
Charm++ Applications

Laxmikant (Sanjay) Kale
http://charm.cs.illinois.edu

Parallel Programming Laboratory
Department of Computer Science

University of Illinois at Urbana Champaign

Overdecomposition
•  Decompose the work units & data units into

many more pieces than execution units
–  Cores/Nodes/..

•  Not so hard: we do decomposition anyway

2

Migratability
•  Allow these work and data units to be

migratable at runtime
–  i.e. the programmer or runtime, can move them

•  Consequences for the app-developer
–  Communication must now be addressed to

logical units with global names, not to physical
processors

–  But this is a good thing
•  Consequences for RTS
–  Must keep track of where each unit is
–  Naming and location management

3

Asynchrony:  
Message-Driven Execution

•  You have multiple units on each processor
•  They address each other via logical names
•  Message-driven execution:
–  Let the work-unit that happens to have data

(“message”) available for it execute next
–  Let the RTS select among ready work units
–  Programmer should not specify what executes

next, but can influence it via priorities

4

Charm++: Object-based overdecomposition

5/27/14 SICM2 5

User View

System implementation

•  Multiple “indexed collections” of C++ objects
•  Indices can be multi-dimensional and/or sparse
•  Programmer expresses communication between objects

–  with no reference to processors : A[i].foo(…)

Message-driven Execution

Scheduler Scheduler

Processor 1 Processor 2

Message Queue Message Queue

A[..].foo(…)

6

Empowering the RTS

•  The Adaptive RTS can:
–  Dynamically balance loads
–  Optimize communication:

•  Spread over time, async collectives
–  Automatic latency tolerance
–  Prefetch data with almost perfect predictability

Asynchrony Overdecomposition Migratability

Adaptive
Runtime System

Introspection Adaptivity

7

Charm++ RTS

8

Argo	

An Exascale Operating System and Runtime	

The Crew of the Argo:	

	
 Argonne	
 National	
 Laboratory;	

	
 	
 	
 Principle	
 Investigator	
 and	
 Chief	
 Architect:	
 Pete	
 Beckman	

	
 	
 	
 Chief	
 Scientist:	
 Marc	
 Snir	

	
 P.	
 Balaji,	
 R.	
 Gupta,	
 K.	
 Iskra,	
 R.	
 Thakur,	
 K.	
 Yoshii,	
 F.	
 Cappello	

Boston	
 University:	
 	
 	
 	
 	
 J.	
 Appavoo,	
 O.	
 Krieger	

Lawrence	
 Livermore	
 National	
 Laboratory:	
 	

	
 	
 	
 M.	
 Gokhale,	
 E.	
 Leon,	
 B.	
 Rountree,	
 M.	
 Schulz,	
 B.	
 Van	
 Essen	

Paci:ic	
 Northwest	
 National	
 Laboratory:	
 	
 S.	
 Krishnamoorthy,	
 R.	
 Gioiosa	

University	
 of	
 Chicago:	
 	
 H.	
 Hoffmann	

University	
 of	
 Illinois	
 at	
 UC:	
 	
 	
 L.	
 Kale,	
 E.	
 Bohm,	
 R.	
 Venkataraman	

University	
 of	
 Oregon:	
 	
 	
 A.	
 Malony,	
 S.	
 Shende,	
 K.	
 Huck	

University	
 of	
 Tennesee	
 Knoxville:	
 	
 	
 J.	
 Dongarra,	
 G.	
 Bosilca	

Exascale(System!

Enclave(1! Enclave(2!

System(Management(
Components!

Ba
ck
pl
an

es
:((
(B
EA

CO
N
(a
nd

(E
XP

O
SÉ
(

Enclave(Management(
Components!

Enclave(Management(
Components!

Ba
ck
pl
an

es
:((
(B
EA

CO
N
(a
nd

(E
XP

O
SÉ
(

Nodes! Nodes!

Concurrency(RTS(
(

MulDEkernels(

Concurrency(RTS(
(

MulDEkernels(

$9.7M	
 ASCR	
 DOE	

3	
 year	
 project,	
 launched	
 Aug	
 2013

Key Areas of Innovation:
§  NodeOS/R

–  Core-specialization permits multiple,
concurrent kernels

§  Lightweight Concurrency
–  Embed fine-grained tasks and

lightweight threads into OS for massive
parallelism

§  Backplane
–  Event, Control, and Performance

backplanes to support global
optimizations

§  Global View
–  “Enclave” abstraction to allow global

optimization of power, resilience, perf.

9

ChaNGa: Parallel Gravity
•  Collaborative project

(NSF)
–  with Tom Quinn, Univ. of

Washington
•  Gravity, gas dynamics
•  Barnes-Hut tree codes

–  Oct tree is natural decomp
–  Geometry has better

aspect ratios, so you
“open” up fewer nodes

–  But is not used because it
leads to bad load balance

–  Assumption: one-to-one
map between sub-trees
and PEs

–  Binary trees are considered
better load balanced

5/28/14 SIAM PP14 10

With Charm++: Use Oct-Tree, and
let Charm++ map subtrees to
processors

Evolution of Universe and
Galaxy Formation

ChaNGa: Cosmology Simulation

•  Tree: Represents
particle
distribution

•  TreePiece: object/
chares containing
particles

Collaboration with
Tom Quinn UW

•  Asynchronous, highly overlapped, phases
•  Requests for remote data overlapped with

local computations

ChaNGa: Optimized Performance

ChaNGa : a recent result

 0

 7500

 15000

 22500

 30000

 37500

 0 2000 4000 6000 8000

N
um

be
r

of
 M

es
sa

ge
s

Processors

•  Highly clustered
•  Maximum request per

processor: > 30K

ploits the cache. Before computing forces, each
TreePiece registers its data with the software cache.
Thus, a larger tree, corresponding to the union of
all local TreePieces, is assembled in the local cache.
When any piece of that tree is needed during force
computation, it is immediately retrieved.

Selectable Computation Granularity:
ChaNGa accepts an input parameter that defines
how much computation is performed before the
processor is allowed to handle requests from remote
processors. This enables a good tradeo↵ between
responsiveness to communication requests and
processor utilization.

4 Scalability Experiments

To evaluate ChaNGa’s e↵ectiveness as a produc-
tion simulator, we conducted a series of tests with
real cosmological datasets. These tests intended
both to assess the code’s portability across di↵erent
systems and to measure its performance scalability
in each particular type of system. We used the
three systems described in Table 1, and ran tests
with the following datasets:

lambs: Final state of a simulation of a 71Mpc3

volume of the Universe with 30% dark matter and
70% dark energy. Nearly three million particles
are used. This dataset is highly clustered on scales
less than 5 Mpc, but becomes uniform on scales
approaching the total volume. Three subsets of this
dataset are obtained by taking random subsamples
of size thirty thousand, three hundred thousand,
and one million particles, respectively.
dwarf: Snapshot at z = .3 of a multi-resolution
simulation of a dwarf galaxy forming in a 28.5Mpc3

volume of the Universe with 30% dark matter and
70% dark energy. Although the mass distribution
in this dataset is uniform on scales approaching the
volume size, the particle distribution is very cen-
trally concentrated and therefore highly clustered
on all scales above the resolution limit. The total
dataset size is nearly five million particles, but
the central regions have a resolution equivalent to
20483 particles in the entire volume.
hrwh lcdms: Final state of a 90Mpc3 volume
of the Universe with 31% dark matter and 69%
dark energy realized with 16 million particles. This
dataset is used in [7], and is slightly more uniform
than lambs.
dwarf-50M: Same physical model as dwarf except

(a) lambs dataset

(b) dwarf dataset

Figure 2. Pictorial view of datasets

that it is realized with 50 million particles. The
central regions have a resolution equivalent to
61443 particles in the entire volume.
lambb: Same physical model as lambs except that
it is realized with 80 million particles.
drgas: Similar to lambs and lambb except that it is
the high redshift (z = 99) state of the simulation,
and it is realized with 730 million particles. The
particle distribution is very uniform.

To illustrate some of the features in these
datasets, Figure 2(a) presents a pictorial view of
lambs, which has a reasonably uniform particle dis-
tribution, whereas Figure 2(b) presents dwarf, con-
taining a much more clustered distribution. In these
pictures the color scale indicates the log of the mass
density and covers six orders of magnitude.

We conducted serial executions of ChaNGa and
PKDGRAV on NCSA’s Tungsten to compare scala-

Clustered Dataset - Dwarf

•  Idle time due to
message delays

•  Also, load imbalances:
solved by Hierarchical
balancers

Local$ Ewald$ Remote$Idle$0me$

14

Solution: Replication

•  Replicate tree nodes to distribute requests
•  Requester randomly selects a replica

PE 1 PE 2 PE 3 PE 4

15

Replication Impact

 0

 1000

 2000

 3000

 4000

 5000

 0 2000 4000 6000 8000

N
um

be
r

of
 M

es
sa

ge
s

Processors

Local$ Ewald$Remote$

•  Replication distributes
requests

•  Maximum request
reduced from 30K to
4.5K

•  Gravity time reduced
from 2.4 s to 1.7 s, on 8k

 0.5

 1

 2

 4

 8

 16

 32

 1024 2048 4096 8192 16384

G
ra

vi
ty

 T
im

e
(s

)

Number of Cores

With Replication
Without Replication

16

Multiple time-stepping!
•  Our scientist collaborators suggest an

algorithmic optimization:
–  Don’t move slow-moving particles every step

•  i.e. don’t calculate forces on them either
–  In fact, make many (say 5) categories (rungs) of

particles based on their velocities
–  Rung sequence (with 5 rungs)

•  4 3 4 2 4 3 4 1 4 3 4 2 4 3 4 0
•  Rung 0: all particles, Rung 4: fastest-moving particles

–  Each tree-piece object now presents a different
load when different “rungs” are being calculated

Multiple time-stepping!
•  Load (for the same object) changes across rungs

–  Yet, there is persistence within the same rung!
–  So, specialized phase-aware balancers were developed

Multi-stepping tradeoff
•  Parallel efficiency is lower, but performance

is improved significantly

Single Stepping Multi Stepping

NAMD: Biomolecular Simulations

•  Collaboration with K.
Schulten

•  With over 50,000
registered users

•  Scaled to most top US
supercomputers

•  In production use on
supercomputers and
clusters and desktops

•  Gordon Bell award in
2002

Recent success:
Determination of the
structure of HIV capsid
by researchers including
Prof Schulten

20

Time Profile of ApoA1 on Power7 PERCS

2ms total

92,000 atom system, on 500+ nodes (16k cores)

21

A snapshot of optimization in progress.. Not the final result

Overlapped steps, as a result of asynchrony

Timeline of ApoA1 on Power7 PERCS
230us

22

NAMD: Strong Scaling

•  HIV Capsid was a 64
million atom
simulation, including
explicit water atoms

•  Most biophysics
systems of interests
are 10M atoms or
less… maybe 100M

•  Strong scaling
desired to billions of
steps

23

Enhancing Asynchrony in NAMD
•  Charm++ reductions are non-blocking

–  So, you can do other work while reduction is
progressing through the system

•  Synchronization:
–  NAMD, when used with a barostat (NPT ensemble),

needs pressure from the current step to rescale volume
–  So, no other work was performed during reduction

•  Enhancing asynchrony:
–  For strong scaling, the algebra was reworked to use

the results of the reduction one step later
–  Overlapped reduction with an entire force computation

step
–  10% performance improvement on 16k nodes on Titan

24

NAMD strong scaling on Titan Cray XK7, Blue Waters Cray XE6, and
Mira IBM Blue Gene/Q for 21M and 224M atom benchmarks

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 256 512 1024 2048 4096 8192 16384

Pe
rfo

rm
an

ce
 (n

s
pe

r d
ay

)

Number of Nodes

NAMD on Petascale Machines (2fs timestep with PME)

21M atoms

224M atoms

Titan XK7
Blue Waters XE6

Mira Blue Gene/Q

Episimdemics
•  Simulation of spread of contagion
–  Code by Madhav Marathe, Keith Bisset, .. Vtech
–  Original was in MPI

•  Converted to Charm++
–  Benefits: asynchronous reductions improved

performance considerably

26

27

Simulating contagion over dynamic networks

EpiSimdemics1

Agent-based

Realistic population data

Intervention2

Co-evolving network,
behavior and policy2

transition by
interaction

S

I

Local transition

P1

P2

P3

P4

P = 1-exp(t·log(1-I·S))
- t: duration of

 co-presence

- I: infectivity

- S: susceptivity

infectious

uninfected

S

I

t

Location Social
contact
network L1

L2

1C. Barrett et al.,“EpiSimdemics: An Efficient Algorithm for Simulating the
Spread of Infectious Disease over Large Realistic Social Networks,” SC08
2K. Bisset et al., “Modeling Interaction Between Individuals, Social Net-
works and Public Policy to Support Public Health Epidemiology,” WSC09.

Virginia Tech Network Dynamics & Simulation Science Lab April 30, 2014 3 / 26

Load distribution (Vulcan)

RR GP
Z RR ZC GP

splitLoc splitLoc splitLoc splitLoc
(1.755 s) (1.583 s) (1.222 s) (0.438 s) (0.369 s) (0.368 s)

splitLoc: no peak in location computation GP: shorter person phase
Z-splitLoc: no load balance ZC-splitLoc: similar perf. w/ GP-splitLoc

Blue: person computation

Red: receiver’s msg handling
Orange: location computation

X-axis: Time Y-axis: Processor

Timeline of an iteration from sampled subset of 332
cores of total 4K using Michigan data on Vulcan

Virginia Tech Network Dynamics & Simulation Science Lab April 30, 2014 24 / 2628

30

Strong scaling performance with the largest data set









        





































       




































      




















 




Contiguous US population data

XE6: the largest scale (352K cores)

BG/Q: good scaling up to 128K cores

Strong scaling helps timely reaction to
pandemic

Virginia Tech Network Dynamics & Simulation Science Lab April 30, 2014 26 / 26

OpenAtom
Car-Parinello Molecular Dynamics

NSF ITR 2001-2007, IBM, DOE,NSF

5/28/14 LBNL/LLNL 31

Molecular Clusters : Nanowires:

Semiconductor Surfaces: 3D-Solids/Liquids:

Recent NSF SSI-SI2 grant
With

G. Martyna (IBM)
Sohrab Ismail-Beigi

Using Charm++ virtualization, we can efficiently scale
small (32 molecule) systems to thousands of processors

Decomposition and Computation
Flow

5/28/14 LBNL/LLNL 32

Topology Aware Mapping of Objects

5/28/14 LBNL/LLNL 33

Improvements by topological aware
mapping of computation to processors

5/28/14 LBNL/LLNL 34

The simulation of the left panel, maps computational work to processors taking the network
connectivity into account while the right panel simulation does not. The “black’’ or idle time
processors spent waiting for computational work to arrive on processors is significantly
reduced at left. (256waters, 70R, on BG/L 4096 cores)

Punchline: Overdecomposition into Migratable Objects created the
degree of freedom needed for flexible mapping

OpenAtom Performance Sampler

5/28/14 LBNL/LLNL 35

 1

 2

 4

 8

 16

 32

512 1K 2K 4K 8K 16K

T
im

e
st

e
p
 (

se
cs

/s
te

p
)

No. of cores

OpenAtom running WATER 256M 70Ry on various platforms

Blue Gene/L
Blue Gene/P

Cray XT3

Ongoing work on:
K-points

Mini-App Features Machine Max cores
AMR Overdecomposition,

Custom array index,
Message priorities,

Load Balancing,
Checkpoint restart

BG/Q 131,072

LeanMD Overdecomposition,
Load Balancing,

Checkpoint restart,
Power awareness

BG/P
BG/Q

131,072
32,768

Barnes-Hut
(n-body)

Overdecomposition,
Message priorities,

Load Balancing

Blue Waters 16,384

LULESH 2.02 AMPI, Over-
decomposition, Load

Balancing

Hopper 8,000

PDES Overdecomposition,
Message priorities,

TRAM

Stampede 4,096

MiniApps

Mini-App Features Machine Max cores
1D FFT Interoperable with

MPI
BG/P
BG/Q

65,536
16,384

Random Access TRAM BG/P
BG/Q

131,072
16,384

Dense LU SDAG XT5 8,192

Sparse Triangular
Solver

SDAG BG/P 512

GTC SDAG BG/Q 1,024

SPH Blue Waters -

More MiniApps

Where are Exascale Issues?
•  I didn’t bring up exascale at all so far..
–  Overdecomposition, migratability, asynchrony

were needed on yesterday’s machines too
–  And the app community has been using them
–  But:

•  On *some* of the applications, and maybe without a
common general-purpose RTS

•  The same concepts help at exascale
–  Not just help, they are necessary, and adequate
–  As long as the RTS capabilities are improved

•  We have to apply overdecomposition to all
(most) apps

38

A message of this talk

39

Intelligent, introspective, Adaptive
Runtime Systems, developed for handling
application’s dynamic variability, already
have features that can deal with
challenges posed by exascale hardware

Fault Tolerance in Charm++/AMPI
•  Four approaches available:
–  Disk-based checkpoint/restart
–  In-memory double checkpoint w auto. restart
–  Proactive object migration
–  Message-logging: scalable fault tolerance

•  Common Features:
–  Easy checkpoint: migrate-to-disk
–  Based on dynamic runtime capabilities
–  Use of object-migration
–  Can be used in concert with load-balancing

schemes
40

Demo at Tech
Marketplace

Extensions to fault recovery
•  Based on the same over-decomposition

ideas
–  Use NVRAM instead of DRAM for checkpoints

•  Non-blocking variants
•  [Cluster 2012] Xiang Ni et al.

–  Replica-based soft-and-hard-error handling
•  As a “gold-standard” to optimize against
•  [SC 13] Xiang Ni, E. Meneses, N. Jain, et al.

41

Saving Cooling Energy
•  Easy: increase A/C setting

–  But: some cores may get too hot
•  So, reduce frequency if temperature is high (DVFS)

–  Independently for each chip
•  But, this creates a load imbalance!
•  No problem, we can handle that:

–  Migrate objects away from the slowed-down processors
–  Balance load using an existing strategy
–  Strategies take speed of processors into account

•  Implemented in experimental version
–  SC 2011 paper, IEEE TC paper

•  Several new power/energy-related strategies
–  PASA ‘12: Exploiting differential sensitivities of code segments

to frequency change

42

Demo at Tech
Marketplace

PARM:Power Aware Resource Manager

•  Charm++ RTS facilitates malleable jobs
•  PARM can improve throughput under a fixed

power budget using:
–  overprovisioning (adding more nodes than

conventional data center)
–  RAPL (capping power consumption of nodes)
–  Job malleability and moldability

`"Job"Arrives" Job"Ends/
Terminates"

Schedule"
Jobs"(LP)"

Update"
Queue"

Scheduler"

Launch"Jobs/"
ShrinkAExpand"

Ensure"Power"
Cap"

ExecuEon"
framework"

Triggers"

Profiler"

Strong"Scaling"
Power"Aware"Model"

Job"CharacterisEcs"
Database"

Power"Aware"Resource"Manager"
(PARM)"

Summary
•  Charm++ embodies an adaptive, introspective

runtime system
•  Many applications have been developed using it

–  NAMD, ChaNGa, Episimdemics, OpenAtom, …
–  Many miniApps, and third-party apps

•  Adaptivity developed for apps is useful for
addressing exascale challenges
–  Resilience, power/temperature optimizations, ..

44

More info on Charm++:
http://charm.cs.illinois.edu
Including the miniApps

Overdecomposition Asynchrony Migratability

5/28/14 SIAM PP14 45

A recently
published book
surveys seven
major applications
developed using
Charm++

More info on Charm++:
http://charm.cs.illinois.edu
Including the miniApps

