation

Interoperation between languages has various connotations, each leading to

a different formulation of the overall problem of enabling communication

between entities within multiple modules. Therefore, we first clarify the

scope and context of interoperation in this work. To do this, we identify five

broad kinds of interoperation supported by existing work:

6.1.1 Interface description

The model of defining language-neutral interface specifications between mod-

ules written in different languages, has been a particularly successful one.

Since its inception in 1991, CORBA [128] has influenced several enterprise-

related efforts to enable interoperability between languages, e.g. Java’s RMI.

Objects export methods that may be remotely invoked through an interface

definition language (IDL). An associated compiler generates glue code to

enable remote access to objects through handles of some sort.

This approach has been adopted in the realm of HPC as well, with projects

such as SIDL (Scientific IDL) [129]. SIDL and its associated toolkit, Ba-

bel [130], enable modules written in C++, Fortran, Java and Python, among

other languages. Unlike CORBA, SIDL provides its own language-neutral

multidimensional arrays, and supports complex data types. The Common

Component Architecture (CCA [131]) elaborates on this idea, allowing ob-

jects to define and modify their interfaces at run-time. In P-COM2 [132], a

component is modeled as a state machine with transitions on external inter-

action (communication) events. Components are assembled into a data flow

graph, and a compiler generates the necessary MPI (among other targets)

code to realize the application.

Protocol Buffers [133] makes similar, IDL-based provisions for distributed

applications. Just as with tools aimed at HPC applications, Protocol Buffers

automates serialization and deserialization of data.

6.1.2 Component frameworks

This approach is popular in the multiphysics simulation community. Mod-

ules describing different regimes or dynamical systems are created within a

232

single framework, which typically makes provisions for the orchestration of

modules, data management, and expression of concurrency. The framework

also generally provides common building blocks that can be incorporated into

more sophisticated algorithms.

A good example of this approach is the Roccom [134] framework. The

primary view of data is structured and unstructured meshes, thereby lim-

iting its application, in general, to PDE solvers. POOMA [135] provides a

more generic data model, wherein so-called fields and particles are supported.

PETSc [136] takes a lower-level approach to the provision of algorithmic

building blocks for PDE solvers. It provides vectors and matrices as its pri-

mary data structures, and contains scalable implementations of a number of

important numerical methods. As such, it has seen widespread adoption in a

variety of application domains where PDE solvers are employed. The Uintah

Computational Framework (UCF [137]) is based on CCA, and provides a

toolbox of libraries and components to develop PDE solvers using structured

AMR grids on distributed memory machines. Instead of specifying object

interfaces explicitly, in UCF the user describes his application as a taskgraph

of acyclic dependencies between tasks.

6.1.3 Complementary or compatible paradigms

More recently, the use of hybrid programming models has gained prominence.

In this scheme, the SPMD model of MPI is complemented with another lan-

guage, with the purpose of simplifying the expression, and in some cases,

improving the performance of shared memory communication inherent in

the user’s application. For instance, Tang et al. [138] and Jones et al. [139]

have used MPI to express inter-node communication, and OpenMP to ex-

press intra-node parallelism in different application domains, and to very

good effect. Of more general interest is the study of Cappello and Etiem-

ble [140], who demonstrate good results on the NAS benchmarks using the

same MPI+OpenMP scheme.

Dinan et al. [141] have examined the different problem of coupling two

SPMD language, namely MPI and UPC. They propose that MPI be used to

express communication between subgroups of UPC threads that themselves

span multiple nodes. The idea is that users can intra-group communication

233

productively, using the PGAS primitives of UPC. This allows them to limit

the size of processor groups that engage in distributed shared memory com-

munication, and therefore improves efficiency. Similarly, the Global Arrays

abstraction [80] can interoperate with MPI, so as to combine distributed

shared memory accesses with irregular communication patterns. Finally,

there has been a recent proposal to include explicit support for shared mem-

ory programming in the MPI 3.0 standard itself, leading to the so-called

MPI+MPI hybrid programming model [142].

6.1.4 Embedding of specialized languages

The Delite [15] project has goals that are very similar to those of this thesis.

That project is developing higher-level DSLs that can be transformed into

high-performance, lower-level components. The Delite project has a broader

scope than this thesis, however, in that it targets heterogeneous architectures.

The languages described in this thesis are not DSLs, since they capture in-

teraction patterns between units of computation. Therefore, they are more

broadly applicable than DSLs. However, if one were to draw a compari-

son, the specialized languages described herein would be akin to external or

stand-alone DSLs, since they are parsed independently, and have individual

compiler and runtime substrates. On the other hand, the Delite project fo-

cuses on internal DSLs, i.e. those that are embedded within a host language,

which in their case is Scala. The Delite framework also makes provisions for

lightweight modular staging [143], so that DSL-specific optimizations can be

made in the host language’s compiler infrastructure.

6.1.5 Multi-paradigm languages

Finally, we consider languages that themselves allow for programs to be ex-

pressed in multiple paradigms. By virtue of being written in such a language,

modules expressed in different paradigms would at least nominally be inter-

operable. Even though such modules may be interoperable, it is non-trivial

to compose them into a functioning program, given the different semantic

domains of each paradigm. Nonetheless, the single language substrate on

which the paradigms are based does simplify the process of interoperation.

234

In this regard, such multi-paradigm languages are similar to the specialized

languages of this thesis, which are all based on the Charm++ runtime sys-

tem.

A prime example of this approach is the Oz [13] language, and its ac-

companying runtime system, Mozart [14]. The language contains constructs

for object-oriented, functional, logic, and message-passing, and data-driven

thread programming. It is primarily intended to be a language for the devel-

opment of distributed programs, and not tightly coupled parallel programs.

6.1.6 This thesis

In this chapter, we will examine a limited form of interoperation between

specialized languages that are based on a single runtime substrate. We will

see in § 6.3 that for modules written in Charisma and DivCon, we require

require a limited form of interface definition, similar to the model adopted

in § 6.1.1. In a manner similar to the component frameworks of § 6.1.2, the

modules expressed in our specialized languages will often require so-called

glue code to compose different modules. Although we show in § 6.6 that

such glue code makes a minor contribution to overall application code, a

limitation of the present work is that it must be written by the programmer.

Unlike MPI and UPC (§ 6.1.3), the languages of this thesis are not seman-

tically compatible, nor are they applicable in complementary settings (e.g.

intra-node OpenMP and inter-node MPI). This is one of the challenges to

interoperation that we address in the following section. Another feature that

distinguishes our work from that of § 6.1.4 is that our specialized languages

are not embedded, and have greater applicability than DSLs However, we

share the objective of embedded DSLs in attempting to provide performance

and productivity through specialization. Finally, the mechanism that en-

ables multi-paradigm programming in this thesis, is similar to that employed

by the Oz language. Namely, Charisma, DivCon and Distree are all based

on the same runtime system, thereby facilitating interoperation. Whereas

Oz incorporates constructs for multiple paradigms in a single language, we

advocate a separation between individual paradigms in the form of language

boundaries.

235

6.2 Challenges to interoperation

There are two chief obstacles that we must overcome in order to develop

a means of interoperability between the languages discussed in this thesis.

First, the languages have very different domains of application: whereas

Charisma expresses data-independent control and data flows, DivCon is

specifically designed to express recursive, tree-structured computations on

distributed sets of data. By contrast, the Distree framework is meant to

express algorithms based on distributed trees. In providing a mechanism for

interoperation, we must somehow reconcile the disparate domains of appli-

cations of the three languages.

Second, if modules written in these three languages are to interoperate in

an efficient manner, they must effectively share the processors of the parallel

machine. Moreover, processors must be shared in a manner transparent

to the programmer. We discuss the two issues of semantic disparity, and

resource sharing in greater detail below.

6.2.1 The problem of effectively sharing processors between
modules

Let us first consider a general concern relating to the execution of multi-

module applications on parallel machines. Namely, one must efficiently divide

processors among the modules of the application.

We first examine two traditional approaches to processor sharing in the

context of SPMD programming models, such as MPI. The problem here is

twofold: (i) Messages may only be sent to processes or ranks, and messages

are tagged so as to distinguish between messages addressed to individual

modules; and (ii) The control flow of the entire process, and not just an

individual module executing within a process, must be specified by the SPMD

application code. This leaves us with two ways to write a multi-module

SPMD application:

• Phrase the control flow of each process/rank as a scheduler, which re-

peatedly posts “receives” for messages with any possible tag. When

such a “receive” eventually completes, the message is dispatched to

the intended module within the process. This is tantamount to imple-

menting a message-driven infrastructure within an SPMD framework.

236

Although acceptable from the performance standpoint, this approach

implies that for the addition of each module into the application, one

must modify the scheduler code. Furthermore, one must be aware of

tags used by other modules when adding a new one to the application.

Clearly, language-level support for modularity would be superior to this

scheme.

We must also consider the question of which module instances are

brought together on the same rank, and its implications for locality

of data access. Consider an astrophysics application with two modules,

one for tree-based gravity computation, and the other performing an

Eulerian, unstructured mesh-based hydrodynamics computation (un-

like the Lagrangian method described in § 5.8.2). Typically, a graph

partitioner [144] is used to decompose the hydrodynamics mesh over

the set of available ranks. In this case, the k-th piece of the mesh

has no correspondence to the k-th rank’s gravity subtree, leading to

poor locality of data access, since gravity computations will involve the

hydrodynamics particles, but not vice versa. Some dynamic, run-time

instrumentation is required to measure communication volume (i.e. the

degree of coupling between instances of different modules).

• A second approach to executing multi-module applications is to divide

the set of processors among modules. In the following subsections, we

enumerate the two basic ways to accomplish this. In the process we

recapitulate some of the arguments made previously in the work of

Gursoy and Kale [145].

Space-division

Typically, the set of available processors is a priori divided among the various

modules of the program. The proportion of processors assigned to each

module is decided by a static load balancing scheme, taking into account

the anticipated, or previously measured, computational load exerted by each

module. This can be problematic: First, the load of each module must

be estimated accurately. In practical terms, one must repeatedly sample

application performance with different static partitionings of the machine,

and iteratively refine the partitioning. This tuning must be done to some

237

extent for each instance of the application’s input, and every time a code is

run on a new parallel machine.

Time-division

By contrast, we may divide the processors of the machine among modules in

time. That is, each module runs exclusively on the entire parallel machine,

and is then replaced by the next module, as determined by a globally known

schedule. This technique is feasible only when the application’s dynamics

permit such a lock-step execution between modules. As a counterexample,

consider a coupled multi-scale simulation of a biophysical simulation, which

is gorverned chiefly by Newtonian dynamics (a la namd [66]), except that at

so-called active sites of binding, and interaction between molecules, quantum-

mechanical effects, as simulated by a QM module (e.g. OpenAtom [9]),

become important. It might happen that there are several such localized

interactions, and therefore it is inefficient to yield the entire machine to their

execution while the molecular dynamics computations are suspended. Even

if the application permits time-division of processors, there is often idle time

during the execution of a particular module. This idle time arises due to

a number of effects, including load imbalance. If we allowed the concurrent

execution of multiple modules on processors of the parallel machine, idle time

in one module could be overlapped with useful work in another (subject to

data dependencies).

Multi-module execution in Charm++

Four provisions are made by the Charm++ programming model to enable

the efficient composition of parallel modules.

First, Charm++ allows the explicit definition of modules at the program-

matic level. The basic computational units within modules, namely coarse-

grained objects (called chares), can be uniquely identified across modules

and across processors. A chare within a module that wishes to communi-

cate data to another chare, possibly in a differently module, simply sends

it an active message, which specifies both the recipient of the message, and

the work to be performed upon its receipt. Conversely, a chare that must

synchronize with another chare (perhaps in a different module) before per-

238

forming a given computation, need only specify that the computation is to

be performed upon the receipt of a corresponding message from the other

chare.

Second, the Charm++ scheduler on each processor continually dequeues

messages received from other processors, and schedules their execution on

the appropriate chares. Therefore, computations occur in a message-driven

fashion, subject to the availability of data.

Third, the user’s application is decomposed into the activities of objects.

Thus, there is an explicit distinction made between processors and the units

of work performed on them. Objects can therefore be migrated to effect more

efficient mappings of work to processors. This is an especially powerful tech-

nique when combined with Charm++’s ability to dynamically instrument

objects for load and communication. In the context of the two-module astro-

physics example discussed in § 6.2.1, we could dynamically determine, based

on the degree of coupling of objects, a good mapping of objects to processors.

Fourth, Charm++ allows modules to be dynamically instantiated and de-

stroyed. The objects within a module can then be distributed across proces-

sors according to a strategy provided by the user. This capability is critical

in adapting to the requirements of dynamic applications, such as the one

discussed in § 6.2.1.

We contend that these features allow Charm++ to efficiently and produc-

tively compose parallel modules. In this chapter, we leverage Charm++’s

support for multi-module programs to develop a means for modules to ini-

tiate, exchange data, and synchronize with modules written in different lan-

guages. By virtue of Charm++’s message-driven execution model, a parallel

program that is composed in this way can automatically overlap idle time

with useful work across modules, subject to the availability of data.

6.2.2 The problem of disparity in programming models

We have considered some general issues when running multi-module applica-

tions on a parallel machine, and also proposed to leverage the message-driven

model of Charm++ to mitigate some of them. The programming models of

our three specialized languages present the following confounding factors.

239

Different units of computation

The basic unit of computation in each language differs significantly across

languages.

Charisma is a language that orchestrates computations performed on in-

dexed collections of explicit, coarse-grained objects through the publication

and consumption of values (messages). As such, its basic units of computa-

tion are objects that consume (i.e. wait for) and produce messages. These

explicit computational objects also have unique, identifying names. With the

right hooks in place, this should allow for a particular Charisma module’s

objects, to be accessible from a different module, whether it is written in

Charisma, or in a different language such as Charm++.

DivCon describes computations in terms of implicit, fine-grained tasks,

each one performing the typically small amount of work associated with a

recursive function invocation in a divide-and-conquer program. Therefore,

the basic unit of a DivCon computation is a task that can spawn other tasks.

Unlike Charisma, these units of DivCon computation do not have explicit

names. As such, it is not possible for code outside a given DivCon module

to reference tasks within a DivCon computation.

Finally, tree traversals in Distree are independent, loosely ordered itera-

tions over subsets of tree nodes and leaves. These traversals perform fine-

grained calculations on tree data, either available locally, or fetched from a

remote source. Distree traversals, similarly to DivCon tasks, are anonymous,

and their execution is driven by the availability of tree data.

So, the first question we must address is, how can we instantiate the ba-

sic computational units of one module from another, in a uniform manner?

When addressing this issue, we would like to avoid the pairwise interoperation

problem, i.e. having to develop pairwise schemes for interoperation between

specialized languages. For instance, we would like to have a uniform way of

instantiating a recursive DivCon computation, regardless of the language in

which the instantiating module was written.

Different data and synchronization models

The basic units of computation in each language employ different modes of

synchronization and data exchange. For instance, Charisma objects consume

240

values. As discussed in § 3.11, these consumption specifications are translated

into message-driven code, whereby an object performs a specified coarse-

grained, sequential computation when it has received all the messages on

which that computation depends. This ability to wait for messages means

that a Charisma object may synchronize with other objects at various points

in its lifetime.

On the other hand, DivCon tasks receive non-array data as arguments

to recursive function calls. These arguments may include references to dis-

tributed DivconArrays. In Chapter 4, we saw that the data within such

DivconArrays is generated by the += operator embedded within foreach in-

vocations on other DivconArrays. Here, we must develop a means to load

such arrays from external code, and thereafter pass them into DivCon. As

concerns synchronization, DivCon tasks cannot synchronize with each other

unless they share a parent-child relation. Even then, a parent task may only

(asynchronously) spawn a child, and implicitly synchronize with it when it

reads the results generated by the child task. Similarly, if a child invocation

receives as arguments values generated by the parent, its spawn is delayed

until those values are ready.

Finally, the Distree framework expects tree data elements (e.g. particles)

to be submitted on a per-processor basis, following decomposition. It then

constructs a tree based on these decomposed data elements. Thereafter,

concurrent traversals over the tree access local and remote tree data. These

traversals are independent, in that they do not synchronize with each other

at all. Indeed, a traversal may only be instantiated, and thereafter iterates

over tree nodes and data elements. The order in which the iteration takes

place is guided by the behavior of the visitor associated with the traversal.

The lifetime of an individual, fine-grained traversal is implied by the behavior

of its visitor as it processes nodes and data elements in the tree.

In order to avoid the pairwise interoperation problem here, we require that

each language expose an interface through which it receives data, and that

it may be invoked from every other language. For the particular case of

Charisma, we also require a means to explicitly transfer control into and out

of Charisma code.

241

6.3 Mechanisms for interoperation

We avoid the the pairwise interoperation problem by using Charm++ as

the common denominator for our specialized languages. That is, each lan-

guage provides a Charm++/C++ interface for instantiation and data com-

munication. Each language also has sequential components from which such

Charm++ code can be invoked. Therefore, if a module m1, written in one

language, is to instantiate or communicate data to module m2, possibly writ-

ten in a different language, it does so by invoking the Charm++/C++ bind-

ings for m2. The invocations themselves are a part of the sequential compo-

nents of m1.

Next, we describe the techniques developed in this thesis to facilitate in-

teroperation between Charisma, DivCon, Distree and Charm++. As we

have hinted previously, three capabilities are required to enable interopera-

tion between any set of languages: First, the external code must be able to

instantiate a new module uniformly, i.e. independently of the language in

which the instantiating module is written. Second, the external code must

be able to communicate data to the basic computational units of a module,

and thereafter be able to extract results from it. Finally, in cases where

it is feasible to do so, external code must be able to synchronize with the

computational units of modules.

In the following subsection, we develop these ideas more fully. First, we

provide C++ bindings for module instantiation and initiation. These bind-

ings are only required for Charisma and DivCon, since Distree is itself a

Charm++-based framework, and by extension a C++ framework. Addi-

tionally, we expose C++ bindings for DivconArrays, thereby allowing user

code to initialize and operate upon these arrays, externally to DivCon. Sim-

ilar arrangements are made to expose Charisma values as C++ objects to

Charm++ code. As a result, message-encapsulated data can flow between

Charisma modules and external code. In this way, Charm++ code can in-

stantiate, initiate and communicate with modules written in the specialized

languages.

242

6.3.1 Initiating a new module

Charisma

A Charisma module that can be instantiated from external (Charm++) code

must be declared as a module instead of a program. This causes the Charisma

compiler to generate a C++ descriptor class (cf. § 3.13) that encapsulates

the Charisma module. The descriptor contains attributes corresponding to

Charisma params and handles to the object collections present within the

Charisma module. As detailed in § 3.13, the descriptor also has factory

methods for instantiating and initiating execution of the module. A callback

is provided in each of these factory methods, to signal completion of module

initialization, and module execution, respectively. An example demonstrat-

ing the incorporation of Charisma modules into Charm++ code has already

appeared in § 3.13.

The above scheme allows Charisma modules to be incorporated into ex-

ternal, Charm++ code. But what about Charm++ modules that are to

be incorporated into Charisma code? Suppose that we want to incorporate

a Charm++ module named MyCharmModule into a Charisma program called

MyCharismaPgm. For simplicity, assume that each module contains a single

object. Suppose that the singleton within the Charm++ object is of type

Foo, and has the name foo. We would like to invoke a method named two

on the Charm++ object from Charisma orchestration code. Let us see what

this entails.

For each externally defined module that is to be incorporated into Charisma

code (which could itself be a program or a module), the user must:

1. Declare the Charm++ module as an extern module. This declaration

serves to inform the Charisma compiler of symbols from the external

module that are used in the Charisma code.

For our example, here is the complete Charisma orchestration code.

It includes the extern module declaration to inform the compiler of

externally defined symbols:

243

program MyCharismaPgm;

extern class Foo;

extern module MyCharmModule

{

object foo : Foo;

} moduleInstance;

orchestrate

{

// can refer to ’moduleInstance.foo’ here

}

A single instance of the external MyCharmModule is defined in the pro-

gram, namely moduleInstance. We can then refer to the object foo

within it as moduleInstance.foo.

2. Define a C++ module container class, similar to the kind automatically

generated for Charisma modules. A descriptor class embedded within

the module container must at least define as attributes proxies to the

collections of objects (chares) to which the Charisma code makes a

reference. If the Charisma code references global, read-only variables

within the Charm++ module, these must also appear as attributes of

the descriptor.

For our example, we define the following module container and (em-

bedded) descriptor class:

244

struct MyCharmModule

{

struct Descriptor

{

CProxy_Foo foo;

Descriptor(const CProxy &f) :

foo(f)

{}

};

static Descriptor instantiate()

{

return Descriptor(CProxy_Foo::ckNew());

}

};

The instantiate method of the module allows generated Charisma

code to obtain an instance of MyCharmModule, and bind it to the orches-

tration name moduleInstance.

DivCon

In § 4.7, we saw that DivCon provided C++ bindings for the invocation of

the root task of a DivCon computation from external code. To recapitulate,

the Divcon::Spawn function initiates a recursive DivCon computation, and

accepts three sets of arguments: (i) configuration parameters for the DivCon

runtime system, (ii) an object instance that encapsulates the arguments to

the root function invocation, and (iii) a callback that is invoked when the

computation finishes. The result of the computation is embedded within a

message passed to the callback.

The invocation of external modules from DivCon can be achieved through

serial DivCon functions. Since these are plain C++ functions, we can

make appropriate function calls to, for instance, initiate another DivCon

computation within an existing DivCon computation.

245

Distree

Finally, § 5.8.1 presented code for the initiation of traversals over tree data

in the Distree framework. Recall that this is a simple, three-step procedure:

(i) obtain a reference from Distree to a walk object of the appropriate type,

e.g. a top-down walk for Barnes-Hut; (ii) create a tree visitor to process

the nodes and data elements of the tree, e.g. for the Barnes-Hut example,

a visitor that computes the gravitational interaction between particles and

nodes; and finally, (iii) initiate the traversal by invoking the walk() method

on the walk object, passing into the call the node at which to begin the

traversal, and a reference to the visitor object. Since Distree is a Charm++

framework, we do not require any special mechanisms to initiate Distree

traversals. A few lines of C++ suffice.

6.3.2 Communicating data, and synchronizing

We now address the question of how external code can synchronize, and

exchange data with the basic computational units of the three specialized

languages.

Charisma

Collections of objects in Charisma publish and consume values. Recall that

the sequential, C++ methods of Charisma objects receive consumed values

encapsulated in ConsumedValue’s. They bind results to published values by

invoking the produce/reduce methods on ProducedValue’s. This scheme can

be extended to interface with methods invoked on coarse-grained, Charm++

objects (which are extraneous to Charisma). First, notice that Charisma

implicitly expects user-defined sequential methods to publish results (if the

method is declared as having any) before control returns from the method

invocation.

However the situation is different when Charisma orchestration code in-

vokes a method on an object that is defined in an external module. To wit,

we cannot assume that the values published by that method will be ready

when we return from its invocation. Indeed, when such a generic Charm++

method is invoked on an extra-Charisma object, it might asynchronously

246

spawn new computations. The result of this computation might become

available to the object only much later, via a callback.

Let us return to our simple example, wherein MyCharismaPgm referenced an

external, Charm++ module called MyCharmModule. The complete orchestra-

tion code for MyCharismaPgm follows:

program MyCharismaPgm;

extern class Foo;

extern module MyCharmModule

{

object foo : Foo;

} moduleInstance;

class Bar;

object bar : Bar;

value p,q : int;

orchestrate

{

(p) <- bar.one();

(q) <- foo.two(p);

bar.three(q);

}

The Charisma code defines a single object, bar of type Bar, and a value

that enables communication between bar and foo. The orchestration code

dictates the following sequence of events: sequential method Bar::one is

invoked on bar, leading to the production of p. This produced value is con-

sumed by foo via Foo::two. This method publishes q. Finally, bar consumes

the value q through Bar::three. We note that foo being an externally de-

fined object, its method Foo::two may not publish p before returning. For

instance, Foo::two could invoke another parallel library, whose eventual re-

sult is to be bound to the value p that it publishes:

247

// This is a Charm++ method,

// external to Charisma and invoked by it.

void Foo::two(const Charisma::ConsumedValue< int > &p,

Charisma::ProducedValue< int > &q)

{

myLibrary->Invoke(*p,

CkCallback(CkIndex_Foo::result(NULL),

thisProxy));

// returning without publishing q!

}

void Foo::result(ResultMsg *msg)

{

int libraryResult = msg->result;

// want to publish ’libraryResult’ to

// ’q’ at this point.

}

To allow for cases such as the one above, we must provide a way for

external code to delay returning control to Charisma until it has actually

bound results to the values published by it. That is, control should not be

transferred back to Charisma implicitly, but rather explicitly, as dictated by

external code. To do this, we introduce the C++ class Charisma::Token.

External code can explicitly transfer control back to Charisma by invoking

the Charisma::Token::Advance method on an object of this type. Returning

to our illustration, the following rewrite of the above code would serve our

purpose:

248

void Foo::two(const Charisma::ConsumedValue< int > &p,

Charisma::ProducedValue< int > &q,

Charisma::Token &token)

{

myLibrary->Invoke(*p,

CkCallback(CkIndex_Foo::result(NULL),

thisProxy));

// returning without publishing q!

// save token, so that we can explicitly

// transfer control back to Charisma when ready.

m_Token = token;

m_Q = q;

}

void Foo::result(ResultMsg *msg)

{

int libraryResult = msg->result;

// want to publish ’libraryResult’ to

// ’q’ at this point.

m_Q.produce(libraryResult);

m_Token.Advance();

}

Notice the appearance of the Charisma::Token as the final argument to

the Foo::two method. We now initiate the parallel library as before, and

expect control to return to foo in its Foo::result method (as dictated by

the callback argument to the library invocation). We save the token and

ProducedValue container in instance attributes Foo::m Token and Foo::m Q,

respectively. This allows us to produce the saved q value only when we

have the appropriate result (libraryResult) to bind to it. Following this, we

return control to Charisma by invoking the Advance method on the previously

saved token.

We present a concrete example of the inclusion of external, Charm++ code

into a Charisma module in § 6.4.

249

DivCon

In § 4.7 we covered techniques by which to pass arguments (both scalars

and references to DivconArrays) to the root invocation of a recursive DivCon

function. Here we only recall that compiler-generated argument wrappers are

used for this purpose. The DivCon function that spawns such a computation

also expects a callback argument, which dictates the point at which control

re-enters external code, having finished the DivCon computation. The result

of the computation is available to this callback in the form of a Charm++

message.

We have noted previously that DivCon supports a very limited form of

synchronization between tasks, namely that a parent may asynchronously

spawn children, and synchronize with them only to receive their results,

at which point the children no longer exist. Therefore, it is not possible to

synchronize with tasks from extra-module code. However, external code may

asynchronously spawn the root task, and synchronize with its completion in

an associated callback.

Distree

In Distree, tree data is held in a collection of coarse-grained objects that

serve as containers, called tree pieces. Typically, data elements are loaded

into tree pieces from an input file. Since tree pieces are Charm++ chares,

extra-module code may remotely invoke entry methods on them. There-

after, as outlined in § 5.5.3, they are deposited into the Distree framework.

The framework then performs data decomposition, tree building and con-

solidation automatically. § 5.8.1 shows how, thereafter, traversals can be

instantiated using a C++ API. Once initiated, these traversals execute to

completion, based on the availability of requested tree data. It is not possi-

ble to synchronize with these fine-grained tasks from external code. In fact

there is no explicit provision for traversals to communicate/synchronize even

amongst themselves.

250

6.4 An example of interoperation

So far, we have discussed the basic requirements, and compiler support pro-

vided to enable interoperability between the languages described in this the-

sis. We now give a concrete example of this interoperability. In this section,

we will construct a simple, parallel simulator of particles moving under the

force of gravity. We will base this example on the detailed exposition of the

Barnes-Hut algorithm given in § 5.3. Broadly speaking, the application is

composed of the following components:

1. A Charisma module that expresses the data-independent flow of con-

trol and data in the algorithm. The parallel invocation of sequential

methods on tree pieces in such phases as particle loading, local tree

building, and trajectory integration, is especially well-suited to expres-

sion in Charisma.

2. A DivCon Oct-decomposition module, identical to the code seen in

§ 4.5.2.

3. A Distree module that performs tree building, consolidation and traver-

sal, as discussed in § 5.3.

4. A Charm++ module that serves to glue together the above three mod-

ules. This module instantiates the Charisma module, and thereafter

serves as a conduit between the code encapsulating overall control flow

(in Charisma) and the DivCon and Distree modules that are invoked

to implement particle decomposition and tree traversal, respectively.

6.4.1 Structure of the multi-paradigm Barnes-Hut application

In this subsection, we take a closer look at the structure of the multi-paradigm

Barnes-Hut application. We begin with its overall control flow, which is ex-

pressed in Charisma. The preamble tells us the module’s constituent collec-

tions of objects, and the values that the publish and consume in order to

communicate.

251

module BhControlFlow;

class Dummy;

class BoundingBox, TraversalData;

value box : BoundingBox;

value d : Dummy;

value stats : TraversalData;

class Glue, TreePiece;

class Config;

extern module GlueModule

{

param config : Config;

object glue : Glue;

objects pieces : TreePiece[];

} Bh;

The control flow module is named BhControlFlow. We declare a few exter-

nally defined classes, named BoundingBox, TraversalData and Dummy. These

classes are used to define individual values, which in turn help to describe the

flow of data in the application. The value named box, of type BoundingBox,

encapsulates the physical extent of the simulation volume, and is used to

assign integer keys to particles based on their positions. The value named

stats, of type TraversalData, is used to communicate aggregated statistics

about the tree traversal. Finally, d is used to express synchronization between

different objects within the application. The Dummy class doesn’t contain any

useful data. It is solely used as a means to explicitly specify an ordering on

methods invoked within the Charisma code. These values are discussed more

concretely following the declaration of the external module GlueModule.

GlueModule encapsulates entities that are not defined within Charisma

code, but are nonetheless referenced within it, for the purpose of orchestra-

tion. For our purpose, we include as its members a singleton object, glue,

of type Glue, a collection of TreePiece objects pieces, and finally, config,

a structure encapsulating several simulation-related parameters. These sym-

bols are all defined and instantiated externally. (As we will see later, they are

252

instantiated in the Charm++ piece of this code.) We create an instance of

this extern module by suffixing it with the identifier Bh. This identifier refers

to an instance of the external module in the rest of the orchestration code.

As mentioned earlier, the idea behind declaring externally defined (e.g. in

Charm++) objects is that they can perform tasks that cannot be expressed

in Charisma, e.g. tree traversal.

Let us now consider the main orchestration block of the module. We

have broken up this code into several pieces, so as to facilitate a simpler

exposition. In the first part of this code, we initialize the Distree framework,

by invoking the InitDistree method on object glue of the external module

Bh:

orchestration{

Bh.glue.InitDistree();

...

}

The Glue class (defined in C++) is used to instantiate a singleton Charm++

object. It defines InitDistree() as a remote method that, when invoked,

runs to completion. The body of this method initializes the Distree frame-

work, as shown below:

253

void Glue::InitDistree(const Charisma::Token &token){

m_Token = token;

// CREATE TREE CONTAINER

m_TreeHandle = MyTreeHandleType::

instantiate(m_GlueModule.pieces,

m_Config.cacheChunkDepth);

// CREATE TRAVERSAL MANAGER

CacheAccessType ro = CacheAccessType::GetReadonly();

m_GravTravHandle = GravityVisitor::

TraversalType::instantiate(ro, ro);

// CREATE CACHES

NodeCacheClientsType nodeCacheClients;

nodeCacheClients.add(m_GravTravHandle);

MyGravityCacheManagerType::Handle nodeCacheHandle =

MyGravityCacheManagerType::instantiate(0, nodeCacheClients);

LeafCacheClientsType partCacheClients;

partCacheClients.add(m_GravTravHandle);

MyGravityCacheManagerType::Handle particleCacheHandle =

MyGravityCacheManagerType::instantiate(0, partCacheClients);

// SETUP CACHES FOR TRAVERSAL

m_GravTravHandle.setNodeCache(nodeCacheHandle.proxy());

m_GravTravHandle.setLeafCache(particleCacheHandle.proxy());

CkCallback callback(CkIndex_Glue::InitializeGravityTraversal(),

thisProxy);

// initialize tree: control will return to this object’s

// InitializeGravityTraversal method after tree initialization.

m_TreeHandle.initialize(callback);

}

The Glue::InitDistree method accepts a single argument, in the form of

the previously discussed Token class, which facilitates explicit control transfer

between Charisma and external code. In this context, its purpose is to allow

254

the called function to inform Charisma when it is safe to execute to the next

orchestration statement of the Bh.glue object. To recapitulate, this explicit

synchronization is required because from the point of view of Charisma,

methods invoked on externally defined objects behave differently from those

invoked on objects defined within Charisma. Specifically, control returns

immediately to the orchestration code upon exiting a sequential method of

a Charisma object.

On the other hand, external objects are message driven, and the invocation

of a method f on such an object might trigger parallel work. In general, the

results of that work will not available immediately when we return from

f . Therefore, external code must explicitly pass control back to Charisma

through token.

The body of the Glue::InitDistree method sets up the tree container,

traversal and node/leaf caches that will be required for the Distree part of

the computation. Thereafter, we create a callback, which is invoked by the

Distree framework when it has finished its initialization. The actual initial-

ization of the framework is triggered by invoking the initialize method on

the previously created tree container’s handle.

Eventually, Distree invokes the callback given to it in the initialize()

call. This directs control to the Bh.glue object’s InitializeGravityTraversal

method. This method in turn triggers the initialization of Distree’s top-

down traversal manager on all processors. Once again, control leaves the

Bh.glue object for the Distree framework, to finally return to it in the

Glue::Advance() method:

void Glue::Advance()

{

m_Token.Advance();

}

The Glue::Advance method returns control to Charisma following the

successful initialization of the Distree framework. This is done by calling

the Advance method on the token that was previously saved in Bh.glue’s

Glue::InitDistree method. Compiler-generated code then transfers control

to the foreach statement following the InitDistree() invocation on Bh.glue:

255

orchestration{

Bh.glue.InitDistree();

foreach(x in ispace(Bh.pieces))

(+box) <- Bh.pieces[x].Load(Bh.config);

for(I = 1 : Bh.config.NumIterations){

...

}

}

Each TreePiece in the collection Bh.pieces then Loads its share of particles,

using the filename embedded within the Config struct, Bh.config. The code

for the TreePiece::Load method is shown below:

void TreePiece::Load

(const Charisma::ConsumedValue< Config > &config,

Charisma::ReducedValue< BoundingBox > &box,

Charisma::Token &token)

{

loadTipsy(config);

box.reduce(m_Box);

token.Advance();

}

As is the case with sequential methods of objects internal to Charisma, the

Load method invoked on external Bh.pieces objects receives Charisma values

as arguments. The first one, config is a value consumed by the method, and

the second one, a value that is published (reduced) by the method. Since

this is a method of an object external to Charisma, it must also accept a

token object for explicit return of control to Charisma.

The Load method in turn calls a serial function, loadTipsy, to read particles

from an input file in the Tipsy data interchange format, and also to calculate

the bounding box of the loaded particles in the member attribute m Box of

TreePiece. This bounding box is then contributed to a reduction of the

Charisma value box. Finally, control is transferred back to Charisma by

invoking the Advance method on the token argument of the method. This

Charm++ method reduces data to a Charisma value just like a Charisma

object’s sequential method might have.

256

We re-enter the Charisma orchestration code, and now the tree pieces

assign integer keys to their particles based on their positions through invo-

cations of the AssignKeys method.

orchestration{

...

foreach(x in ispace(Bh.pieces))

(+box) <- Bh.pieces[x].Load(Bh.config);

for(I = 1 : Bh.config.NumIterations){

foreach(x in ispace(Bh.pieces))

(+d) <- Bh.pieces[x].AssignKeys(box);

(d) <- Bh.glue.OctDecompose(d);

...

}

}

Here the Dummy value, d makes its first appearance. This reduced value

contains no data, but is required to inform the Charisma compiler of the

ordering between the invocation of AssignKeys on members of Bh.pieces,

and the invocation of OctDecompose on Bh.glue. Therefore, it is guaranteed

that all AssignKeys invocations will have completed before OctDecompose is

invoked. Had we neglected to specify this dependency to the Charisma com-

piler, it would have treated these invocations as concurrent.

The OctDecompose method of the glue object initiates the decomposition

of particles in DivCon:

257

void Glue::OctDecompose(const Charisma::ConsumedValue< Dummy > &d,

const Charisma::Token &token);

{

Divcon::Task::Config tasks;

tasks.QueueingPolicy = LIFO;

Divcon::Array::Config arrays;

arrays.BalancingSplitPartitions = 4;

arrays.MaxNumAgglomeratedOperations = 100;

Divcon::Spawn(tasks,

arrays,

Oct(Divcon::Array::Descriptor(m_GlueModule.pieces,

m_Config.nPieces),

Key(1)),

CkCallback(CkIndex_Glue::DoneDecompose(),

thisProxy));

m_Dummy = d;

m_Token = token;

}

The body of this method uses the C++ interface of DivCon to Spawn the

root of the Oct decomposition recursion tree. The DivCon static function

Spawn takes four arguments as input: the first two are configuration structs

for the task-parallel and data-parallel frameworks of DivCon. Here, we set

the queueing strategy for newly spawned tasks to LIFO, and also set the

parameters for delayed redistribution and operation agglomeration in Div-

conArrays. The third argument is an anonymous instance of the compiler-

generated struct Oct, which encapsulates the arguments of the DivCon func-

tion Oct (cf. § 4.5.2). The last argument to the Spawn function is a callback

object to be invoked when the DivCon computation has completed. As

with the Glue::InitDistree method, we save the Charisma-provided token

for later, to be invoked in the target of the completion callback (namely,

Glue::DoneDecompose).

This takes us back to Charisma orchestration code, wherein we performs

several Distree-related tasks: tree building, (TreePiece::BuildTree), tree

piece consolidation, (Glue::MergeTrees) and synchronization of traversal man-

258

agers (Glue::SyncTraversal). Thereafter, we compute the gravitational in-

teractions by instantiating Distree traversals in TreePiece::Gravity. Again,

control is transferred back to Charisma explicitly by the Charm++ glue when

all gravity traversals have finished. We end the iteration by clearing Distree

data structures (Glue::DoneTraversal and Glue::DeleteTree), and updating

particle trajectories (TreePiece::Advance).

orchestration{

...

for(I = 1 : Bh.config.NumIterations){

...

foreach(x in ispace(Bh.pieces))

(+t) <- Bh.pieces[x].BuildTree(t);

Bh.glue.MergeTrees(t);

(t) <- Bh.glue.SyncTraversal();

foreach(x in ispace(Bh.pieces))

(+stats) <- Bh.pieces[x].Gravity(t);

Bh.glue.DoneTraversal(stats);

Bh.glue.DeleteTree();

foreach(x in ispace(Bh.pieces))

(+box) <- Bh.pieces[x].Advance();

}

}

We omit the code for these methods, since it is nearly identical to the code

presented in § 5.8.1.

Recall that the code above was declared as a Charisma module, instead

of a program, implying that control originates in some other, external piece

of code. It is the responsibility of that external code to instantiate this

Charisma module. The instantiating code invokes a compiler-generated fac-

tory method, and passes into this method a C++ struct of type GlueModule.

This struct must have attributes named config, glue and pieces. (We will

discuss the types of these attributes shortly.) The instantiating code must

also set the values of these attributes appropriately. We briefly discuss these

259

issues next. First, consider the definition of the GlueModule struct, which en-

ables Charisma code to refer to coarse-grained, Charm++ objects external

to it.

struct GlueModule

{

Config config;

CProxy_Glue glue;

CProxy_TreePiece pieces;

};

GlueModule is a C++ structure that contains attributes declared as extern

to our Charisma module. It has a config attribute to match the associated

param in Charisma. Furthermore, it encapsulates proxies (i.e. handles that

are valid references to Charm++ objects across address spaces) to Charm++

objects that were declared as external object(s) in our Charisma module.

Finally, we must address the question of how this entire computation is initi-

ated. The constructor of the Glue singleton object is declared (in Charm++)

to be the entry point of execution for the application. Here, we have the fol-

lowing code:

Glue::Glue(CkArgMsg *msg)

{

// INITIALIZE SIMULATION PARAMETERS USING

// COMMAND-LINE PARAMETERS from CkArgMsg

m_Config = InitializeParameters(msg->argc, msg->argv);

...

GlueModule Bh;

Bh.config = m_Config;

Bh.glue = thisProxy;

Bh.pieces = CProxy_TreePiece::ckNew(m_Config.nPieces);

Module_BhControlFlow::Descriptor descriptor;

descriptor = Module_BhControlFlow::instantiate(Bh, ...);

descriptor.start(...);

}

First, we initialize m Config, a struct of type Config, using command-line

parameters. (As seen in the definition of the Glue::OctDecompose method

260

earlier, the attributes of this struct are used to instantiate the DivCon mod-

ule as well.) Next, we construct a GlueModule struct that can be used by

the Charisma code to refer to external entities. The proxy to the glue object

is set to a special, Charm++-provided variable called thisProxy (akin to the

this symbol in C++, but its value is valid across address spaces). Addition-

ally, we create a collection of TreePiece objects using a Charm++-provided

factory method.

After that, we construct an instance of a Descriptor class that encapsu-

lates the Charisma module. The definition of this class is generated by the

Charisma compiler. The variable descriptor of this struct represents an

instance of the Charisma module BhControlFlow. Notice that the factory

method used to instantiate the module takes as input a parameter named

Bh, of type GlueModule. This matches the extern module declaration in our

orchestration code. In this way, objects within Charisma gain access to

Charm++ objects defined externally. Finally, we initiate the orchestration

code by invoking the start method on the module descriptor. For simplic-

ity, we have elided the callback arguments to the instantiate and start

methods.

In this way, we are able to express the Barnes-Hut algorithm as a tightly

coupled, multi-paradigm composition of code expressed in four different lan-

guages. The global control flow of the overall algorithm is captured in

Charisma. Through various techniques developed in this chapter and § 3, the

Charisma language is accessible to, and is able to access external Charm++

modules. A Charm++ “glue” module initiates computations expressed in

the two other specialized languages developed in this thesis, namely DivCon

and Distree. Recursive, geometric decomposition of a large, distributed set

of particles onto Charm++ objects called tree pieces is done in DivCon. The

highly irregular and data-dependent traversal of the distributed Barnes-Hut

tree is expressed succinctly through Distree components.

6.5 Performance results

Figure 6.1 compares the performance of our multi-paradigm Barnes-Hut code

with its Charm++ counterpart. The Charm++ code was a part of the first

place entry to the HPC challenge [26], and significant effort has been ex-

261

pended in tuning that code. Indeed, this is the same code to which we com-

pared the Distree Barnes-Hut implementation in § 5.9.1. Here we compare

the performance of the Charm++ version and the multiparadigm version on

three synthetic, fairly uniform distributions of particles.

128 256 512 1024 2048
0.10

0.16

0.25

0.40

0.63

1.00

1

1.02

1.04

1.06

1.08

1.1

Charm++
Multi-paradigm
Slowdown

Cores

B
en

ch
m

ar
k

tim
e

(s
)

(a) 1 million particles.

128 256 512 1024 2048 4096 8192
0.40

0.63

1.00

1.58

2.51

3.98

6.31

10.00

1

1.02

1.04

1.06

1.08

1.1

Charm++
Multi-paradigm
Slowdown

Cores

B
en

ch
m

ar
k

tim
e

(s
)

(b) 10 million particles.

1024 2048 4096 8192 16384
1.00

1.58

2.51

3.98

6.31

10.00

15.85

1

1.02

1.04

1.06

1.08

1.1

Charm++
Multi-paradigm
Slowdown

Cores

B
en

ch
m

ar
k

tim
e

(s
)

(c) 100 million particles.

Figure 6.1: Comparing the performance of a hand-written, and well-tuned
Charm++ code for the Barnes-Hut benchmark, and its multi-paradigm coun-
terpart, written in a mixture of Charm++, Charisma, DivCon, and Distree.

Our tests were conducted on three data sets, of size 1 million, 10 million

and 100 million particles. Both the Charm++ and multi-paradigm versions

scaled to 2048 cores of Blue Gene/Q on the smallest, 1 million particle bench-

mark. Although the multi-paradigm version is slower by 5-10 per cent, the

performance of the two versions remains comparable on all processor counts.

Similar results are seen with the 10 million particle benchmark on up to 8192

cores. For the largest, 100 million particle data set the difference in perfor-

mance between the two versions is in the range of 4-8 per cent. On this

last data set, it appears that the multi-paradigm version has slightly poorer

scalability than the Charm++ version: as we approach the 16384 processor

262

mark, the gap between the two versions grows.

6.6 Productivity

Overall, our performance results on the Barnes-Hut benchmark suggest that

performance of the multi-paradigm code is competitive with its hand-tuned,

Charm++ counterpart. Let us now look at how the two approaches compare

in terms of effort expended in writing code. Once more, we use SLOC to

gain a rough estimate of programming effort.

Actor Adv Const Dcmp DS Iface Init IO LB Par Phys Trav Tree Util Glue
0

200

400

600

800

1000

1200

1400

Charm++
Distree
MultiparadigmS

LO
C

Figure 6.2: A comparison of the break-up of SLOC into different categories
for three versions of the Barnes-Hut benchmark. This is the same figure
as Figure 5.15, but with the addition of data for the multi-paradigm code
discussed in § 6.4.

Figure 6.2 compares three versions of the Barnes-Hut benchmark: the pre-

viously published one written in Charm++ [26]; the Distree version described

in § 5; and finally, the multi-paradigm code developed in this chapter. The

multi-paradigm version borrows heavily from the Distree version, so it is un-

surprising that the two codes comprise nearly identical numbers of SLOC

(2199 vs 2204 lines, respectively; for reference the Charm++ code was 4603

lines long). In fact, the only categories in which they differ significantly are

the Iface and Glue categories. (The Iface category includes all code to inter-

face with Distree, and the Glue category, that needed in the multi-paradigm

version to stitch together the various pieces.) Even so, the Iface and Glue

categories account for 385 lines in the multi-paradigm version, which is about

60 lines more than the 323 lines of Iface code needed for the Distree version.

263

Essentially, the SLOC for the two versions has been accounted for differ-

ently. More importantly, both codes are significantly more compact than the

Charm++ version. This is because much of the code related to tree con-

struction, and book-keeping for cached, data-driven executions of traversals,

is subsumed by the Distree framework.

Even though the Distree and multi-paradigm codes are evenly matched

in terms of SLOC, we assert that the higher-level notations used in the lat-

ter engender greater productivity. Consider first the Charisma code used

for orchestrating the simulation. That code captures all the global data-

independent flows succinctly and in a single place. A programmer who wishes

to understand the application need only look at this orchestration code to

comprehend the overall control flow, and from there investigate the building

blocks of the application.

Second, the DivCon code used for Oct-decomposition is also simple and

compact, and leaves the implementation of distributed arrays of particles to

the runtime system. The Oct-decomposition algorithm is readily compre-

hensible in its divide-and-conquer form, and the DivCon notation allows us

to implement it succinctly and naturally. DivCon enforces a separation of

the parallel structure of the recursive algorithm from its sequential pieces.

This allows the “glue” code for interoperability with Charm++ to be pushed

to the sequential methods. We believe that this mode of interoperation, al-

beit somewhat restrictive, is sufficiently powerful for applications that simply

spawn recursive computations, and await their results, instead of attempting

to synchronize with individual fine-grained tasks within the tree-structured

computation.

Third, the Distree framework hides from the programmer much of the rou-

tine management of distributed tree data structures. In the context of the

multi-paradigm Barnes-Hut application, the building of the distributed tree,

as well as its consolidation, is handled by Distree. The application initiates

fine-grained, data-driven traversals over the tree, and the Distree runtime

manages their efficient execution. Importantly for the performance of appli-

cations based on distributed trees, Distree automates the reuse of remotely

fetched data and provides a heuristic, communication-aware load balancing

strategy. All of these features are leveraged in the multi-paradigm applica-

tion to obtain a level of performance that is competitive with a comparable,

hand-tuned application of considerably greater heft.

264

Finally, tight coupling of these modules was achieved through a common

runtime substrate in the form of Charm++. A language such as Charisma,

which deals in the production and consumption of values (messages) by col-

lections of objects, has a similar programming model to the message-driven,

migratable-object one of Charm++. As a result, it is possible to synchronize

computations in Charisma modules with those in Charm++. However, the

fine-grained tasks (recursive function invocations) of DivCon, as well as the

fine-grained traversals of DivCon, have no explicit means of synchronizing

with Charm++ objects. These tasks and traversals cannot wait for the re-

ceipt of data and control messages from external code. As a result, data

transferred into these modules was put in place before tasks or traversals

were ever spawned. In the case of the DivCon Oct-decomposition module,

data to be transferred out of the module, and back to the collection of tree

piece objects, was sent via Charm++ calls embedded in serial functions.

While this serves the present purpose of this work, which is to enable inter-

operability, this scheme is not very elegant, and is somewhat restrictrive. An

interesting extension of this work would be to introduce futures, a la X10, to

this system. We believe that this would increase expressiveness, in addition

to making interoperation more elegant.

265

CHAPTER

7

CONCLUSIONS

In this thesis, we have examined the performance and productivity aspects of

a multi-paradigm approach to parallel programming for HPC. Our approach

is contrary to the current movement in the community to adopt a single,

general-purpose programming language that makes concessions for produc-

tivity. Instead, we advocate an approach based on the inter-related themes of

plurality, specialization and ineroperability. We argue for a programming sys-

tem that features a whole ecosystem of specialized programming languages,

frameworks and libraries. In such a system, large parallel applications are

constructed in a modular fashion. Each module is written in the language

or framework that most naturally fits its semantic requirements. This work

provides three such specialized programming systems, one addressing each

of the following important subclasses of HPC application: (i) applications

with data-independent data and control flows; (ii) divide-and-conquer appli-

cations, with a special emphasis on those that operate on large, distributed

arrays; and (iii) algorithms based on distributed tree data structures.

We have argued that the specialization of these languages fosters pro-

ductivity through abstraction. At the same time, language specialization

restricts the dynamic behaviors of expressible codes. As demonstrated by

266

our work, the accompanying runtime systems can then make simplifying as-

sumptions about the dynamic behaviors of programs, and therefore optimize

performance. Thus, we believe that a multi-paradigm approach provides both

abstraction (and therefore programming productivity) and performance.

Interoperability is a key component of this approach. Since no individual

language in the system can exhaust the expressive space of parallel programs,

we require interoperability across languages. Moreover, we must be able to

incorporate a recourse language into our scheme, in order to plug the gaps

in the expressive scope of the union of our specialized languages. In this

thesis, we have made extensive provisions for interoperability between our

specialized languages, and the general-purpose, message-driven Charm++

model. We have also demonstrated this interoperability in practice.

We composed the well-studied Barnes-Hut algorithm from four modules,

each one of which was written in a different language. The first module encap-

sulated the algorithm’s overall global flow of control in Charisma orchestra-

tion code. The recursive bisection of large, distributed arrays of particles, was

expressed as a DivCon module. The third module leveraged the components

provided by the Distree framework to automate distributed tree construc-

tion, as well as facilitate the succinct expression of fine-grained, data-driven

traversals of the distributed Barnes-Hut tree. Finally, the fourth module,

written in Charm++, served as the glue between modules written in the

three specialized languages, thereby allowing them to interoperate.

We have shown that the performance of this multi-paradigm code is com-

petitive with that of a comparable, hand-tuned Charm++ counterpart. By

expressing different modules in appropriate specialized languages, we see sig-

nificant reductions in code size. Finally, codes written in these specialized

languages capture the essential structure of their modules’ computation. For

instance, the Charisma module expresses the global, data-independent flows

of control in the application. Similarly, DivCon succinctly and explicitly cap-

tures the recursive nature of the Oct-decomposition algorithm used therein.

Below, we summarize the specific contributions of this thesis.

1. We have undertaken an extensive redesign of the Charisma language.

We have added new constructs to the language, thereby leading to in-

creased expressive scope. We have also developed a concrete semantics

of its publish-consume model. [§ 3.6 and § 3.8]

267

2. We have developed a new compiler infrastructure for the Charisma

language. We have used optimizing compiler theory to provide a ro-

bust and consistent compilation strategy for Charisma. Our work also

provides new algorithms for dependency analysis and code generation.

[§ 3.11]

3. We provide algorithms for the efficient, dynamic maintenance of global

state of a Charisma program. The global state is encapsulated in an

entity called the GSM, which dynamically matches data dependency

sources to their targets, and determines when it is safe for a dependency

source to delete a value published by it. [§ 3.11.7]

4. We have developed a technique to enable explicit transfer of control

and data between Charisma and other Charm++-based paradigms. In

our approach, Charisma code can incorporate external modules, and

can in turn be incorporated into external code by exposing module de-

scriptors. These descriptors expose the Charisma module’s constituent

objects and params to external code, and vice versa. In order to

facilitate interoperation with external, message-driven code, we have

developed a scheme whereby control is explicitly transferred between

Charisma and external code. This approach allows for a tight coupling

of Charisma with external code. [§ 3.13]

5. We have developed DivCon, a simple language for the expression of

divide-and-conquer computations. DivCon programs are compact and

elegant, and allow the programmer to explicitly specify the compu-

tations that are performed concurrently. Importantly, DivCon incor-

porates a number of constructs for operating on distributed arrays.

However, these are not general-purpose arrays, but rather admit a lim-

ited set of operations and semantics, which we believe to be well-suited

to the domain of generative divide-and-conquer algorithms. [§ 4.4]

6. The specialized distributed array of DivCon incorporates two key dy-

namic optimizations that enable users to write efficient, array-based

divide-and-conquer algorithms on distributed memory systems. First,

the DivCon runtime allows costly data redistribution operations to be

delayed. This enables the amortization of communication costs over

268

multiple recursive invocations. Second, the DivCon runtime agglom-

erates operations on arrays distributed over the same partition of pro-

cessors, thereby improving overall load balance, and reducing commu-

nication overhead. [§ 4.6]

7. We have developed Distree, a framework for the productive and perfor-

mance oriented expression of tree-based algorithms. The key abstrac-

tion provided by Distree is a flexible, distributed tree data structure.

Distree provides several built-in data decomposition and tree building

algorithms, and also supports more generic parallel algorithms for de-

composition and tree construction. It also incorporates performance

oriented features, e.g. the merging of individual tree pieces across pro-

cessor cores and SMP nodes. [§ 5.5]

8. We have developed a component-based approach to the expression

of tree traversals. Our approach encourages component reuse and

simplifies the expression of tree traversals. Distree encapsulates a

(pre-existing) software cache module that fosters the sharing of re-

motely fetched data during traversal. Furthermore, it supports an

asynchronous and fine-grained expression of tree traversals. [§ 5.6.1]

9. We have extended the software caching mechanism of Charm++ to be

SMP-aware. This allows data to be reused across all the cores of an

SMP node, instead of just across all the coarse-grained objects resident

on a processor core. We provide two techniques to achieve this node-

wide sharing of tree data, namely single fetcher and first-touch fetching.

[§ 5.7.2]

269

REFERENCES

[1] L. Kalé and S. Krishnan, “CHARM++: A Portable Concurrent Ob-
ject Oriented System Based on C++,” in Proceedings of OOPSLA’93,
A. Paepcke, Ed. ACM Press, September 1993, pp. 91–108.

[2] G. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[3] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an object-oriented ap-
proach to non-uniform cluster computing,” in OOPSLA ’05: Proceed-
ings of the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications. New York, NY,
USA: ACM, 2005, pp. 519–538.

[4] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programmability
and the chapel language,” Int. J. High Perform. Comput.
Appl., vol. 21, pp. 291–312, August 2007. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1286120.1286123

[5] J. Mellor-Crummey, L. Adhianto, W. N. Scherer, III, and G. Jin,
“A new vision for coarray fortran,” in Proceedings of the Third
Conference on Partitioned Global Address Space Programing Models,
ser. PGAS ’09. New York, NY, USA: ACM, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1809961.1809969 pp. 5:1–5:9.

[6] T. S. Tarek El-Ghazawi, William Carlson and K. Yelick, UPC: Dis-
tributed Shared Memory Programming. John Wiley & Sons, Inc.,
Hoboken, NJ, USA, 2005.

270

http://dl.acm.org/citation.cfm?id=1286120.1286123
http://doi.acm.org/10.1145/1809961.1809969

[7] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé, “NAMD: Biomolec-
ular simulation on thousands of processors,” in Proceedings of the 2002
ACM/IEEE conference on Supercomputing, Baltimore, MD, September
2002, pp. 1–18.

[8] F. Gioachin, A. Sharma, S. Chakravorty, C. Mendes, L. V. Kale, and
T. R. Quinn, “Scalable cosmology simulations on parallel machines,”
in VECPAR 2006, LNCS 4395, pp. 476-489, 2007.

[9] E. Bohm, A. Bhatele, L. V. Kale, M. E. Tuckerman, S. Kumar, J. A.
Gunnels, and G. J. Martyna, “Fine Grained Parallelization of the Car-
Parrinello ab initio MD Method on Blue Gene/L,” IBM Journal of Re-
search and Development: Applications of Massively Parallel Systems,
vol. 52, no. 1/2, pp. 159–174, 2008.

[10] A. Langer, R. Venkataraman, U. Palekar, and L. Kale, “Parallel
branch-and-bound for two-stage stochastic integer optimization,” in
High Performance Computing (HiPC), 2013 20th International Con-
ference on, 2013.

[11] K. Asanovic, R. Bod́ık, J. Demmel, T. Keaveny, K. Keutzer, J. Kubia-
towicz, N. Morgan, D. A. Patterson, K. Sen, J. Wawrzynek, D. Wessel,
and K. A. Yelick, “A view of the parallel computing landscape,” Com-
mun. ACM, vol. 52, no. 10, pp. 56–67, 2009.

[12] M. Mernik, J. Heering, and A. M. Sloane, “When and how
to develop domain-specific languages,” ACM Comput. Surv.,
vol. 37, no. 4, pp. 316–344, Dec. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1118890.1118892

[13] G. Smolka, “The Oz programming model,” in Computer Science Today,
ser. Lecture Notes in Computer Science, vol. 1000, J. van Leeuwen, Ed.
Berlin: Springer-Verlag, 1995, pp. 324–343.

[14] P. V. Roy and S. Haridi, “Mozart: A programming system for agent
applications,” in International Workshop on Distributed and Internet
Programming with Logic and Constraint Languages, Nov. 1999, part of
International Conference on Logic Programming (ICLP 99).

[15] K. Brown, A. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Odersky,
and K. Olukotun, “A heterogeneous parallel framework for domain-
specific languages,” in Parallel Architectures and Compilation Tech-
niques (PACT), 2011 International Conference on, 2011, pp. 89–100.

271

http://doi.acm.org/10.1145/1118890.1118892

[16] A. Sujeeth, H. Lee, K. Brown, T. Rompf, H. Chafi, M. Wu, A. Atreya,
M. Odersky, and K. Olukotun, “Optiml: An implicitly parallel domain-
specific language for machine learning,” in Proceedings of the 28th In-
ternational Conference on Machine Learning (ICML-11), ser. ICML
’11, L. Getoor and T. Scheffer, Eds. New York, NY, USA: ACM,
June 2011, pp. 609–616.

[17] P. Jetley and L. V. Kale, “Optimizations for message driven applica-
tions on multicore architectures,” in 18th annual IEEE International
Conference on High Performance Computing (HiPC 2011), December
2011.

[18] C. Mei, G. Zheng, F. Gioachin, and L. V. Kalé, “Optimizing a Paral-
lel Runtime System for Multicore Clusters: A Case Study,” in Tera-
Grid’10, no. 10-13, Pittsburgh, PA, USA, August 2010.

[19] D. M. Kunzman and L. V. Kalé, “Towards a framework for abstract-
ing accelerators in parallel applications: experience with cell,” in SC
’09: Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis. New York, NY, USA: ACM, 2009,
pp. 1–12.

[20] L. V. Kale, D. M. Kunzman, and L. Wesolowski, “Accelerator Support
in the Charm++ Parallel Programming Model,” in Scientific Com-
puting with Multicore and Accelerators, J. Kurzak, D. A. Bader, and
J. Dongarra, Eds. CRC Press, Taylor & Francis Group, 2011, pp.
393–412.

[21] D. Kunzman, “Runtime support for object-based message-driven
parallel applications on heterogeneous clusters,” Ph.D. disserta-
tion, Dept. of Computer Science, University of Illinois, 2012,
http://charm.cs.uiuc.edu/media/12-45/.

[22] S. Kumar and L. V. Kale, “Scaling collective multicast on fat-tree
networks,” in ICPADS, Newport Beach, CA, July 2004.

[23] Y. Sun, G. Zheng, L. V. Kale, T. R. Jones, and R. Olson, “A uGNI-
based Asynchronous Message-driven Runtime System
for Cray Supercomputers with Gemini Interconnect,” in Proceedings
of 26th IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS), Shanghai, China, May 2012.

[24] Y. S. Sameer Kumar and L. V. Kale, “Acceleration of an Asynchronous
Message Driven Programming Paradigm on IBM Blue Gene/Q,” in
Proceedings of 26th IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), Boston, USA, May 2013.

272

[25] L. V. Kalé and W. Shu, “The Chare Kernel base language: Prelim-
inary performance results,” in Proceedings of the 1989 International
Conference on Parallel Processing, St. Charles, IL, August 1989, pp.
118–121.

[26] L. Kale, A. Arya, A. Bhatele, A. Gupta, N. Jain, P. Jetley, J. Lifflander,
P. Miller, Y. Sun, R. Venkataraman, L. Wesolowski, and G. Zheng,
“Charm++ for productivity and performance: A submission to the
2011 HPC class II challenge,” Parallel Programming Laboratory, Tech.
Rep. 11-49, November 2011.

[27] L. V. Kale, S. Kumar, and K. Vardarajan, “A Framework for Collec-
tive Personalized Communication,” in Proceedings of IPDPS’03, Nice,
France, April 2003.

[28] I. Dooley, “Intelligent runtime tuning of parallel ap-
plications with control points,” Ph.D. dissertation,
Dept. of Computer Science, University of Illinois, 2010,
http://charm.cs.uiuc.edu/papers/DooleyPhDThesis10.shtml.

[29] A. B. Sinha, L. V. Kale, and B. Ramkumar, “A dynamic and adap-
tive quiescence detection algorithm,” Parallel Programming Labora-
tory, Department of Computer Scie nce , University of Illinois, Urbana-
Champaign, Tech. Rep. 93-11, 1993.

[30] S. Chakravorty, C. L. Mendes, and L. V. Kalé, “Proactive fault tol-
erance in mpi applications via task migration.” in HiPC, ser. Lecture
Notes in Computer Science, vol. 4297. Springer, 2006, pp. 485–496.

[31] S. Chakravorty and L. V. Kale, “A fault tolerance protocol with fast
fault recovery,” in Proceedings of the 21st IEEE International Parallel
and Distributed Processing Symposium. IEEE Press, 2007.

[32] L. V. Kale and M. Bhandarkar, “Structured Dagger: A Coordination
Language for Message-Driven Programming,” in Proceedings of Second
International Euro-Par Conference, ser. Lecture Notes in Computer
Science, vol. 1123-1124, September 1996, pp. 646–653.

[33] S. Kumar, C. Huang, G. Zheng, E. Bohm, A. Bhatele, J. C. Phillips,
H. Yu, and L. V. Kalé, “Scalable Molecular Dynamics with NAMD
on Blue Gene/L,” IBM Journal of Research and Development: Appli-
cations of Massively Parallel Systems, vol. 52, no. 1/2, pp. 177–187,
2008.

273

[34] E. Bohm, S. Chakravorty, P. Jetley, A. Bhatele, and L. V. Kale, “CkDi-
rect: Unsynchronized One-Sided Communication in a Message-Driven
Paradigm ,” in Proceedings of International Workshop on Parallel
Programming Models and Systems Software for High-End Computing
(P2S2), August 2009.

[35] L. V. Kale, M. Bhandarkar, N. Jagathesan, S. Krishnan, and J. Yelon,
“Converse: An Interoperable Framework for Parallel Programming,” in
Proceedings of the 10th International Parallel Processing Symposium,
April 1996, pp. 212–217.

[36] J. Lifflander, P. Miller, and L. Kale, “Adoption Protocols for Fanout-
Optimal Fault-Tolerant Termination Detection,” in 18th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’13), February 2013.

[37] E. Meneses, G. Bronevetsky, and L. V. Kale, “Evaluation of simple
causal message logging for large-scale fault tolerant hpc systems,” in
16th IEEE Workshop on Dependable Parallel, Distributed and Network-
Centric Systems in 25th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2011)., May 2011.

[38] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar,
“A three-dimensional approach to parallel matrix multiplication,” IBM
Journal of Research and Development, vol. 39, no. 5, pp. 575–582, 1995.

[39] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to par-
allel computing: design and analysis of algorithms. Redwood City,
CA, USA: Benjamin-Cummings Publishing Co., Inc., 1994.

[40] W. L. Briggs, V. E. Henson, and S. F. McCormick, A multigrid tutorial
(2nd ed.). Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2000.

[41] J. A. Board, L. V. Kalé, K. Schulten, R. Skeel, and T. Schlick, “Mod-
eling biomolecules: Larger scales, longer durations,” IEEE Computa-
tional Science and Engineering, vol. 1, no. 4, 1994.

[42] J. E. Barnes and P. Hut, “A hierarchical O(NlogN) force calculation
algorithm,” Nature, vol. 324, 1986.

[43] J. C. Hardwick, “An efficient implementation of nested data paral-
lelism for irregular divide-and-conquer algorithms,” in Proceedings of
the First International Workshop on High-Level Programming Models
and Supportive Environments, April 1996, pp. 105–114.

[44] G. D. Plotkin, “A structural approach to operational semantics,” 1981.

274

[45] K. Slonneger and B. Kurtz, Formal syntax and semantics of
programming languages: a laboratory based approach. Addison-Wesley
Pub. Co., 1995. [Online]. Available: http://books.google.com/books?
id=HIRQAAAAMAAJ

[46] P. Feautrier, “Dataflow analysis of array and scalar references,” Inter-
national Journal of Parallel Programming, vol. 20, 1991.

[47] N. Carriero and D. Gelernter, “Tuple Analysis and Partial Evaluation
Strategies in the Linda Compiler,” in Languages and Compilers for
Parallel Computing, D. Gelernter, A. Nicolau, and D. Padua, Eds.
Pitman, 1990.

[48] J. Dongarra, S. Hammarling, and D. Walker, “Key concepts for parallel
out-of-core lu factorization,” Parallel Computing, vol. 23, no. 1-2, pp.
49–70, April 1997.

[49] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI-
The Complete Reference, Volume 1: The MPI Core, 2nd ed. Cam-
bridge, MA, USA: MIT Press, 1998.

[50] P. Husbands and K. Yelick, “Multi-threading and one-sided communi-
cation in parallel LU factorization,” in SC ’07: Proceedings of the 2007
ACM/IEEE conference on Supercomputing. New York, NY, USA:
ACM, 2007, pp. 1–10.

[51] R. W. Numrich and J. Reid, “Co-arrays in the next fortran standard,”
SIGPLAN Fortran Forum, vol. 24, no. 2, pp. 4–17, Aug. 2005.
[Online]. Available: http://doi.acm.org/10.1145/1080399.1080400

[52] P. S. Barth and R. S. Nikhil, “M-structures: Extending a
parallel, non-strict, functional language with state,” in Functional
Programming Languages and Computer Architecture, ser. Lecture
Notes in Computer Science, J. Hughes, Ed. Springer Berlin
Heidelberg, 1991, vol. 523, pp. 538–568. [Online]. Available:
http://dx.doi.org/10.1007/3540543961 26

[53] Arvind, R. S. Nikhil, and K. K. Pingali, “I-structures: data
structures for parallel computing,” ACM Trans. Program. Lang.
Syst., vol. 11, no. 4, pp. 598–632, Oct. 1989. [Online]. Available:
http://doi.acm.org/10.1145/69558.69562

[54] B. L. Chamberlain, S.-E. Choi, E. C. Lewis, C. Lin, L. Snyder, and
W. D. Weathersby, “ZPL: A machine independent programming lan-
guage for parallel computers,” IEEE Transactions on Software Engi-
neering, vol. 26, no. 3, pp. 197–211, Mar. 2000.

275

http://books.google.com/books?id=HIRQAAAAMAAJ
http://books.google.com/books?id=HIRQAAAAMAAJ
http://doi.acm.org/10.1145/1080399.1080400
http://dx.doi.org/10.1007/3540543961_26
http://doi.acm.org/10.1145/69558.69562

[55] Z. Budimlić, M. Burke, V. Cavé, K. Knobe, G. Lowney,
R. Newton, J. Palsberg, D. Peixotto, V. Sarkar, F. Schlimbach,
and S. Tacsirlar, “Concurrent collections,” Sci. Program., vol. 18,
no. 3-4, pp. 203–217, Aug. 2010. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1938482.1938486

[56] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for
Multi-Core Processor Parallelism. O’Reilly Media, 2007.

[57] A. Chandramowlishwaran, K. Knobe, and R. Vuduc, “Performance
evaluation of concurrent collections on high-performance multicore
computing systems,” in Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS), 2010.

[58] T. J. Parr and R. W. Quong, “Antlr: A predicated-ll(k) parser
generator,” Software: Practice and Experience, vol. 25, no. 7, pp.
789–810, 1995. [Online]. Available: http://dx.doi.org/10.1002/spe.
4380250705

[59] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck, “Efficiently computing static single assignment form
and the control dependence graph,” ACM Trans. Program. Lang.
Syst., vol. 13, no. 4, pp. 451–490, Oct. 1991. [Online]. Available:
http://doi.acm.org/10.1145/115372.115320

[60] K. D. Cooper, T. J. Harvey, and K. Kennedy, “A simple, fast dom-
inance algorithm,” Software Practice & Experience, vol. 4, pp. 1–10,
2001.

[61] K. Kennedy and J. R. Allen, Optimizing compilers for modern architec-
tures: a dependence-based approach. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2002.

[62] P. Jetley and L. V. Kalé, “Static Macro Data Flow: Compiling Global
Control into Local Control,” in Proceedings of the IEEE International
Parallel and Distributed Processing Symposium Workshops 2010, 2010.

[63] L. E. Cannon, “A cellular computer to implement the kalman filter
algorithm,” Ph.D. dissertation, Montana State University, 1969.

[64] A. Gupta and V. Kumar, “Scalability of parallel algorithms for matrix
multiplication,” Parallel Processing, 1993. ICPP 1993. International
Conference on, vol. 3, pp. 115–123, Aug. 1993.

[65] M. Frigo and S. Johnson, “Fftw: an adaptive software architecture for
the fft,” Acoustics, Speech and Signal Processing, 1998. Proceedings
of the 1998 IEEE International Conference on, vol. 3, pp. 1381–1384
vol.3, May 1998.

276

http://dl.acm.org/citation.cfm?id=1938482.1938486
http://dl.acm.org/citation.cfm?id=1938482.1938486
http://dx.doi.org/10.1002/spe.4380250705
http://dx.doi.org/10.1002/spe.4380250705
http://doi.acm.org/10.1145/115372.115320

[66] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid,
E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, “Scalable
molecular dynamics with NAMD,” Journal of Computational Chem-
istry, vol. 26, no. 16, pp. 1781–1802, 2005.

[67] H.-W. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi,
U. Klusik, R. Loogen, G. J. Michaelson, R. Peña, S. Priebe, A. J.
Rebón, and P. W. Trinder, “Comparing parallel functional languages:
Programming and performance,” Higher Order Symbol. Comput.,
vol. 16, pp. 203–251, September 2003.

[68] S. Peyton Jones, The Implementation of Functional Programming Lan-
guages. Prentice-Hall International (UK), 1987.

[69] H.-W. Loidl and K. Hammond, “On the granularity of divide-and-
conquer parallelism,” in Proceedings of the Glasgow Workshop on Func-
tional Programming, Ullapool, Scotland, July 1995.

[70] Y. Sun, G. Zheng, P. Jetley, and L. V. Kalé, “ParSSSE: An Adap-
tive Parallel State Space Search Engine,” Parallel Processing Letters,
vol. 21, no. 3, pp. 319–338, September 2011.

[71] W. W. Shu and L. V. Kalé, “A dynamic load balancing strategy for the
Chare Kernel system,” in Proceedings of Supercomputing ’89, Novem-
ber 1989, pp. 389–398.

[72] A. Sinha and L. Kalé, “A load balancing strategy for prioritized execu-
tion of tasks,” in Seventh International Parallel Processing Symposium,
Newport Beach, CA., April 1993, pp. 230–237.

[73] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and
J. Nieplocha, “Scalable work stealing,” in SC ’09: Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis. New York, NY, USA: ACM, 2009, pp. 1–11.

[74] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi, How to de-
sign programs: an introduction to programming and computing. Cam-
bridge, MA, USA: MIT Press, 2001.

[75] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime sys-
tem,” Journal of Parallel and Distributed Computing, vol. 37, no. 1,
pp. 55–69, 1996.

[76] M. Frigo, C. E. Leiserson, and K. H. Randall, “The Implementation of
the Cilk-5 Multithreaded Language,” in ACM SIGPLAN ’98 Confer-
ence on Programming Language Design and Implementation (PLDI),
ser. ACM Sigplan Notices, vol. 33, Montreal, Quebec, Canada, June
1998, pp. 212–223.

277

[77] L. Kale, B. Ramkumar, V. Saletore, and A. B. Sinha, “Prioritization in
parallel symbolic computing,” in Lecture Notes in Computer Science,
T. Ito and R. Halstead, Eds., vol. 748. Springer-Verlag, 1993, pp.
12–41.

[78] C. Lin and L. Snyder, “ZPL: An Array Sublanguage,” in Languages
and Compilers for Parallel Computing (Proceedings of the Sixth Inter-
national Workshop). Springer-Verlag, 1994, pp. 96–114.

[79] P. Miller, A. Becker, and L. Kal, “Using shared arrays in message-
driven parallel programs,” Parallel Computing, vol. 38, no. 12, pp. 66
– 74, 2012.

[80] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global arrays: A
nonuniform memory access programming model for high-performance
computers,” J. Supercomputing, no. 10, pp. 197–220, 1996.

[81] G. Blelloch, “NESL: A Nested Data-Parallel Language,” School of
Computer Science, Carnegie-Mellon University, Tech. Rep. CMU-CS-
92-103, April 1993.

[82] G. Blelloch, “Scans as Primitive Parallel Operations,” IEEE Transac-
tions on Computers, vol. 38, no. 11, November 1989.

[83] L. Kalè, “An almost perfect heuristic or the N-queens problem,” Infor-
mation Processing Letters, vol. 34, no. 4, pp. 173–178, April 1990.

[84] M. S. Warren and J. K. Salmon, “A parallel hashed oct-tree n-body
algorithm,” in Proceedings of Supercomputing 93, Nov. 1993.

[85] S. Aluru and F. Sevilgen, “Parallel domain decomposition and load
balancing using space-filling curves,” in High-Performance Computing,
1997. Proceedings. Fourth International Conference on. IEEE, 1997,
pp. 230–235.

[86] A. Grama and V. Kumar, “State of the art in parallel search techniques
for discrete optimization problems,” IEEE Transactions on Knowledge
and Data Engineering, vol. 11, no. 1, pp. 28–35, 1999.

[87] G. Gupta, E. Pontelli, K. A. Ali, M. Carlsson, and M. V. Hermenegildo,
“Parallel execution of prolog programs: a survey,” ACM Transactions
on Programming Languages and Systems, vol. 23, no. 4, pp. 472–602,
2001.

[88] G.-J. Li and B. W. Wah, “Coping with anomalies in parallel branch-
and-bound algorithms,” IEEE Transactions on Computing, vol. 35,
no. 6, pp. 568–573, 1986.

278

[89] T.-H. Lai and S. Sahni, “Anomalies in parallel branch-and-bound
algorithms,” Commun. ACM, vol. 27, pp. 594–602, June 1984.
[Online]. Available: http://doi.acm.org/10.1145/358080.358103

[90] V. N. Rao, V. Kumar, and K. Ramesh, “A parallel implementation of
Iterative-Deepening-A*,” in AAAI, 1987, pp. 178–182.

[91] R. Feldmann, P. Mysliwiete, and B. Monien, “Studying overheads in
massively parallel min/max-tree evaluation,” in SPAA ’94: Proceed-
ings of the sixth annual ACM symposium on Parallel algorithms and
architectures. New York, NY, USA: ACM, 1994, pp. 94–103.

[92] L. Kalé, “The REDUCE OR process model for parallel execution of
logic programs,” Journal of Logic Programming, vol. 11, no. 1, pp.
55–84, July 1991.

[93] M. Furuichi, K. Taki, and N. Ichiyoshi, “A multi-level load balancing
scheme for or-parallel exhaustive search programs on the multi-psi,”
in Second ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 1990, pp. 50–59.

[94] Y.-J. Lin and V. Kumar, “And-parallel execution of logic programs
on a shared-memory multiprocessor,” J. Log. Program., vol. 10, no.
1/2/3&4, pp. 155–178, 1991.

[95] J. Dinan, S. Krishnamoorthy, D. B. Larkins, J. Nieplocha,
and P. Sadayappan, “Scioto: A framework for global-view
task parallelism,” in Proceedings of the 2008 37th International
Conference on Parallel Processing, ser. ICPP ’08. Washington,
DC, USA: IEEE Computer Society, 2008. [Online]. Available:
http://dx.doi.org/10.1109/ICPP.2008.44 pp. 586–593.

[96] V. A. Saraswat, P. Kambadur, S. Kodali, D. Grove, and
S. Krishnamoorthy, “Lifeline-based global load balancing,” in
Proceedings of the 16th ACM Symposium on Principles and Practice
of Parallel Programming, ser. PPoPP ’11. New York, NY, USA:
ACM, 2011. [Online]. Available: http://doi.acm.org/10.1145/1941553.
1941582 pp. 201–212.

[97] J. Lifflander, S. Krishnamoorthy, and L. V. Kale, “Work stealing
and persistence-based load balancers for iterative overdecomposed
applications,” in Proceedings of the 21st International Symposium
on High-Performance Parallel and Distributed Computing, ser.
HPDC ’12. New York, NY, USA: ACM, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2287076.2287103 pp. 137–148.

279

http://doi.acm.org/10.1145/358080.358103
http://dx.doi.org/10.1109/ICPP.2008.44
http://doi.acm.org/10.1145/1941553.1941582
http://doi.acm.org/10.1145/1941553.1941582
http://doi.acm.org/10.1145/2287076.2287103

[98] A. Duran, J. Corbalán, and E. Ayguadé, “An adaptive cut-off for task
parallelism,” in SC ’08: Proceedings of the 2008 ACM/IEEE conference
on Supercomputing. IEEE Press, 2008, pp. 1–11.

[99] W. Shu and L. Kalé, “Chare Kernel - a runtime support system for
parallel computations,” Journal of Parallel and Distributed Computing,
vol. 11, pp. 198–211, 1990.

[100] E. Solomonik and L. V. Kale, “Highly Scalable Parallel Sorting,” in
Proceedings of the 24th IEEE International Parallel and Distributed
Processing Symposium (IPDPS), April 2010.

[101] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, and C.-
W. Tseng, “Uts: An unbalanced tree search benchmark,” in Lecture
Notes in Computer Sciences, vol. 4382. Springer-Verlag, 2007, pp.
235–250.

[102] P. Jetley, F. Gioachin, C. Mendes, L. V. Kale, and T. R. Quinn, “Mas-
sively parallel cosmological simulations with ChaNGa,” in Proceedings
of IEEE International Parallel and Distributed Processing Symposium
2008, 2008.

[103] J. R. Shewchuk, “Triangle: Engineering a 2d quality mesh generator
and delaunay triangulator,” pp. 203–222, 1996.

[104] M. S. Warren and J. K. Salmon, “Astrophysical N-body simulations us-
ing hierarchical tree data structures,” in Proceedings of Supercomputing
92, Nov. 1992.

[105] V. Springel, S. D. White, A. Jenkins, C. S. Frenk, N. Yoshida, L. Gao,
J. Navarro, R. Thacker, D. Croton, J. Helly et al., “Simulations of the
formation, evolution and clustering of galaxies and quasars,” Nature,
vol. 435, no. 7042, pp. 629–636, 2005.

[106] J. Zhang, B. Behzad, and M. Snir, “Optimizing the barnes-hut
algorithm in upc,” in Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’11. New York, NY, USA: ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/2063384.2063485 pp. 75:1–75:11.

[107] W. Dehnen, “A hierarchicalO(N) force calculation algorithm,” Journal
of Computational Physics, vol. 179, pp. 27–42, 2002.

[108] L. V. Kale and S. Krishnan, “A comparison based parallel sorting algo-
rithm,” in Proceedings of the 22nd International Conference on Parallel
Processing, St. Charles, IL, Aug. 1993, pp. 196–200.

280

http://doi.acm.org/10.1145/2063384.2063485

[109] K. Fukunaga and P. M. Narendra, “A branch and bound algorithms
for computing k-nearest neighbors,” IEEE Trans. Computers, vol. 24,
no. 7, pp. 750–753, 1975.

[110] J. Palsberg and C. B. Jay, “The essence of the visitor pattern,”
in Proceedings of the 22nd International Computer Software
and Applications Conference, ser. COMPSAC ’98. Washington,
DC, USA: IEEE Computer Society, 1998. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645980.674267 pp. 9–15.

[111] B. Meyer and K. Arnout, “Componentization: The visitor example,”
Computer, vol. 39, no. 7, pp. 23–30, July 2006. [Online]. Available:
http://dx.doi.org/10.1109/MC.2006.227

[112] L. Kale, A. Arya, N. Jain, A. Langer, J. Lifflander, H. Menon, X. Ni,
Y. Sun, E. Totoni, R. Venkataraman, and L. Wesolowski, “Migrat-
able objects + active messages + adaptive runtime = productivity +
performance a submission to 2012 HPC class II challenge,” Parallel
Programming Laboratory, Tech. Rep. 12-47, November 2012.

[113] R. A. Gingold and J. J. Monaghan, “Smoothed particle hydrodynamics
- Theory and application to non-spherical stars,” Monthly Notices of
the Royal Astronomical Society, vol. 181, pp. 375–389, Nov. 1977.

[114] J. W. Wadsley, J. Stadel, and T. Quinn, “Gasoline: a flexible, parallel
implementation of TreeSPH,” New Astronomy, vol. 9, pp. 137–158,
Feb. 2004.

[115] J. Stam and E. Fiume, “Depicting fire and other gaseous phenomena
using diffusion processes,” in Proceedings of the 22nd annual
conference on Computer graphics and interactive techniques, ser.
SIGGRAPH ’95. New York, NY, USA: ACM, 1995. [Online].
Available: http://doi.acm.org/10.1145/218380.218430 pp. 129–136.

[116] K. Heitmann, P. M. Ricker, M. S. Warren, and S. Habib, “Robustness
of Cosmological Simulations. I. Large-Scale Structure,” ApJSup, vol.
160, pp. 28–58, Sep. 2005.

[117] H. Dejonghe, “A completely analytical family of anisotropic Plummer
models,” MNRAS, vol. 224, pp. 13–39, Jan. 1987.

[118] M. S. Warren, “2hot: an improved parallel hashed oct-tree
n-body algorithm for cosmological simulation,” in Proceedings of
SC13: International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’13. New York, NY, USA:
ACM, 2013. [Online]. Available: http://doi.acm.org/10.1145/2503210.
2503220 pp. 72:1–72:12.

281

http://dl.acm.org/citation.cfm?id=645980.674267
http://dx.doi.org/10.1109/MC.2006.227
http://doi.acm.org/10.1145/218380.218430
http://doi.acm.org/10.1145/2503210.2503220
http://doi.acm.org/10.1145/2503210.2503220

[119] D. B. Larkins, J. Dinan, S. Krishnamoorthy, S. Parthasarathy,
A. Rountev, and P. Sadayappan, “Global trees: a framework for
linked data structures on distributed memory parallel systems,” in
Proceedings of the 2008 ACM/IEEE conference on Supercomputing, ser.
SC ’08. Piscataway, NJ, USA: IEEE Press, 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1413370.1413428 pp. 57:1–57:13.

[120] Y. Jo and M. Kulkarni, “Enhancing Locality for Recursive Traversals of
Recursive Structures,” in Proceedings of OOPSLA ’11, October 2011,
p. to appear.

[121] V. Springel, “The cosmological simulation code GADGET-2,” MN-
RAS, vol. 364, pp. 1105–1134, 2005.

[122] M. D. Dikaiakos and J. Stadel, “A performance study of cosmological
simulations on message-passing and shared-memory multiprocessors,”
in Proceedings of the International Conference on Supercomputing -
ICS’96, Philadelphia, PA, December 1996, pp. 94–101.

[123] J. P. Singh, C. Holt, T. Totsuka, A. Gupta, and J. Hennessy,
“Load balancing and data locality in adaptive hierarchical n-body
methods: Barnes-hut, fast multipole, and radiosity,” J. Parallel
Distrib. Comput., vol. 27, no. 2, pp. 118–141, June 1995. [Online].
Available: http://dx.doi.org/10.1006/jpdc.1995.1077

[124] H. Shan and J. P. Singh, “Parallel tree building on a range of shared ad-
dress space multiprocessors: Algorithms and application performance,”
in in: Proceedings of the 12th International Parallel Processing Sym-
posium, 1998, pp. 475–484.

[125] C. Zhang, A. Krishnamurthy, and O. Y. Wang, “Brushwood: Dis-
tributed trees in peer-to-peer systems,” in In Proceedings of the 4th
International Workshop on Peer-to-Peer Systems (IPTPS05, 2005, pp.
47–57.

[126] M. K. Aguilera, W. Golab, and M. A. Shah, “A practical scalable
distributed b-tree,” Proc. VLDB Endow., vol. 1, no. 1, pp. 598–609,
Aug. 2008. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1453856.1453922

[127] M. K. Reiter, A. Samar, and C. Wang, “Self-optimizing distributed
trees,” Parallel and Distributed Processing Symposium, International,
vol. 0, pp. 1–12, 2008.

[128] The Common Object Request Broker: Architecture and Specification
(Draft), 10 December 1991, revision 1.1.

282

http://dl.acm.org/citation.cfm?id=1413370.1413428
http://dx.doi.org/10.1006/jpdc.1995.1077
http://dl.acm.org/citation.cfm?id=1453856.1453922
http://dl.acm.org/citation.cfm?id=1453856.1453922

[129] S. Kohn, G. Kumfert, J. Painter, and C. Ribbens, “Divorcing language
dependencies from a scientific software library,” in Proceedings of the
10th SIAM Converence on Parallel Processing for Scientific Comput-
ing. Society for Industrial and Applied Mathematics, 2001.

[130] T. G. Epperly, G. Kumfert, T. Dahlgren, D. Ebner, J. Leek, A. Prantl,
and S. Kohn, “High-performance language interoperability for scientific
computing through babel,” International Journal of High Performance
Computing Applications, vol. 26, no. 3, pp. 260–274, 2012. [Online].
Available: http://hpc.sagepub.com/content/26/3/260.abstract

[131] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes,
S. Parker, and B. Smolinski, “Toward a Common Component Archi-
tecture for High-Performance Scientific Computing,” in Proceedings of
the 1999 Conference on High Performance Distributed Computing, Re-
dondo Beach, California, August 1999, pp. 115–124.

[132] N. Mahmood, G. Deng, and J. C. Browne, “Compositional develop-
ment of parallel programs,” in Lecture Notes in Computer Sciences,
vol. 2958. College Station, Texas, USA: Springer-Verlag, October
2003, pp. 109–126.

[133] K. Varda, “Protocol buffers: Google’s data inter-
change format,” Google, Tech. Rep., 6 2008. [On-
line]. Available: http://google-opensource.blogspot.com/2008/07/
protocol-buffers-googles-data.html

[134] X. Jiao, M. T. Campbell, and M. T. Heath, “Roccom: an object-
oriented, data-centric software integration framework for multiphysics
simulations,” in ICS ’03: Proceedings of the 17th annual international
conference on Supercomputing. New York, NY, USA: ACM Press,
2003, pp. 358–368.

[135] S. Atlas, S. Banerjee, J. C. Cummings, P. J. Hinker, M. Srikant,
J. V. W. Reynders, and M. Tholburn, “POOMA: A high performance
distributed simulation environment for scientific applications,” in Su-
percomputing ’95, 1995.

[136] W. D. Gropp and B. F. Smith, “Scalable, extensible, and portable
numerical libraries,” in Proceedings of the Scalable Parallel Libraries
Conference, 1994, pp. 87–93.

[137] S. Parker, “A component-based architecture for parallel multi-physics
pde simulation,” in Computational Science ICCS 2002, ser. Lecture
Notes in Computer Science, P. Sloot, A. Hoekstra, C. Tan, and
J. Dongarra, Eds. Springer Berlin Heidelberg, 2002, vol. 2331, pp. 719–
734. [Online]. Available: http://dx.doi.org/10.1007/3-540-47789-6 75

283

http://hpc.sagepub.com/content/26/3/260.abstract
http://google-opensource.blogspot.com/2008/07/protocol-buffers-googles-data.html
http://google-opensource.blogspot.com/2008/07/protocol-buffers-googles-data.html
http://dx.doi.org/10.1007/3-540-47789-6_75

[138] G. Tang, E. F. D’Azevedo, F. Zhang, J. C. Parker, D. B. Watson, and
P. M. Jardine, “Application of a hybrid mpi/openmp approach for
parallel groundwater model calibration using multi-core computers,”
Comput. Geosci., vol. 36, pp. 1451–1460, November 2010. [Online].
Available: http://dx.doi.org/10.1016/j.cageo.2010.04.013

[139] M. Jones, R. Yao, and C. Bhole, “Hybrid mpi-openmp programming for
parallel osem pet reconstruction,” Nuclear Science, IEEE Transactions
on, vol. 53, no. 5, pp. 2752–2758, oct. 2006.

[140] F. Cappello and D. Etiemble, “Mpi versus mpi+openmp on the ibm sp
for the nas benchmarks,” in Supercomputing, ACM/IEEE 2000 Con-
ference, Nov 2000, pp. 12–12.

[141] J. Dinan, P. Balaji, E. Lusk, P. Sadayappan, and R. Thakur, “Hybrid
parallel programming with mpi and unified parallel c,” in Proceedings
of the 7th ACM International Conference on Computing Frontiers,
ser. CF ’10. New York, NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1787275.1787323 pp. 177–186.

[142] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell,
W. Gropp, V. Kale, and R. Thakur, “MPI + MPI: a new hybrid ap-
proach to parallel programming with MPI plus shared memory,” Jour-
nal of Computing, May 2013, doi: 10.1007/s00607-013-0324-2.

[143] T. Rompf and M. Odersky, “Lightweight modular staging: A
pragmatic approach to runtime code generation and compiled dsls,”
Commun. ACM, vol. 55, no. 6, pp. 121–130, June 2012. [Online].
Available: http://doi.acm.org/10.1145/2184319.2184345

[144] G. Karypis and V. Kumar, “Parallel multilevel k-way partitioning
scheme for irregular graphs,” in Supercomputing ’96: Proceedings of
the 1996 ACM/IEEE conference on Supercomputing (CDROM), 1996,
p. 35.

[145] A. Gursoy and L. Kalé, “Performance and Modularity Benefits of
Message-Driven Execution,” Journal of Parallel and Distributed Com-
puting, vol. 64, pp. 461–480, 2004.

284

http://dx.doi.org/10.1016/j.cageo.2010.04.013
http://doi.acm.org/10.1145/1787275.1787323
http://doi.acm.org/10.1145/2184319.2184345

	CHAPTER 1 Introduction
	Productivity through abstractions
	Performance and productivity through adaptive run-time strategies
	This thesis

	CHAPTER 2 Preliminaries
	The role of Charm++ in our work
	Explicit decomposition of work and data over coarse-grained chares
	The role of the runtime system
	Modular composition
	SDAG: Structured control flow for message-driven objects
	System architecture

	CHAPTER 3 Data-independent communication patterns
	Introduction
	An examination of HPC applications for data-independent communication patterns
	Jacobi relaxation
	Tiled matrix multiplication
	Transpose
	Decimation-in-time FFT
	Dense LU decomposition
	Geometric multigrid
	Space- and Force-decomposed molecular dynamics

	Some patterns that are not data-independent
	Data-dependent data flows in Barnes-Hut traversals
	Data scattering in the Quicksort algorithm
	Discrete event simulations

	Charisma: Stance
	An example application written in Charisma
	Coarse grained objects
	Object collections
	Program parameters
	Method invocations encapsulate serial work
	Communication via values
	Parallel invocations through the foreach statements
	Iteration with the while construct

	The syntactic structure of Charisma programs
	Top-level structure
	Includes
	Declarations
	Orchestration code
	Control flow constructs
	Initialization

	Well-formedness conditions
	Expressions
	Statements

	Operational semantics
	Notation
	Expression evaluation
	Execution of statements

	Examples of applications written in Charisma
	Dense LU decomposition
	Cutoff-based Molecular Dynamics

	A look at prevalent programming languages for HPC
	MPI
	PGAS languages
	Chapel
	X10
	CnC

	Compiling global Charisma flows into local, message-driven specifications
	Syntax-directed CFG construction
	Preparing the CFG for dependency analysis
	Dependency Analysis
	Graph contraction: preparing for code generation
	Code generation
	Emitting SDAG from statement hierarchies
	Maintaining global program state

	Inferring communication patterns from publications and consumptions
	Support for modularity
	Comparing performance and productivity with hand-written codes
	Jacobi relaxation
	Parallel matrix-matrix multiplication
	Three-dimensional FFT
	Lennard-Jones molecular dynamics
	Summary of productivity results

	CHAPTER 4 Divide-and-conquer
	Introduction
	This chapter

	Design principles
	Task parallelism
	Separation of parallel and serial code
	Program order semantics
	Explicit data parallelism
	Dynamic optimizations

	Examples of DivCon code
	Computing the i-th Fibonacci number
	Quicksort
	Discussion

	Language design
	Base expression evaluation language
	DivconArrays

	More examples of DivCon code
	N-Queens
	Oct decomposition

	The DivCon runtime system
	Adaptive grain size control through task agglomeration
	A distributed array specialized for generative recursion
	DDR and Operation Agglomeration can improve efficiency

	Provisions for modularity
	Spawning DivCon tasks from external code
	DivconArrays in external code

	Performance results
	Task-parallelism
	Data-parallelism

	Productivity
	Task-parallel benchmarks
	Data-parallel benchmarks

	Conclusion

	CHAPTER 5 Distributed trees
	Introduction
	A tree data structure for parallel HPC applications
	Decomposition

	An example tree application: the Barnes-Hut algorithm
	The parallel Barnes-Hut algorithm.

	Design considerations for a tree code framework
	The Distree framework
	Programming model
	Explicit decomposition of work and data
	Division of tasks between the programmer and Distree
	Building the local tree
	Annotating the local tree

	Traversing the tree
	Tree traversal equals a walk with a visitor
	Types of tree walks
	A visitor pattern fosters separation of concerns

	Run-time optimizations
	Local tree pieces are consolidated automatically
	A software cache promotes remote data reuse
	A heuristic for dynamic load balancing

	Composing the elements of the Distree framework
	Barnes-Hut
	Smoothed particle hydrodynamics
	Discussion

	Performance results
	Barnes-Hut
	SPH

	Productivity
	Related work

	CHAPTER 6 Interoperation
	Scope of interoperation
	Interface description
	Component frameworks
	Complementary or compatible paradigms
	Embedding of specialized languages
	Multi-paradigm languages
	This thesis

	Challenges to interoperation
	The problem of effectively sharing processors between modules
	The problem of disparity in programming models

	Mechanisms for interoperation
	Initiating a new module
	Communicating data, and synchronizing

	An example of interoperation
	Structure of the multi-paradigm Barnes-Hut application

	Performance results
	Productivity

	CHAPTER 7 Conclusions
	REFERENCES

