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Overdecomposition

Decompose the work units & data units into
many more pieces than execution units

— Cores/Nodes/..
Not so hard: we do decomposition anyway




Migratability

e Allow these work and data units to be
migratable at runtime

— i.e. the programmer or runtime, can move them

« Consequences for the app-developer

— Communication must now be addressed to
logical units with global names, not to physical
Processors

— But this is a good thing
« Consequences for RTS

— Must keep track of where each unit is
— Naming and location management
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Asynchrony:
Message-Driven Execution

* You have multiple units on each processor
 They address each other via logical names

 Message-driven execution:

— Let the work-unit that happens to have data
(“message”) available for it execute next

— Let the RTS select among ready work units

— Programmer should not specify what executes
next, but can influence it via priorities
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Charm++: Object-based overdecomposition

* Multiple “indexed collections” of C++ objects

* Indices can be multi-dimensional and/or sparse

* Programmer expresses communication between objects
— with no reference to processors : A[1].foo(...)
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User View

System implementation
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Message-driven Execution

u
D DI\ Al..].foo(...) D

“a
- a S0 _ @

Processor | Frocessor 2
[T N [T

Message Queue Message Queue
— —



Empowering the RTS

Adaptive
Runtime System

Asynchrony Overdecomposition Migratability

« The Adaptive RTS can:
— Dynamically balance loads

— Optimize communication:
« Spread over time, async collectives

— Automatic latency tolerance
— Prefetch data with almost perfect predictability

Adaptivity
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Charm++ RTS

XARTS

WUDUs: Indexed collection,
Migratable threads,
Scalable sections (sub-communicators),
Location services

v

—» Fault tolerance protocols]
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Load balancers: I
intra-node, inter-node
—»  Power-aware, Thermal-
aware, Topo-aware

>

Data-driven scheduler, user-
level threads, priority queues

Communication Libs
(Colletives/persistence)
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LRTS: m/c specific implementations:
(start-up, communication, virtual mem. management)

Scalable Tools
Analysis, Debugging




ARGO

Key Areas of Innovation:

NodeOS/R

Core-specialization permits multiple,
concurrent kernels

Lightweight Concurrency

- Embed fine-grained tasks and
lightweight threads into OS for massive
parallelism

Backplane

- Event, Control, and Performance
backplanes to support global
optimizations

Global View

“Enclave” abstraction to allow global

optimization of power, resilience, perf.
Exascale System
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An Exascale Operating System and Runtime
Node
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THE CREW OF THE ARGO:
Argonne National Laboratory;
Principle Investigator and Chief Architect: Pete Beckman
Chief Scientist: Marc Snir /

P. Balaji, R. Gupta, K. Iskra, R. Thakur, K. Yoshii, F. Cappello

Boston University: ]. Appavoo, O. Krieger
Lawrence Livermore National Laboratory:

M. Gokhale, E. Leon, B. Rountree, M. Schulz, B. Van Essen

Pacific Northwest National Laboratory: S. Krishnamoorthy, R. Gioiosa

University of Chicago: H. Hoffmann

University of Illinois at UC: L. Kale, E. Bohm, R. Venkataraman

University of Oregon: A. Malony, S. Shende, K.

Huck

University of Tennesee Knoxville: ]. Dongarra, G. Bosilca
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Backplanes: BEACON and EXPOSE

Concurrency RTS Concurrency RTS

Multi-kernels Multi-kernels
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Enclave 1 & Enclave 2
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ChaNGa: Parallel Gravity Evolution of Universe and
Galaxy Formation

« Collaborative project
(NSF)
— with Tom Quinn, Univ. of
Washington
« Gravity, gas dynamics

e Barnes-Hut tree codes
— QOct tree is natural decom

— Geometry has better
aspect ratios, so you
“open” up fewer nodes

— But is not used because it
leads to bad load balance

— Assumption: one-to-one With Charm++: Use Oct-Tree, and
map between sub-trees let Charm++ map subtrees to

and PEs

— Binary trees are considered
~ better load balanced

- 5/28/14 SIAM PP14 10
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ChaNGa: Cosmology Simulation

™ Collaboration with
Tom Quinn UW

S 9 - Tree: Represents
particle

distribution

 TreePiece: object/
chares containing
particles
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ChaNGa: Optimized Performance

* Asynchronous, highly overlapped, phases
* Requests for remote data overlapped with
local computations

Time Profile
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649.688s

Time (85.414ms resolution)
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Time per Step (5s)

ChaNGa : a recent result
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Number of Messages
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Clustered Dataset — Dwarf

CY:T0] I — i e ;
30000 - e T e |

22500 |- T =

15000 o

. 3 . : . Lo :
. . H : . co :
. . . 7. : .. : . :
7500 |t b e T R— o
. o . - 3. o . :
- By .o . . Seel T . b
. | T 3 [N el . Sy
LA K sd N s : Dt L. ol P

S 3
. Lt LR
3 p o
O -

Time Profile
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i Time (2.757ms resolution)

0 2000 4000 6000 8000

Processors

« Highly clustered

« Maximum request per
processor: > 30K

« |dle time due to
message delays

« Also, load imbalances:
solved by Hierarchical

balancers
1 PPL
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Solution: Replication
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« Replicate tree nodes to distribute requests
« Requester randomly selects a replica
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Number of Messages
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Replication Impact

Time Profile

Percentage Utilization

23.3575s

Time (1.851ms resolution)

0 2000 4000 6000 8000
Processors « Replication distributes

e requests

With Replication —>é—
Without Replication =—f—

« Maximum request
reduced from 30K to
4.5K

« Gravity time reduced
from2.4sto1.7s,on 8k
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Multiple time-stepping!

« QOur scientist collaborators suggest an
algorithmic optimization:
— Don’t move slow-moving particles every step
 i.e. don’t calculate forces on them either

— In fact, make many (say 5) categories (rungs) of
particles based on their velocities
— Rung sequence (with 5 rungs)

«4342434143424340
« Rung 0: all particles, Rung 4: fastest-moving particles

— Each tree-piece object now presents a different
load when different “rungs” are being calculated
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Multiple time-stepping!

Load (for the same object) changes across rungs
— Yet, there is persistence within the same rung!
— So, specialized phase-aware balancers were developed
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Multi-stepping tradeoff

« Parallel efficiency is lower, but performance
is improved significantly

Time per Step =—>¢— 1 Time per Step =3¢ _ 100
Parallel Efficiency = === TTe-

Parallel Efficiency = ==
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NAMD: Biomolecular Simulations

 Collaboration with K.
Schulten

« With over 50,000
registered users

« Scaled to most top US
supercomputers

* In production use on
supercomputers and
clusters and desktops

« Gordon Bell award in
2002

Recent success:
Determination of the
structure of HIV capsid
by researchers including
Prof Schulten
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Time Profile of ApoA1 on Power7 PERCS

92,000 atom system, on 500+ nodes (16k cores)

Time Profile

2ms total

A snapshot of optimization in progress.. Not the final result

Percentage Utilization
Y Py [ 9

19.482s 19.4822s 19.4824s 19.4826s 19.4828s 19.483s 19.4832s 19.4834s 19.4836s 19.4838s 19.484s
Time (0.002ms resolution)

kL Overlapped steps, as a result of asynchrony PRI
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Timeline of ApoATl on Power7 PERCS

. 230us .

In Microseconds
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NAMD: Strong

« HIV Capsid was a 64

million atom
simulation, including
explicit water atoms
Most biophysics
systems of interests

are 10M atoms or
less... maybe 100M

Strong scaling
desired to billions of
steps

Scaling
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Enhancing Asynchrony in NAMD

« Charm++ reductions are non-blocking

— So, you can do other work while reduction is
progressing through the system

* Synchronization:

— NAMD, when used with a barostat (NPT ensemble),
needs pressure from the current step to rescale volume

— So, no other work was performed during reduction

 Enhancing asynchrony:

— For strong scaling, the algebra was reworked to use
the results of the reduction one step later

— Overlapped reduction with an entire force computation
step

— 10% performance improvement on 16k nodes on Titan
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NAMD on Petascale Machines (2fs timestep with PME)

30 21M atoms

-
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256 512 1024 2048 4096 8192 16384
Number of Nodes

\

Performance (ns per day)

0.5 |

NAMD strong scaling on Titan Cray XK7, Blue Waters Cray XE6, and
Mira IBM Blue Gene/Q for 21M and 224M atom benchmarks

t g

1

. Wy
ma
CRCT

[ ]
(]

PPL

UI0C



Episimdemics

« Simulation of spread of contagion
— Code by Madhav Marathe, Keith Bisset, .. Vtech
— Original was in MPI

 Converted to Charm++

— Benefits: asynchronous reductions improved
performance considerably
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Simulating contagion over dynamic networks

P=l-exp(tlog(1-I'S)) ~ Location e TE social
o}
- t: duration of st contact
uninfected L1 P2 network

Co-presence S

- I infectivity t

infectious L2 \
I P4

- S:susceptivity

transition by
Local transition

EpiSimdemics’ interaction A |
@ Agent-based . _,
. . ) _ 1.0
@ Realistic population data  ( Lireeted Yoommooocoommo e 05— -

@ Intervention?

) 1.0
a
@ Co-evolving network,

behaV|or and pOIICy2 — untreated —» ---- vaccine ---%

LC. Barrett et al.,“EpiSimdemics: An Efficient Algorithm for Simulating the
Spread of Infectious Disease over Large Realistic Social Networks,” SC08
2K. Bisset et al., “Modeling Interaction Between Individuals, Social Net-
works and Public Policy to Support Public Health Epidemiology,” WSCO09.

Virginia Tech Network Dynamics & Simulation Science Lab April 30, 2014



Load distribution (vulcan)

RR Gp .Z BR Zp QP
splitLoc splitLoc | splitLoc | splitLoc

(1.755 s) 1 (1.583 s) (1.222 s) (0.438 s) (0.369 s){(0.368 S}

splitLoc: no peak in location computation GP: shorter person phase
Z-splitLoc: no load balance ZC-splitLoc: similar perf. w/ GP-splitLoc

@ Blue: person computation X-axis: Time Y-axis: Processor

@ Red: receiver's msg handling Timeline of an iteration from sampled subset of 332
@ Orange: location computation cores of total 4K using Michigan data on Vulcan

Virginia Tech Network Dynamics & Simulation Science Lab April 30, 2014 24,/ 26 L
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| ] MPI Synchronization
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Portion of Execution Time (%)
|

1 4 8 16 32 64 128 192 256 384 512 640 768
Number of PEs

Figure 10. The synchronization cost using contribute() and QD method
takes at most 4.23% of the total execution time while the MPI synchro-
nization cost linearly increases up to 14.5% as the number of PEs used
increases for simulating Arkansas population.



Strong scaling performance with the largest data set

100 Strong Scaling (BlueWaters | XE6) : 100 Strong Scaling (Vulcan | BG/Q)
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o 10 Xl g S ' )
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K R o : .
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OpenAtom

Car-Parinello Molecular Dynamics
NSF ITR 2001-2007, IBM, DOE,NSF

Molecular Clusters : Nanowires:

Recent NSF SSI-SI2 grant
With
G. Martyna (IBM)
Sohrab Ismail-Beigi

Semiconductor Surfaces: 3D- Sg|ldS/LICIUIC|SZ
g g MO, e XY
Usmg Charm++ virtualization, we can efﬁ01ently scale

small (32 molecule) systems to thousands of processors
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Decomposition and Computation
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Topology Aware Mapping of Objects

Density

3D Torus of
the machine m
AR Planes
S S B TN

RealSpace

block_size

PairCalculator

Planes

RealSpace Prisms \
perpendicular to
Gspace Prisms States
7"

Rectangular

Gspace
Prisms
GSpace
Ng
Planes
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Improvements by topological aware
mapping of computation to processors

artyres X dsdip bk 2 =
%% pmartyna’s X desktop (bgwfcen1:2) ! e D 5 SeC Ste )
(ECIE TF (TR RS & i 2 S s

|®] Piojeclicn-: Over | 11l
e Modl

Punchline: Overdecomposition into Migratable Objects created the
degree of freedom needed for flexible mapping

B

The simulation of the left panel, maps computational work to processors taking the network
connectivity into account while the right panel simulation does not. The “black’ or idle time

processors spent waiting for computational work to arrive on processors is significantly
s 3 &Miced at left. (256waters, 70R, on BG/L 4096 cores)
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OpenAtom Performance Sampler

Ongoing work on:

K'p()lnts OpenAtom running WATER 256M 70Ry on various platforms
32 T T T

Blue Gene/L ---x---
Blue Gene/P ------
Cray XT3 —+—
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MiniApps

oo

LeanMD

Barnes—-Hut
(n-body)

LULESH 2.02

PDES

Overdecomposition,
Custom array index,
Message priorities,
Load Balancing,
Checkpoint restart

Overdecomposition,
Load Balancing,
Checkpoint restart,
Power awareness

Overdecomposition,
Message priorities,
Load Balancing

AMPI, Over-
decomposition, Load
Balancing

Overdecomposition,
Message priorities,
TRAM

BG/Q

BG/P
BG/Q

Blue Waters

Hopper

Stampede

131,072

131,072
32,768

16,384

8,000

4,096

PPL
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More MiniApps

Mini-App
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1D FFT Interoperable with BG/P 65,536
MPI BG/Q 16,384
Random Access TRAM BG/P 131,072
BG/Q 16,384
Dense LU SDAG XT5 8,192
Sparse Triangular SDAG BG/P 512
Solver
GTC SDAG BG/Q 1,024
SPH Blue Waters -



Where are Exascale Issues?

« | didn’t bring up exascale at all so far..

— Overdecomposition, migratability, asynchrony
were needed on yesterday’s machines too

— And the app community has been using them

— But:

« On *some* of the applications, and maybe without a
common general-purpose RTS

« The same concepts help at exascale
— Not just help, they are necessary, and adequate
— As long as the RTS capabilities are improved

« We have to apply overdecomposition to all
(most) apps
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A message of this talk

Intelligent, introspective, Adaptive
Runtime Systems, developed for handling
application’s dynamic variability, already
have features that can deal with
challenges posed by exascale hardware

PPL

UI0C



Fault Tolerance in Charm++/AMPI

 Four approaches available: Demo at Tech
— Disk-based checkpoint/restart Marketplace
— In-memory double checkpoint w auto. restart
— Proactive object migration
— Message-logging: scalable fault tolerance

« Common Features:
— Easy checkpoint: migrate-to-disk
— Based on dynamic runtime capabilities
— Use of object-migration

— Can be used in concert with load-balancing
schemes
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Extensions to fault recovery

« Based on the same over-decomposition
ideas
— Use NVRAM instead of DRAM for checkpoints

« Non-blocking variants
« [Cluster 2012] Xiang Ni et al.

— Replica-based soft-and-hard-error handling
* As a “gold-standard” to optimize against
« [SC 13] Xiang Ni, E. Meneses, N. Jain, et al.
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Saving Cooling Energy

Demo at Tech

Easy: increase A/C setting Marketplace

— But: some cores may get too hot

So, reduce frequency if temperature is high (DVFS)
— Independently for each chip

But, this creates a load imbalance!

No problem, we can handle that:

— Migrate objects away from the slowed-down processors
— Balance load using an existing strategy

— Strategies take speed of processors into account

Implemented in experimental version
— SC 2011 paper, IEEE TC paper

Several new power/energy-related strategies

— PASA ‘12: Exploiting differential sensitivities of code segments
to frequency change

= PPL
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PARM:Power Aware Resource Manager

« Charm++ RTS facilitates malleable jobs

« PARM can improve throughput under a fixed
power budget using:

— overprovisioning (adding more nodes than
conventional data center)

— RAPL (capping power consumption of nodes)
— Job malleability and moldability

Power Aware Resource Manager
= (PARM)
Profiler :
Scheduler fEXECUl‘IOﬂk
Strong Scaling ramewor
N~ Schedule
Power Aware Model Ea Jobs (LP) P| Launch Jobs/
. Shrink-Expand
Job Characteristics
Datage lélpdate Ensure Power
ueue rﬂ Cap
\ . \ -
7 \ A
. . \ Job Ends/
- Triggers Terminates
a PPL
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Summary

Charm++ embodies an adaptive, introspective
runtime system

Many applications have been developed using it
— NAMD, ChaNGa, Episimdemics, OpenAtom, ...

— Many miniApps, and third-party apps

Adaptivity developed for apps is useful for

addressing exascale challenges
— Resilience, power/temperature optimizations, ..

More info on Charm++:
http://charm.cs.illinois.edu
Including the miniApps

« PPL
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A recently
published book
surveys seven
major applications
developed using
Charm++

More info on Charm+-+:
http://charm.cs.1llinois.edu
Including the miniApps
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Parallel Science and Engineering Applications

The Charm++ Approach
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Laxmikant V. Kale
Abhinav Bhatele
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