

Enabling Optimization under Uncertainty using High Performance Computing Parallel Algorithms for Stochastic Integer Optimizations

ROGRAMMING LABORATORY

> College of Business at I L L I N O I S

> > Cause of Variation

☐ Incumbents found in

Sequence of vertex

solution, when LPs are

different order

Akhil Langer (4th year PhD Student), Udatta Palekar* (Co-Advisor), Laxmikant (Sanjay) Kale (Advisor) Department of Computer Science, *Department of Business, University of Illinois at Urbana-Champaign

Poor load balancing, scaling up to 32 cores AICRAFT ALLOCATION PROBLEM

What is different/ new that we are doing? Solving large scale stochastic optimization problems Not looked before because stochastic-optimization is a hard problem Combine stochastic programming with high performance computing Facilitates reconciliation of myriad possible outcomes in a timely manner

Makes it feasible to solve integer programs

☐ Object-based expression

☐ One-sided messaging

☐ Prioritized execution

Charm++ parallel programming

model fits well into B&B parallelism

PERFORMANCE VARIATION ACROSS IDENTICAL TRIALS

How bad is performance variation?

IMPACT

TAKEAWAYS

Robust planning of Real-time US Air Mobility **Command operations** leading to

Lagrangean based temporal decomposition

☐ Automated distribution of processes to stage 1 and stage 2

- ☐ reduced transportation costs,
- ☐ improved personnel satisfaction, and
- ☐ timely delivery of mission-critical cargo
- while doing dynamic mission re-planning as disruptions occur

- ☐ Enabled large-scale stochastic optimizations leading to robust planning of US AMC operations
- ☐ Reduced memory overhead and time to
- solution using state sharing amongst tree vertices
- ☐ Asynchronous parallel programming model for maximum productivity and performance

REFERENCES

- Akhil Langer, Ramprasad Venkataraman, Udatta Palekar, and Laxmikant V. Kale. "Parallel branch-and-bound for two-stage stochastic integer optimization." In High Performance Computing (HiPC), 2013 20th International Conference on, pp. 266-275. IEEE,
- Langer, Akhil, Ramprasad Venkataraman, Udatta Palekar, Laxmikant Kale, and Steven Baker. "Performance Optimization of a Parallel, Two Stage Stochastic Linear Program." In 2012 IEEE 18th International Conference on Parallel and Distributed Systems, pp. 676-683. IEEE,
- Laxmikant Kale, Anshu Arva, Nikhil Jain, Akhil Langer, Jonathan Liander, Harshitha Menon, Xiang Ni, Yanhua Sun, Ehsan Totoni, Ramprasad Venkataraman, and Lukasz Wesolowski. Migratable Objects + Active Messages + Adaptive Runtime = Productivity + Performance A Submission to 2012 HPC Class II Challenge. Technical Report 12-47, Parallel Programming Laboratory, November 2012.

POTENTIAL IMPACT

Energy grid optimizations for

renewable energy resources

☐ Unit commitment problem

☐ Energy dispatch problem

that are unpredictable by

nature

Langer, Akhil, Ramprasad Venkataraman, Gagan Gupta, Laxmikant Kale, Udatta Palekar, Steven Baker, and Mark Surina. "Poster: enabling massive parallelism for stochastic optimization." In Proceedings of the 2011 companion on High Performance Computing Networking, Storage and Analysis Companion, pp. 89-90. ACM, 2011

