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Overdecomposition 
•  Decompose the work units & data units into 

many more pieces than execution units 
–  Cores/Nodes/.. 

•  Not so hard: we do decomposition anyway 
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Migratability 
•  Allow these work and data units to be 

migratable at runtime 
–  i.e. the programmer or runtime, can move them 

•  Consequences for the app-developer 
–  Communication must now be addressed to 

logical units with global names, not to physical 
processors 

–  But this is a good thing 
•  Consequences for RTS 
–  Must keep track of where each unit is 
–  Naming and location management 
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Asynchrony:  
Message-Driven Execution 

•  You have multiple units on each processor 
•  They address each other via logical names 
•  Message-driven execution:  
–  Let the work-unit that happens to have data 

(“message”) available for it execute next 
–  Let the RTS select among ready work units 
–  Programmer should not specify what executes 

next, but can influence it via priorities 
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Charm++: Object-based overdecomposition 
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User View 

System implementation 

•  Multiple “indexed collections” of C++ objects 
•  Indices can be multi-dimensional and/or sparse 
•  Programmer expresses communication between objects 

–  with no reference to processors : A[i].foo(…) 



Message-driven Execution 

Scheduler Scheduler

Processor 1 Processor 2

Message Queue Message Queue

A[..].foo(…) 
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Empowering the RTS 

•  The Adaptive RTS can: 
–  Dynamically balance loads 
–  Optimize communication: 

•  Spread over time, async collectives 
–  Automatic latency tolerance 
–  Prefetch data with almost perfect predictability 

Asynchrony Overdecomposition Migratability 

Adaptive 
Runtime System 

Introspection Adaptivity 
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Charm++ RTS 
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Argo	
  

An Exascale Operating System and Runtime	
  

The Crew of the Argo:	
  
	
  Argonne	
  National	
  Laboratory;	
  
	
  	
  	
  Principle	
  Investigator	
  and	
  Chief	
  Architect:	
  Pete	
  Beckman	
  
	
  	
  	
  Chief	
  Scientist:	
  Marc	
  Snir	
  
	
  P.	
  Balaji,	
  R.	
  Gupta,	
  K.	
  Iskra,	
  R.	
  Thakur,	
  K.	
  Yoshii,	
  F.	
  Cappello	
  
Boston	
  University:	
  	
  	
  	
  	
  J.	
  Appavoo,	
  O.	
  Krieger	
  
Lawrence	
  Livermore	
  National	
  Laboratory:	
  	
  
	
  	
  	
  M.	
  Gokhale,	
  E.	
  Leon,	
  B.	
  Rountree,	
  M.	
  Schulz,	
  B.	
  Van	
  Essen	
  
Paci:ic	
  Northwest	
  National	
  Laboratory:	
  	
  S.	
  Krishnamoorthy,	
  R.	
  Gioiosa	
  
University	
  of	
  Chicago:	
  	
  H.	
  Hoffmann	
  
University	
  of	
  Illinois	
  at	
  UC:	
  	
  	
  L.	
  Kale,	
  E.	
  Bohm,	
  R.	
  Venkataraman	
  
University	
  of	
  Oregon:	
  	
  	
  A.	
  Malony,	
  S.	
  Shende,	
  K.	
  Huck	
  
University	
  of	
  Tennesee	
  Knoxville:	
  	
  	
  J.	
  Dongarra,	
  G.	
  Bosilca	
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Key Areas of Innovation: 
§  NodeOS/R 

–  Core-specialization permits multiple, 
concurrent kernels 

§  Lightweight Concurrency 
–  Embed fine-grained tasks and 

lightweight threads into OS for massive 
parallelism 

§  Backplane 
–  Event, Control, and Performance 

backplanes to support global 
optimizations 

§  Global View 
–  “Enclave” abstraction to allow global 

optimization of power, resilience, perf. 
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ChaNGa: Parallel Gravity 
•  Collaborative project 

(NSF) 
–  with Tom Quinn, Univ. of 

Washington 
•  Gravity, gas dynamics 
•  Barnes-Hut tree codes 

–  Oct tree is natural decomp 
–  Geometry has better 

aspect ratios, so you 
“open” up fewer nodes 

–  But is not used because it 
leads to bad load balance 

–  Assumption: one-to-one 
map between sub-trees 
and PEs 

–  Binary trees are considered 
better load balanced 
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With Charm++: Use Oct-Tree, and 
let Charm++ map subtrees to 
processors 

Evolution of Universe and 
Galaxy Formation 



ChaNGa: Cosmology Simulation 

•  Tree: Represents 
particle 
distribution 

•  TreePiece: object/
chares containing 
particles 

Collaboration with 
Tom Quinn UW 



•  Asynchronous, highly overlapped, phases 
•  Requests for remote data overlapped with 

local computations 

ChaNGa: Optimized Performance 



ChaNGa : a recent result 
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•  Highly clustered 
•  Maximum request per 

processor: > 30K 

ploits the cache. Before computing forces, each
TreePiece registers its data with the software cache.
Thus, a larger tree, corresponding to the union of
all local TreePieces, is assembled in the local cache.
When any piece of that tree is needed during force
computation, it is immediately retrieved.

Selectable Computation Granularity:
ChaNGa accepts an input parameter that defines
how much computation is performed before the
processor is allowed to handle requests from remote
processors. This enables a good tradeo↵ between
responsiveness to communication requests and
processor utilization.

4 Scalability Experiments

To evaluate ChaNGa’s e↵ectiveness as a produc-
tion simulator, we conducted a series of tests with
real cosmological datasets. These tests intended
both to assess the code’s portability across di↵erent
systems and to measure its performance scalability
in each particular type of system. We used the
three systems described in Table 1, and ran tests
with the following datasets:

lambs: Final state of a simulation of a 71Mpc3

volume of the Universe with 30% dark matter and
70% dark energy. Nearly three million particles
are used. This dataset is highly clustered on scales
less than 5 Mpc, but becomes uniform on scales
approaching the total volume. Three subsets of this
dataset are obtained by taking random subsamples
of size thirty thousand, three hundred thousand,
and one million particles, respectively.
dwarf: Snapshot at z = .3 of a multi-resolution
simulation of a dwarf galaxy forming in a 28.5Mpc3

volume of the Universe with 30% dark matter and
70% dark energy. Although the mass distribution
in this dataset is uniform on scales approaching the
volume size, the particle distribution is very cen-
trally concentrated and therefore highly clustered
on all scales above the resolution limit. The total
dataset size is nearly five million particles, but
the central regions have a resolution equivalent to
20483 particles in the entire volume.
hrwh lcdms: Final state of a 90Mpc3 volume
of the Universe with 31% dark matter and 69%
dark energy realized with 16 million particles. This
dataset is used in [7], and is slightly more uniform
than lambs.
dwarf-50M: Same physical model as dwarf except

(a) lambs dataset

(b) dwarf dataset

Figure 2. Pictorial view of datasets

that it is realized with 50 million particles. The
central regions have a resolution equivalent to
61443 particles in the entire volume.
lambb: Same physical model as lambs except that
it is realized with 80 million particles.
drgas: Similar to lambs and lambb except that it is
the high redshift (z = 99) state of the simulation,
and it is realized with 730 million particles. The
particle distribution is very uniform.

To illustrate some of the features in these
datasets, Figure 2(a) presents a pictorial view of
lambs, which has a reasonably uniform particle dis-
tribution, whereas Figure 2(b) presents dwarf, con-
taining a much more clustered distribution. In these
pictures the color scale indicates the log of the mass
density and covers six orders of magnitude.

We conducted serial executions of ChaNGa and
PKDGRAV on NCSA’s Tungsten to compare scala-

Clustered Dataset - Dwarf 

•  Idle time due to 
message delays 

•  Also, load imbalances: 
solved by Hierarchical 
balancers 

Local$ Ewald$ Remote$Idle$0me$
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Solution: Replication 

•  Replicate tree nodes to distribute requests 
•  Requester randomly selects a replica 

PE 1 PE 2 PE 3 PE 4 
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Replication Impact 
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•  Replication distributes 
requests 

•  Maximum request 
reduced from 30K to 
4.5K 

•  Gravity time reduced 
from 2.4 s to 1.7 s, on 8k 
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Multiple time-stepping! 
•  Our scientist collaborators suggest an 

algorithmic optimization: 
–  Don’t move slow-moving particles every step 

•  i.e. don’t calculate forces on them either 
–  In fact, make many (say 5) categories (rungs) of 

particles based on their velocities 
–  Rung sequence (with 5 rungs)  

•  4 3 4 2 4 3 4 1 4 3 4 2 4 3 4 0 
•  Rung 0: all particles, Rung 4: fastest-moving particles 

–  Each tree-piece object now presents a different 
load when different “rungs” are being calculated 



Multiple time-stepping! 
•  Load (for the same object) changes across rungs 

–  Yet, there is persistence within the same rung! 
–  So, specialized phase-aware balancers were developed 



Multi-stepping tradeoff 
•  Parallel efficiency is lower, but performance 

is improved significantly 

Single Stepping Multi Stepping 



NAMD: Biomolecular Simulations 

•  Collaboration with K. 
Schulten 

•  With over 50,000 
registered users 

•  Scaled to most top US 
supercomputers 

•  In production use on 
supercomputers and 
clusters and desktops 

•  Gordon Bell award in 
2002 

Recent success: 
Determination of the 
structure of HIV capsid 
by researchers including 
Prof Schulten  
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Time Profile of ApoA1 on Power7 PERCS 

2ms total 

92,000 atom system, on 500+ nodes (16k cores) 

21 

A snapshot of optimization in progress.. Not the final result 

Overlapped steps, as a result of asynchrony 



Timeline of ApoA1 on Power7 PERCS 
230us 
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NAMD: Strong Scaling 

•  HIV Capsid was a 64 
million atom 
simulation, including 
explicit water atoms 

•  Most biophysics 
systems of interests 
are 10M atoms or 
less… maybe 100M 

•  Strong scaling 
desired to billions of 
steps 
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Enhancing Asynchrony in NAMD 
•  Charm++ reductions are non-blocking 

–  So, you can do other work while reduction is 
progressing through the system 

•  Synchronization:  
–  NAMD, when used with a barostat (NPT ensemble), 

needs pressure from the current step to rescale volume 
–  So, no other work was performed during reduction 

•  Enhancing asynchrony:  
–  For strong scaling, the algebra was reworked to use 

the results of the reduction one step later 
–  Overlapped reduction with an entire force computation 

step 
–  10% performance improvement on 16k nodes on Titan 
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NAMD strong scaling on Titan Cray XK7, Blue Waters Cray XE6, and 
Mira IBM Blue Gene/Q for 21M and 224M atom benchmarks 
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Episimdemics 
•  Simulation of spread of contagion 
–  Code by Madhav Marathe, Keith Bisset, .. Vtech 
–  Original was in MPI 

•  Converted to Charm++ 
–  Benefits: asynchronous reductions improved 

performance considerably 
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Simulating contagion over dynamic networks

EpiSimdemics1

Agent-based

Realistic population data

Intervention2

Co-evolving network,
behavior and policy2

transition by 
interaction 

S 

I 

Local transition 

P1 

P2 

P3 

P4 

P = 1-exp(t·log(1-I·S)) 
- t: duration of  

      co-presence 

- I: infectivity 

- S: susceptivity 

 
infectious 

uninfected 

S 

I 

t 

Location Social 
contact 
network L1 

L2 

1C. Barrett et al.,“EpiSimdemics: An Efficient Algorithm for Simulating the
Spread of Infectious Disease over Large Realistic Social Networks,” SC08
2K. Bisset et al., “Modeling Interaction Between Individuals, Social Net-
works and Public Policy to Support Public Health Epidemiology,” WSC09.
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Load distribution (Vulcan)

RR GP
Z RR ZC GP

splitLoc splitLoc splitLoc splitLoc
(1.755 s) (1.583 s) (1.222 s) (0.438 s) (0.369 s) (0.368 s)

splitLoc: no peak in location computation GP: shorter person phase
Z-splitLoc: no load balance ZC-splitLoc: similar perf. w/ GP-splitLoc

Blue: person computation

Red: receiver’s msg handling
Orange: location computation

X-axis: Time Y-axis: Processor

Timeline of an iteration from sampled subset of 332
cores of total 4K using Michigan data on Vulcan
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Strong scaling performance with the largest data set
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

Contiguous US population data

XE6: the largest scale (352K cores)

BG/Q: good scaling up to 128K cores

Strong scaling helps timely reaction to
pandemic
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OpenAtom 
Car-Parinello Molecular Dynamics 

NSF ITR 2001-2007, IBM, DOE,NSF  

5/28/14 LBNL/LLNL 31 

Molecular Clusters : Nanowires: 

Semiconductor Surfaces: 3D-Solids/Liquids: 

Recent NSF SSI-SI2 grant 
With 

G. Martyna (IBM)  
Sohrab Ismail-Beigi 

Using Charm++ virtualization, we can efficiently scale 
small (32 molecule) systems to thousands of processors 



Decomposition and Computation 
Flow 
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Topology Aware Mapping of Objects 
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Improvements by topological aware 
mapping of computation to processors 

5/28/14 LBNL/LLNL 34 

The simulation of the left panel, maps computational work to processors taking the network 
connectivity into account while the right panel simulation does not. The “black’’ or idle time 
processors spent waiting for computational work to arrive on processors is significantly 
reduced at left. (256waters, 70R, on BG/L 4096 cores) 

Punchline: Overdecomposition into Migratable Objects created the 
degree of freedom needed for flexible mapping  



OpenAtom Performance Sampler 
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Mini-App Features Machine Max cores 
AMR Overdecomposition, 

Custom array index, 
Message priorities, 

Load Balancing, 
Checkpoint restart 

BG/Q 131,072 

LeanMD Overdecomposition, 
Load Balancing, 

Checkpoint restart, 
Power awareness 

BG/P  
BG/Q 

131,072 
32,768 

 

Barnes-Hut 
(n-body) 

Overdecomposition, 
Message priorities, 

Load Balancing 

Blue Waters 16,384 

LULESH 2.02 AMPI, Over-
decomposition, Load 

Balancing 

Hopper 8,000 

PDES Overdecomposition, 
Message priorities, 

TRAM 

Stampede 4,096 

MiniApps 



Mini-App Features Machine Max cores 
1D FFT Interoperable with 

MPI 
BG/P 
BG/Q 

65,536 
16,384 

Random Access TRAM BG/P  
BG/Q 

 

131,072 
16,384 

Dense LU SDAG XT5 8,192 

Sparse Triangular 
Solver 

SDAG BG/P 512 

GTC SDAG BG/Q 1,024 

SPH Blue Waters - 

More MiniApps 



Where are Exascale Issues? 
•  I didn’t bring up exascale at all so far.. 
–  Overdecomposition, migratability, asynchrony 

were needed on yesterday’s machines too 
–  And the app community has been using them 
–  But:  

•  On *some* of the applications, and maybe without a 
common general-purpose RTS 

•  The same concepts help at exascale 
–  Not just help, they are necessary, and adequate 
–  As long as the RTS capabilities are improved 

•  We have to apply overdecomposition to all 
(most) apps 
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A message of this talk 

39 

Intelligent, introspective, Adaptive 
Runtime Systems, developed for handling 
application’s dynamic variability, already 
have features that can deal with 
challenges posed by exascale hardware 



Fault Tolerance in Charm++/AMPI 
•  Four approaches available: 
–  Disk-based checkpoint/restart 
–  In-memory double checkpoint w auto. restart 
–  Proactive object migration 
–  Message-logging: scalable fault tolerance 

•  Common Features: 
–  Easy checkpoint: migrate-to-disk 
–  Based on dynamic runtime capabilities 
–  Use of object-migration 
–  Can be used in concert with load-balancing 

schemes 
40 

Demo at Tech 
Marketplace 



Extensions to fault recovery 
•  Based on the same over-decomposition 

ideas 
–  Use NVRAM instead of DRAM for checkpoints 

•  Non-blocking variants 
•  [Cluster 2012] Xiang Ni et al. 

–  Replica-based soft-and-hard-error handling 
•  As a “gold-standard” to optimize against 
•  [SC 13] Xiang Ni, E. Meneses, N. Jain, et al. 
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Saving Cooling Energy 
•  Easy: increase A/C setting 

–  But: some cores may get too hot 
•  So, reduce frequency if temperature is high (DVFS) 

–  Independently for each chip 
•  But, this creates a load imbalance! 
•  No problem, we can handle that: 

–  Migrate objects away from the slowed-down processors 
–  Balance load using an existing strategy 
–  Strategies take speed of processors into account 

•  Implemented in experimental version 
–  SC 2011 paper, IEEE TC paper 

•  Several new power/energy-related strategies 
–  PASA ‘12: Exploiting differential sensitivities of  code segments 

to frequency change  

42 

Demo at Tech 
Marketplace 



PARM:Power Aware Resource Manager 

•  Charm++ RTS facilitates malleable jobs 
•  PARM can improve throughput under a fixed 

power budget using: 
–  overprovisioning (adding more nodes than 

conventional data center) 
–  RAPL (capping power consumption of nodes) 
–  Job malleability and moldability 

`"Job"Arrives" Job"Ends/
Terminates"

Schedule"
Jobs"(LP)"

Update"
Queue"

Scheduler"

Launch"Jobs/"
ShrinkAExpand"

Ensure"Power"
Cap"

ExecuEon"
framework"

Triggers"

Profiler"

Strong"Scaling"
Power"Aware"Model"

Job"CharacterisEcs"
Database"

Power"Aware"Resource"Manager"
(PARM)"



Summary 
•  Charm++ embodies an adaptive, introspective 

runtime system 
•  Many applications have been developed using it 

–  NAMD, ChaNGa, Episimdemics, OpenAtom, … 
–  Many miniApps, and third-party apps 

•  Adaptivity developed for apps is useful for 
addressing exascale challenges 
–  Resilience, power/temperature optimizations, .. 

44 

More info on Charm++:  
http://charm.cs.illinois.edu 
Including the miniApps 

Overdecomposition Asynchrony Migratability 
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A recently 
published book 
surveys seven 
major applications 
developed using 
Charm++ 

More info on Charm++:  
http://charm.cs.illinois.edu 
Including the miniApps 


